You are here

Effects of Carbon Nanotube (CNT) Dispersion and Interface Condition on Thermo-Mechanical Behavior of CNT-Reinforced Vinyl Ester

Download pdf | Full Screen View

Date Issued:
2016
Summary:
In fabrication of nanoparticle-reinforced polymers, two critical factors need to be taken into account to control properties of the final product; nanoparticle dispersion/distribution in the matrix; and interfacial interactions between nanoparticles and their surrounding matrix. The focus of this thesis was to examine the role of these two factors through experimental methodologies and molecular-level simulations. Carbon nanotubes (CNTs) and vinyl ester (VE) resin were used as nanoparticles and matrix, respectively. In a parametric study, a series of CNT/VE nanocomposites with different CNT dispersion conditions were fabricated using the ultrasonication mixing method. Thermomechanical properties of nanocomposites and quality of CNT dispersion were evaluated. By correlation between nanocomposite behavior and CNT dispersion, a thermomechanical model was suggested; at a certain threshold level of sonication energy, CNT dispersion would be optimal and result in maximum enhancement in properties. This threshold energy level is also related to particle concentration. Sonication above this threshold level, leads to destruction of nanotubes and renders a negative effect on the properties of nanocomposites. In an attempt to examine the interface condition, a novel process was developed to modify CNT surface with polyhedral oligomeric silsesquioxane (POSS). In this process, a chemical reaction was allowed to occur between CNTs and POSS in the presence of an effective catalyst. The functionalized CNTs were characterized using TEM, SEM-EDS, AFM, TGA, FTIR and Raman spectroscopy techniques. Formation of amide bonds between POSS and nanotubes was established and verified. Surface modification of CNTs with POSS resulted in significant improvement in nanotube dispersion. In-depth SEM analysis revealed formation of a 3D network of well-dispersed CNTs with POSS connections to the polymer. In parallel, molecular dynamics simulation of CNT-POSS/VE system showed an effective load transfer from polymer chains to the CNT due to POSS linkages at the interface. The rigid and flexible network of CNTs is found to be responsible for enhancement in elastic modulus, strength, fracture toughness and glass transition temperature (Tg) of the final nanocomposites.
Title: Effects of Carbon Nanotube (CNT) Dispersion and Interface Condition on Thermo-Mechanical Behavior of CNT-Reinforced Vinyl Ester.
180 views
36 downloads
Name(s): Sabet, Seyed Morteza, author
Mahfuz, Hassan, Thesis advisor
Florida Atlantic University, Degree grantor
College of Engineering and Computer Science
Department of Ocean and Mechanical Engineering
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2016
Date Issued: 2016
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 192 p.
Language(s): English
Summary: In fabrication of nanoparticle-reinforced polymers, two critical factors need to be taken into account to control properties of the final product; nanoparticle dispersion/distribution in the matrix; and interfacial interactions between nanoparticles and their surrounding matrix. The focus of this thesis was to examine the role of these two factors through experimental methodologies and molecular-level simulations. Carbon nanotubes (CNTs) and vinyl ester (VE) resin were used as nanoparticles and matrix, respectively. In a parametric study, a series of CNT/VE nanocomposites with different CNT dispersion conditions were fabricated using the ultrasonication mixing method. Thermomechanical properties of nanocomposites and quality of CNT dispersion were evaluated. By correlation between nanocomposite behavior and CNT dispersion, a thermomechanical model was suggested; at a certain threshold level of sonication energy, CNT dispersion would be optimal and result in maximum enhancement in properties. This threshold energy level is also related to particle concentration. Sonication above this threshold level, leads to destruction of nanotubes and renders a negative effect on the properties of nanocomposites. In an attempt to examine the interface condition, a novel process was developed to modify CNT surface with polyhedral oligomeric silsesquioxane (POSS). In this process, a chemical reaction was allowed to occur between CNTs and POSS in the presence of an effective catalyst. The functionalized CNTs were characterized using TEM, SEM-EDS, AFM, TGA, FTIR and Raman spectroscopy techniques. Formation of amide bonds between POSS and nanotubes was established and verified. Surface modification of CNTs with POSS resulted in significant improvement in nanotube dispersion. In-depth SEM analysis revealed formation of a 3D network of well-dispersed CNTs with POSS connections to the polymer. In parallel, molecular dynamics simulation of CNT-POSS/VE system showed an effective load transfer from polymer chains to the CNT due to POSS linkages at the interface. The rigid and flexible network of CNTs is found to be responsible for enhancement in elastic modulus, strength, fracture toughness and glass transition temperature (Tg) of the final nanocomposites.
Identifier: FA00004628 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2016.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Carbon nanotubes.
Carbon composites.
Polymeric composites.
Fibrous composites
Nanostructured materials.
Composite materials--Mechanical properties.
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Links: http://purl.flvc.org/fau/fd/FA00004628
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00004628
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.