

FAU Institutional Repository

http://purl.fcla.edu/fau/fauir

This paper was submitted by the faculty of FAU's Harbor Branch Oceanographic Institute.

Notice: © 1989 ASME. This manuscript is an author version with the final publication available and may be cited as: Wang, T., Liou, M., & Hendry, C. (1989, January). *Computer program for lithium hydroxide - carbon dioxide absorption in underwater life support systems*. Paper presented at the Energy-Sources Technology Conference and Exhibition, Houston, TX.

THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS 345 E. 47 St., New York, N.Y. 10017

The Society shall not be responsible for statements or opinions advanced in papers or in discussion at meetings of the Society or of its Divisions or Sections, or printed in its publications. Discussion is printed only if the paper is published in an ASME Journal. Papers are available from ASME for fifteen months after the meeting. Printed in USA.

Computer Program for Lithium Hydroxide — Carbon Dioxide Absorption in Underwater Life Support Systems

T. WANG, M. LIOU and C. HENDRY

Harbor Branch Oceanographic Institution Fort Pierce, Florida 34946

ABSTRACT

Lithium hydroxide (LiOH) has been used as a CO₂ absorbent in underwater life support systems and the space industry. The effectiveness of the LiOH-CO2 reaction is a function of temperature, humidity, composition of incoming gas, method of packing, geometry of canister, granular size and porosity of the absorbent. Laboratory tests are performed to determine the effects of these factors on LiOH bed-CO2 absorption. The resulting information can be used to establish an analytical model for LiOH absorber design analysis in underwater life support systems. computer program is presented to design a LiOH absorber in a manned submersible.

INTRODUCTION

Lithium hydroxide has been used as an absorbent to remove carbon dioxide in an enclosed space (1,2,3). Over the years, a considerable number of studies (4,5,6,7,8) were conducted to improve carbon dioxide removal with the use of lithium hydroxide. As lithium hydroxide absorbs carbon dioxide from a gas stream, the chemical reactions between LiOH and CO2 can be expressed as:

$$H_2O(g) = H_2O(1)$$
 (1)

$$\begin{array}{lll}
 & (9) & (1) & (1) & (1) & (1) & (1) & (1) & (2) & (2) & (2) & (3) & (4) &$$

$$2 \text{ LioH}_{\bullet}\text{H}_{2}\text{O}_{(s)} + \text{CO}_{2}\text{(g)} = \text{Li}_{2}\text{CO}_{3}\text{(s)} + 3 \text{H}_{2}\text{O}_{(1,g)}$$

$$2 \text{ LioH}_{\bullet, s} + \text{CO}_{3, (s)} = \text{Li}_{2}\text{CO}_{3} + \text{H}_{2}\text{O}_{(1,g)}$$

$$(4)$$

$$2 \text{ LiOH}_{(\text{solution})} + \dot{CO}_{2}(g) = Li_{2}CO_{3} + H_{2}O_{(1,g)}$$
 (6)

The effectiveness of the LiOH-CO2 reaction varies with temperature, humidity, composition of incoming gas, method of packing, geometry of canister, granular size and porosity of the absorbent (9,10,11,12,13). The hydration of LiOH to monohydrate lithium hydroxide is

the initial step toward reaction between CO2 and LiOH. If an insufficient amount of water vapor in the air stream exists, then the small amount of monohydrate lithium hydroxide formed will allow only partial reaction with carbon dioxide. On the other hand, an excessive quantity of water vapor forms a saturated LiOH.H $_{\rm 2}{\rm O}$ solution. Water film around the LiOH granules hinders the reaction and results in an incomplete absorption between LiOH and CO_2 (9,13). Therefore, a suitable amount of water vapor, which is regulated by temperature and/or relative humidity, is one of the determining factors to achieve an optimal use of LiOH to remove CO2.

In addition to the water content, other factors such as CO₂ concentration in the gas stream and residence time also control the absorption efficiency of LiOH. A short residence time normally causes an incomplete chemical reaction and the ${\rm CO}_2$ absorption capacity of the absorbent is decreased. However, a longer residence time requires a lower scrubbing rate through the scrubber. This results in ${\rm CO}_2$ accumulation in the enclosed space when the ${\rm CO}_2$ scrubbing rate is lower than the CO2 production rate. The optimal residence time and scrubbing rate are needed in order to maintain a desirable CO2 concentration in the enclosed space (8).

Residence time is defined as the time required for a specific volume of gas to travel through the interstitial spaces within the LiOH canister. Scrubbing rate and the volume available for gas flow control residence time. The available volume in the canister is determined by the granular size, weight of granules and method of packing. For the same amount of absorbent, particles with a smaller granular size have a tendency to be packed more densely than those with a larger granular size. Therefore, residence time of the CO2 molecule in the canister would vary with granular size.

APPARATUS AND PROCEDURE

A series of laboratory tests were conducted to investigate the effects of environmental and geometric parameters on CO_2 absorption. The parameters studied include the gas flow rate, gas temperature, humidity, scrubber length and diameter, granular size and CO_2 concentration. Figure 1 shows laboratory equipment set-up for this study.

Each experiment was terminated when the exit air stream from the absorbent tube reached 0.51% $\rm CO_2$. The time when experiments began until 0.51% $\rm CO_2$ reached in the exit gas is defined as the breakthrough time ($\rm t_B$). The ratio of breakthrough time ($\rm t_B$) to theoretical time ($\rm t_{TH}$) is the efficiency of LiOH absorption capacity. Theoretical time is the time required when the amount of LiOH completely reacted with $\rm CO_2$. Theoretical time can be expressed as:

$$t_{(TH)} = \frac{1}{2} \left(\frac{W_a}{M_{1 iOH}} \right) \left(\frac{R_g T}{P_T} \right) \left(\frac{1}{V_f C_{in}} \right)$$
 (7)

Plots of efficiency vs. flow rate or residence time were used to illustrate the effects of different parameters on the CO_2 absorption (14).

RESULTS AND DISCUSSION

Temperature effects were studied at 40, 26.5, 15 and 5°C with the gas stream at relative humidity greater than 85%. The results are shown in Figure 2. Because the partial pressure of water vapor decreased with temperature decreased, the lower temperature required a longer residence time to achieve the same efficiency as the higher temperature. The optimal residence times were 0.21, 0.34, 0.55 and 2.55 sec. at 40, 26.5, 15 and 5°C, respectively, for each experimental run. The results indicate the optimal residence time increased as temperature decreased.

Figure 3 displays the humidity effects on the CO₂ absorption. When humidity was less than 70%, the optimal residence time was greater than 0.7 seconds. However, the optimal residence time for a gas stream with humidity greater than 70% was found to be only 0.34 seconds. This shows that lower humidity in the gas stream requires longer residence time in order to have higher absorption efficiency. Figure 4 illustrates the residence time effect on length-todiameter ratios (L/D) for an axial canister. The results show (L/D) ratio had little effect on CO2 absorption at the same residence time. The effect of LiOH granular size on the absorption efficiency is shown in Figure 5. Two and one half grams of LiOH with different granular sizes of 0.62, 0.47, and 0.32 cm packed in a 1 cm i.d. reaction tube resulted in a bed length of 8.1, 7.1 and 6.5 cm, respectively. Figure 5 shows when residence time was greater than 0.6 seconds, smaller granular size had less efficiency. The ${\rm CO_2}$ concentration in the inlet gas stream also affected absorption efficiency. Concentrations of 1.0%, 2.4% and 4.8% $\rm CO_2$ in the gas stream were studied. Figure 6 that shows when residence time was less than 0.5 seconds, a lower CO₂ concentration had higher absorption efficiency. Because the shorter residence time resulted in higher flow rate, the lower CO_2 concentration had a more complete reaction with LiOH than with the higher concentrations. Based on the resulting absorption characteristic for each factor controlling the LiOH- ${\rm CO_2}$ reaction, an analytical model was established to predict the effectiveness of LiOH absorber in underwater life support systems (15).

COMPUTER PROGRAM FOR DETERMINING ABSORBER'S VOLUME AND EQUILIBRIUM SCRUBBING RATE

The empirical data of the LiOH-CO₂ reaction obtained from this study was programmed to determine the absorber's volume and equilibrium scrubbing rate. The flowchart and input parameters have been shown in Tables 1 and 2, respectively. The absorption efficiency of 1% $\rm CO_2$ of incoming gas stream at 26.5 °C and R.H. greater 85% (saturated) was used as the standard absorption efficiency. Temperature, humidity and CO₂ concentration correlative factors were obtained from subroutine "TEMP", "HUMID" and "CONC", respectively. The overall efficiency, scrubber volume, scrubbing rate and residence time were computed in the main program (see Appendix). A sample illustration using the program to determine the parameters of an absorber is presented. The absorber is to be operated at 26.5°C and 1 atm. for 5 hours with two divers in a manned submersible (volume = 3.14 m³ and relative humidity > 85%):

TEMPERATURE AT 5, 15, 26.5 OR 40 C; INPUT IT

ENVIRONMENTAL CONDITIONS

```
IF TEMP = 5.0 C, IT = 1 (TYPE 1)

IF TEMP = 15.0 C, IT = 2 (TYPE 2)

IF TEMP = 26.5 C, IT = 3 (TYPE 3)
 IF TEMP = 40.0 \, \text{C}, IT = 4 \, \text{(TYPE 4)}
3<CR>
 HUMIDITY OF < 10, 30-40, 60-70 OR > 85%; INPUT IH
                                  IH = 1 (TYPE 1)
IH = 2 (TYPE 2)
IH = 3 (TYPE 3)
 IF HUMID < 10% (DRY),
 IF HUMID = 30-40\%,
 IF HUMID = 60-70\%,
 IF HUMID > 85% (SATURATED), IH = 4 (TYPE 4)
4<CR>
 ENTER PARTIAL PRESSURE OF CO2, ATM
 IF CONC = 1.0%, TYPE 0.01
 IF CONC = 2.4%, TYPE 0.024
IF CONC = 4.8%, TYPE 0.048
0.01<CR>
 PRESSURE, ATM
1<CR>
 HOW MANY PERSONS ARE IN THE CHAMBER?
2<CR>
 HOW MANY HOURS ARE REQUIRED?
5<CR>
 CO2 PRODUCTION RATE, GRAM/HOUR/PERSON
52<CR>
 RATIO OF SCRUBBER LENGTH TO DIAMETER
3.6<CR>
  ENVIRONMENTAL CONDITIONS
  TEMPERATURE =
                        26.5000
                                        C
  PRESSURE =
                    1.00000
                                    ATM
  MAX. ALLOWABLE CO2 MOLAR FRACTION =
                                                  1.000000E-02
  HUMIDITY > 85% (SATURATED)
  PERSON =
                  2.00000
  TIME =
                5.00000
                                HOUR
  DESIGN CRITERIA
  NO. OF ITERATION =
                                  1
  SCRUBBER VOLUME = 1614.00
                                         CC
  LENGTH = 29.8647
  DIAMETER = 8.29522
VELOCITY = 29.8543
                                 CM
                                 CM/SEC
```

AMOUNT OF LIOH PACKED = 743.410 G
SCRUBBER FLOW RATE = 1613.44 CC/SEC
RESIDENCE TIME (LAST-1) = 0.653870 SEC
RESIDENCE TIME (LAST) = 0.650226 SEC
OVERALL EFFICIENCY = 0.760303

END OF COMPUTATION ****STOP

ACKNOWLEDGMENTS

The authors wish to thank the Link Foundation for partially supporting this study. Thanks also to Mr. D. Boryta for technical discussion and Ms. Debbie Farb for typing the manuscript. This paper is Harbor Branch Contribution No. 702.

REFERENCES

- 1. Allen, J. P., "Carbon Dioxide Management Part I: Techniques for Carbon Dioxide Absorber Evaluation", FDL TDR 64-67, 1964, Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio.
- 2. Marine Technology Society, <u>Safety and Operational Guidelines for Undersea Vehicles</u>, 1968, Washington, DC.
- 3. U.S. Navy Diving Gas Manual, 2nd ed., NAV SHIPS 0994-003-7010, Jun. 1971, Battelle Columbus Laboratories, Columbus, Ohio.
- 4. Boryta, D. A., and A. J. Maas, "Factors Influencing Rates of Carbon Dioxide Reaction with Lithium Hydroxide", <u>Ind. Eng. Chem. Process Des. Develop.</u>, Vol. 10, No. 4, 1971, pp 489-494.
- 5. Davis, S. H., and L. D. Kissinger, "The Dependence of the CO₂ Removal Efficiency of LiOH on Humidity and Mesh Size", <u>Intersociety Conference on Environmental Systems</u>, Jul. 1978, San Diego, California.
- 6. Davis, S. H., and L. D. Kissinger, "The Factors Influencing the Formation of Li₂CO₃ from LiOH and CO₂", <u>Intersociety Environmental Systems Conferences</u>, Jul. 1980, San Diego, California.
- 7. Purer, A., G. A. Deason, M. S. Greger, and M. W. Lippitt, "Carbon Dioxide Absorption Characterization of Lithium Hydroxide", In: <u>Current Practices and New Technology in Ocean Engineering</u>, OED-Vol. 11, Feb. 1986, ASME, New York, pp 371-378.
- 8.Wang, T.C., "Residence Time and Carbon Dioxide Scrubbing Efficiency in Life Support Systems", Aviation, Space and Environmental Medicine, February, 1981, pp 104-108.
- 9. Boryta, D. A., "Contribution of Water to the Kinetics of $\rm CO_2$ Absorption by LiOH", Foote Mineral Report No. 37-4-67, Sep. 1967, Exton, Pennsylvania.
- 10. Cook, R.B., "Temperature and Pressure Effects on Sodasorb and Baralyme", USNA-TSPR No. 25, 1972, Annapolis, Maryland.
- 11. Wang, T. C., "Temperature Effects on Baralyme, Sodasorb, and Lithium Hydroxide", <u>Ind. Eng. Chem. Process Des. Dev.</u>, Vol. 14, 1975, pp 191-193.

- 12. Wang, T. C., and J. L. Bricker, "Combined Temperature and Water Vapor Effects on the Lithium Hydroxide-Carbon Dioxide Reaction in Underwater Life Support Systems", Environment International, Vol. 2, No. 4-6, 1979, pp 425-430.
- 13. Williams, D. D., and R. R. Miller, "The Effect of Water Vapor on the LiOH-CO $_2$ Reaction, Part I-Dynamic Isothermal System", NRL Report 6937, 1969, Naval Research Laboratory, Washington, DC.
- 14. Nuckols, M.L., A. Purer and G.A. Deason, "The Design of Axial Flow Canisters for Carbon Dioxide Absorption", <u>Proceedings Oceans '83</u>, Vol. I: Technical Papers, August, 1983, San Francisco, California.
- 15. Liou, M.C., and T.C. Wang, "Modelling of Axial Flow Canisters for LiOH-CO₂ Absorption", <u>Current Practices and New Technology in Ocean Engineering</u>, OED V. 12: 47-54, 1987.

APPENDIX

```
PROGRAM SCRUBBER
        REAL PERSON, HOUR, T, P, CO2, RTNEW, RCO2, LENGTH
        INTEGER IT, IH, IC
OPEN (UNIT=6,FILE='TAEM',STATUS='NEW')
OPEN (UNIT=7,FILE='SOUT',STATUS='NEW')
******INPUT DATA INTERACTIVELY
        WRITE (1,*) 'ENVIRONMENTAL CONDITIONS' WRITE (1,*) 'TEMPERATURE AT 5, 15, 26.5 OR 40 C;
INPUT IT'
        WRITE (1,*) 'IF TEMP = 5.0 C, IT = 1 (TYPE 1)'
WRITE (1,*) 'IF TEMP = 15.0 C, IT = 2 (TYPE 2)'
WRITE (1,*) 'IF TEMP = 26.5 C, IT = 3 (TYPE 3)'
        WRITE (1,*) 'IF TEMP = 40.0 C, IT = 4 (TYPE 4)'
READ (1,*) IT
        IF (IT .EQ. 1) T = 5.0
        IF (IT .EQ. 2) T = 15.0
        IF (IT .EQ. 3) T = 26.5 IF (IT .EQ. 4) T = 40.0
        WRITE (1,*) 'HUMIDITY OF < 10, 30-40, 60-70 OR >
        85%; INPUT IH'
WRITE (1,*) 'IF HUMID < 10% (DRY),
(TYPE 1)'
                                                                       IH = 1
        WRITE (1,*) 'IF HUMID = 30-40%,
(TYPE 2)'
                                                                       IH = 2
        WRITE (1,\star) 'IF HUMID = 60-70%,
                                                                       IH = 3
             (TYPE 3)'
        WRITE (1,*) 'IF HUMID > 85% (SATURATED), IH = 4
             (TYPE 4)'
        READ (1,*) IH

WRITE (1,*) 'ENTER PARTIAL PRESSURE OF CO2, ATM'

WRITE (1,*) 'IF CONC = 1.0%, TYPE 0.01'

WRITE (1,*) 'IF CONC = 2.4%, TYPE 0.024'

WRITE (1,*) 'IF CONC = 4.8%, TYPE 0.048'
        READ (1,*) CO2
        IF (CO2^{\circ}.LE. 0.017) IC = 1
        IF ((CO2 .GT. 0.017) .AND. (CO2 .LE. 0.036)) IC
        IF (CO2 .GT. 0.036) IC = 3
WRITE (1,*) 'PRESSURE, ATM'
        READ (1,*) P
        WRITE (1,*) 'HOW MANY PERSONS ARE IN THE
             CHAMBER?'
        READ (1,*) PERSON WRITE (1,*) 'HOW MANY HOURS ARE REQUIRED?'
        READ (1,*) HOUR
WRITE (1,*) 'CO2 PRODUCTION RATE, GRAM/HOUR/PERSON'
        WRITE (1,*) 'FOR NORMAL CONDITION, SUGGESTED
```

VALUE = 52'

```
CALL TEMP (IT,EFFSTD,RT,EFFT)
CALL CONC (IC,EFFSTD,RT,EFFC)
*****OVERALL EFFICIENCY
      READ (1,*) RCO2
WRITE (1,*) 'RATIO OF SCRUBBER LENGTH TO
         DIAMETER'
                                                                                  EFFALL = EFFH*EFFT*EFFC*EFFSTD
     READ (1,*) RLD WRITE (1,*) 'TO ENTER DESIRED LENGTH AND
                                                                                  IF (EFFALL .GT. 1.E-10) GO TO 150
WRITE(1,*) 'OVERALL EFFICIENCY = 0'
      DIAMETER, TYPE 1'
WRITE (1,*) 'OR TYPE 2 FOR COMPUTER GENERATED
                                                                                  GO TO 200
                                                                           *****COMPUTE MINIMUM CANISTER VOLUME
         VALUES!
                                                                             150 TOTCO2 = RCO2*PERSON*HOUR IF (IG .EQ. 1) GO TO 155
      READ (1,*) ILD
      IF (ILD .EQ. 2) GO TO 5
WRITE (1,*) 'INPUT DIAMETER AND LENGTH (CM)'
                                                                                  TOTLIOH = TOTCO2/0.92/EFFALL
                                                                             155 IF (ILD .EQ. 1) GO TO 160
      READ (1,*) D.LENGTH
                                                                                  VOL = TOTLIOH/DLIOH/(1.0-VOID)
   5 WRITE (1,*) 'VOLUMETRIC FLOW RATE, CM/SEC'
                                                                                  GO TO 170
      READ (1,*) YF
WRITE (1,*) 'TO ENTER GRAMS LIOH PACKED, TYPE 1'
                                                                             160 VOL = 3.1416*D*D/4.*LENGHTH
                                                                           ******COMPUTE SCRUBBER FLOW RATE
      WRITE (1,*) 'OR TYPE 2 FOR COMPUTER GENERATED
                                                                                  VF - RC02*PERSON/(C02*SAFE -0.005)/DC02*1000.
          VALUES!
                                                                                     /3600.
      READ (1,*) IG
     IF (IG .EO. 2) GO TO 6
WRITE (1,*) 'ENTER LIOH PACKED (GRAM)'
READ (1,*) TOTLIOH
                                                                           ******COMPUTE NEW RESIDENCE TIME FROM CANISTER VOLUME
                                                                                      AND FLOW RATE
                                                                             170 RTNEW = VOL*VOID/VF
                                                                           ******IF NO OF ITERATIONS > 5, STOP
   6 \text{ RTO} = 0.19
                                                                                 IF (ICOUNT .GT. 5) GO TO 200
*****INITIALIZATION
                                                                           ******IF DIFFERENCE BETWEEN NEW AND OLD RESIDENCE TIME
      IRT = 0
                                                                                      < 1% OF OLD
      SAFE = 0.85
                                                                           *****RESIDENCE TIME, STOP; OTHERWISE, CONTINUE
      VOID = 0.65
                                                                                  DIFF = ABS (RTNEW - RT)
      DLIOH = 1.316
                                                                                  CHECK = DIFF/RT
      DC02 = P/0.08205/(T+273)*44.0
                                                                                  IF (DIFF .GT. 0.01) GO TO 20
*****BEGINNING OF A NEW RESIDENCE TIME
                                                                           ******IF IT CAN'T BE CONVERGED WITHIN 5 TRIALS, THEN
  10 RTO = RTO + 0.01
                                                                                      TRY A NEW GUESS RT
      RTNEW = RTO
                                                                           *****BY INCREMENT OF 0.01 SEC
      IRT = IRT + 1
                                                                             200 IF ((IRT .LT. 180) .AND. (ICOUNT .GT. 5)) GO TO
      ICOUNT = 0
****ITERATION
                                                                           *****COMPUTE SCRUBBER LENGTH, DIAMETER AND VELOCITY
  20 RT = RTNEW
                                                                                  IF (ILD .EQ. 1) GO TO 210
      ICOUNT = ICOUNT + 1
                                                                                  D = (VOL*4.0/RLD/3.1416)**(0.33333)
*****STANDARD EFFICIENCY AT 26.5 C, R.H. 85%, 1% OF
                                                                                  LENGTH = VOL*4.0/3.1416/D/D
         C02
                                                                             210 U = VF*4.0/3.1416/D/D
      IF (RT .LT. 0.182) GO TO 11
                                                                           *****PRINT THE FINAL RESULTS
      IF ((RT .GE. 0.182) .AND. (RT .LT. 0.198)) GO TO
                                                                                  WRITE (1,*) ' ENVIRONMENTAL CONDITIONS'
WRITE (1,*) ' TEMPERATURE = ',T,' C'
WRITE (1,*) ' PRESSURE = ',P,' ATM'
      IF ((RT .GE. 0.198) .AND. (RT .LT. 0.219)) GO TO
                                                                                  WRITE (1,*) ' MAX. ALLOWABLE CO2 MOLAR FRACTION
= '.CO2
      IF ((RT .GE. 0.219) .AND. (RT .LT. 0.282)) GO TO
                                                                                           ,C02
                                                                                  WRITE (7,*) ' ENVIRONMENTAL CONDITIONS'
WRITE (7,*) ' TEMPERATURE = ',T,' C'
WRITE (7,*) ' PRESSURE = ',P,' ATM'
WRITE (7,*) ' MAX. ALLOWABLE CO2 MOLAR FRACTION
      IF ((RT .GE. 0.282) .AND. (RT .LT. 0.336)) GO TO
      IF ((RT .GE. 0.336) .AND. (RT .LT. 0.522)) GO TO
                                                                                      = ',C02
      IF ((RT .GE. 0.522) .AND. (RT .LT. 1.088)) GO TO
                                                                                  IF (IH .NE. 1) GO TO 240
WRITE (1,*) ' HUMIDITY < 10% (DRY)'
WRITE (7,*) ' HUMIDITY < 10% (DRY)'
GO TO 270
      IF ((RT .GE. 1.088) .AND. (RT .LT. 3.161)) GO TO
          18
      EFF = 0.573
                                                                             240 IF (IH .NE. 2) GO TO 250
      GO TO 100
                                                                                  WRITE (1,*) ' HUMIDITY = 30-40%'
WRITE (7,*) ' HUMIDITY = 30-40%'
GO TO 270
  11 EFF = 0.123
      GO TO 100
  12 EFF = 0.123 + 1.5625000*(RT-0.182)
                                                                             250 IF (IH .NE. 3) GO TO 260
WRITE (1,*) ' HUMIDITY = 60-70%'
WRITE (7,*) ' HUMIDITY = 60-70%'
GO TO 270
      GO TO 100
  13 EFF = 0.148 +26.7619040*(RT-0.198)
      GO TO 100
  14 EFF = 0.710 + 2.0793650*(RT-0.219)
                                                                             260 WRITE (1,*) ' HUMIDITY > 85% (SATURATED)'
      GO TO 100
                                                                             WRITE (7,*) '
270 WRITE (1,*) '
                                                                                                   HUMIDITY > 85% (SATURATED)'
  15 EFF = 0.841 + 1.00000000*(RT-0.282)
                                                                                                   PERSON = ', PERSON
      GO TO 100
                                                                                  WRITE (1,*) ' PERSON = ',PERSON
WRITE (1,*) ' TIME = ',HOUR,' HOUR'
WRITE (1,275)
WRITE (1,*) ' DESIGN CRITERIA'
WRITE (1,*) ' NO. OF ITERATION = ',IRT
  16 EFF = 0.895 - 0.5913978*(RT-0.336)
      GO TO 100
  17 EFF = 0.785 - 0.1872791*(RT-0.522)
      GO TO 100
                                                                                  WRITE (1,300) VOL, LENGTH, D, U
WRITE (1,350) TOTLIOH, VF, RT, RTNEW, EFFALL
  18 EFF = 0.679 - 0.0511336*(RT-1.088)
100 EFFSTD = EFF
                                                                             275 FORMAT (/)
*****CALL SUBROUTINE HUMID, TEMP, CONC
      CALL HUMID (IH, EFFSTD, RT, EFFH)
```

```
300 FORMAT (2X, 'SCRUBBER VOLUME = ',G12.6,'
CC',/,2X,'LENGTH = ',
1 G12.6,' CM',/,2X,'DIAMETER = ',G12.6,'
                                                                            IF ((RT .GE. 0.257) .AND. (RT .LT. 0.323)) GO TO
                                                                            IF ((RT .GE. 0.323) .AND. (RT .LT. 0.912)) GO TO
   CM',/,2X,'VELOCITY = ',
2 G12.6,' CM/SEC')
                                                                                34
                                                                            EFF = 0.804
                                                                            GO TO 100
350 FORMAT (2X, 'AMOUNT OF LIGH PACKED = ',G12.6,'
                                                                        31 EFF = 0.098
                                                                            GO TO 100
   2 'SCRUBBER FLOW RATE = ',G12.6, 'CC/SEC',/,2X,'
                                                                        32 EFF = 0.098 + 1.9642857*(RT-0.145)
   RESIDENCE TIME (LAS
3T-1) = ',G12.6,' SEC',/,2X,'RESIDENCE TIME
                                                                            GO TO 100
   3T-1) = ',G12.6,' SEC',/,2X,'RESIDENCE (LAST) = ',G12.6,
4 ' SEC',/,2X,'OVERALL EFFICIENCY = ',G12.6)
WRITE (7,*) ' PERSON = ',PERSON
WRITE (7,*) ' TIME = ',HOUR,' HOUR'
WRITE (7,275)
WRITE (7,*) ' DESIGN CRITERIA'
WRITE (7,*) ' NO. OF ITERATION = ',IRT
WRITE (7,300) VOL,LENGTH,D,U
WRITE (7,350) TOTLIOH,VF,RT,RTNEW,EFFALL
WRITE (1,275)
                                                                         33 EFF = 0.318 + 3.5909090*(RT-0.257)
                                                                            GO TO 100
                                                                         34 \text{ EFF} = 0.555 + 0.4227504*(RT-0.323)
                                                                            GO TO 100
                                                                        ****HUMIDITY GREATER THAN 85%
                                                                        40 EFF = EFFSTD
                                                                        ****
                                                                        100 IF (EFF .LT. 1.0E-10) WRITE (1,*) 'EFFICIENCY
                                                                                (HUMID) = 0'
                                                                            EFFH = EFF/EFFSTD
     WRITE (1,275)
     WRITE (1,*) 'END OF COMPUTATION'
WRITE (6,*) LENGTH,U,D,VF
WRITE (6,*) TOTLIOH,P,HOUR,PERSON,RCO2
                                                                            RETURN
                                                                            FND
                                                                        ************************
                                                                       ****SUBROUTINE TEMPERATURE
     WRITE (6,*) IC, IH, IT
                                                                            SUBROUTINE TEMP (IT, EFFSTD, RT, EFFT)
     STOP
                                                                            IF (IT .EQ. 1) GÒ TÓ 10
     END
                                                                            IF (IT .EQ. 2) GO TO 20
***********
                                                                            IF (IT .EQ. 3) GO TO 30 IF (IT .EQ. 4) GO TO 40
****SUBROUTINE HUMIDITY
     SUBROUTINE HUMID (IH, EFFSTD, RT, EFFH)
                                                                        ****TEMPERATURE AT 5 C
     IF (IH .EQ. 1) GO TO 10
IF (IH .EQ. 2) GO TO 20
IF (IH .EQ. 3) GO TO 30
                                                                        10 IF (RT .LT. 0.164) GO TO 11
                                                                            IF ((RT .GE. 0.164) .AND. (RT .LT. 0.405)) GO TO
     IF (IH .EQ. 4) GO TO 40
                                                                            IF ((RT .GE. 0.405) .AND. (RT .LT. 0.838)) GO TO
****HUMIDITY LESS THAN 10%
 10 IF (RT .LT. 0.169) GO TO 11
                                                                            IF ((RT .GE. 0.838) .AND. (RT .LT. 2.551)) GO TO
     IF ((RT .GE. 0.169) .AND. (RT .LT. 0.335)) GO TO
                                                                            EFF = 0.824
     IF ((RT .GE. 0.335) .AND. (RT .LT. 1.027)) GO TO
                                                                            GO TO 100
                                                                         11 EFF = 0.066
     IF ((RT .GE. 1.027) .AND. (RT .LT. 2.992)) GO TO
                                                                         GO TO 100
12 EFF = 0.066 + 2.2074688*(RT-0.164)
     EFF = 1.0
                                                                            GO TO 100
     GO TO 100
                                                                         13 EFF = 0.598 + 0.4826789*(RT-0.405)
 11 EFF = 0.207
                                                                            GO TO 100
     GO TO 100
                                                                         14 EFF = 0.807 + 0.0099241*(RT-0.838)
 12 EFF = 0.207 + 2.2771084*(RT-0.169)
                                                                            GO TO 100
     GO TO 100
                                                                       *****TEMPERATURE AT 15 C
 13 EFF = 0.585 + 0.4638728*(RT-0.335)
                                                                        20 IF (RT .LT. 0.140) GO TO 21
     GO TO 100
                                                                            IF ((RT .GE. 0.140) .AND. (RT .LT. 0.364)) GO TO
 14 EFF = 0.906 + 0.0478371*(RT-1.027)
     GO TO 100
                                                                            IF ((RT .GE. 0.364) .AND. (RT .LT. 1.035)) GO TO
****HUMIDITY 30-40%
                                                                               23
 20 IF (RT .LT. 0.160) GO TO 21
IF ((RT .GE. 0.160) .AND. (RT .LT. 0.236)) GO TO
                                                                            EFF = 0.880
                                                                            GO TO 100
                                                                         21 EFF = 0.088
     IF ((RT .GE. 0.236) .AND. (RT .LT. 0.705)) GO TO
                                                                            GO TO 100
                                                                         22 EFF = 0.088 + 3.5848214*(RT-0.140)
     IF ((RT .GE. 0.705) .AND. (RT .LT. 1.197)) GO TO
                                                                            GO TO 100
        24
                                                                         23 EFF = 0.891 - 0.0163934*(RT-0.364)
     EFF = 0.974
                                                                            GO TO 100
     GO TO 100
                                                                       *****TEMPERATURE AT 26.5 C
 21 EFF = 0.183
                                                                         30 EFF = EFFSTD
     GO TO 100
                                                                            GO TO 100
  22 EFF = 0.183 + 2.1052631*(RT-0.160)
                                                                       *****TEMPERATURE AT 40 C
     GO TO 100
                                                                        40 IF (RT .LT. 0.153) GO TO 41
  23 EFF = 0.343 + 1.2153518*(RT-0.236)
                                                                            IF ((RT .GE. 0.153) .AND. (RT .LT. 0.207)) GO TO
     GO TO 100
  24 EFF = 0.913 + 0.1239837*(RT-0.705)
                                                                            IF ((RT .GE. 0.207) .AND. (RT .LT. 0.560)) GO TO
     GO TO 100
*****HUMIDITY 60-70%
                                                                            IF ((RT .GE. 0.560) .AND. (RT .LT. 2.482)) GO TO
  30 IF (RT .LT. 0.145) GO TO 31
     IF ((RT .GE. 0.145) .AND. (RT .LT. 0.257)) GO TO
                                                                            EFF = 0.354
```

```
GO TO 100
  41 EFF = 0.688
      GO TO 100
  42 \text{ EFF} = 0.688 + 0.0944444*(RT-0.153)
     GO TO 100
  43 EFF = 0.739 + 0.6968838*(RT-0.207)
     GO TO 100
  44 EFF = 0.493 + 0.0732040*(RT-0.560)
 100 IF (EFF .LT. 1.0E-10) WRITE (1,*) 'EFFICIENCY (TEMP) = 0'
      EFFT = EFF/EFFSTD
      RETURN
      END
*****SUBROUTINE CONCENTRATION
      SUBROUTINE CONC (IC, EFFSTD, RT, EFFC)
      IF (IC .EQ. 1) GÓ TÓ 10
      IF (IC .EQ. 2) GO TO 20
IF (IC .EQ. 3) GO TO 30
*****CONCENTRATION OF 1%
   10 EFF = EFFSTD
     GO TO 100
*****CONCENTRATION OF 2.4%
  20 IF (RT .LT. 0.169) GO TO 21
      IF ((RT .GE. 0.169) .AND. (RT .LT. 0.299)) GO TO
      IF ((RT .GE. 0.299) .AND. (RT .LT. 0.553)) GO TO
         23
      IF ((RT .GE. 0.553) .AND. (RT .LT. 0.856)) GO TO
      IF ((RT .GE. 0.856) .AND. (RT .LT. 3.154)) GO TO 25
      EFF = 0.739
      GO TO 100
   21 EFF = 0.088
      GO TO 100
   22 EFF = 0.088 + 0.2615384*(RT-0.169)
      GO TO 100
   23 EFF = 0.122 + 1.3661417*(RT-0.299)
      GO TO 100
   24 EFF = 0.469 + 0.6633663*(RT-0.553)
      GO TO 100
   25 EFF = 0.670 + 0.0300261*(RT-0.856)
      GO TO 100
******CONCENTRATION OF 4.8%
   30 IF (RT .LT. 0.169) GO TO 31
      IF ((RT .GE. 0.169) .AND. (RT .LT. 1.698)) GO TO
      IF ((RT .GE. 1.698) .AND. (RT .LT. 3.123)) GO TO
      EFF = 0.783
      GO TO 100
   31 EFF = 0.097
      GO TO 100
   32 EFF = 0.097 + 0.3629823*(RT-0.169)
      GO TO 100
   33 EFF = 0.652 + 0.0919298*(RT-1.698)
  100 IF (EFF .LT. 1.0E-10) WRITE (1,*) 'EFFICIENCY
(CONE) = 0'
      EFFC = EFF/EFFSTD
      RETURN
      END
```


Table 1. Flowchart "Scrubber"

Table 2. Input Parameters of "SCRUBBER" Program.

Parameter	Description	
CO2	partial pressure of CO_2 , atm	
HOUR	duration period, hour	
IH	relative humidity if humidity < 10% (dry), if humidity = 30-40%, if humidity = 60-70%, if humidity > 85%	IH = 1 IH = 2 IH = 3 IH = 4
IT	temperature if temperature = 5.0 °C, if temperature = 15.0 °C, if temperature = 26.5 °C, if temperature = 40.0 °C,	IT = 1 IT = 2 IT = 3 IT = 4
P	pressure, atm	
PERSON	number of people in the chamber	
RCO2	CO_2 production rate, gram of RCO2 = 52, for normal condition	
RLD	ratio of scrubber length to diameter	

Figure 2. The effects of temperature on LiOH-CO_2 absorption.

Figure 1. Dynamic gas flow system. A: Inlet air stream; B: Flow meter; C: Temperature controlled water bath; D: Copper coil, 20 ft x 1/8 in; E: Air-water mixer; F: Syringe pump; G: Midget bubbler; H: Temperature and humidity sensor; I: Absorbent tube; J: Drying tube; K: CO₂ detector; L: Strip chart recorder; M: Wet test meter.

Figure 3. The effects of humidity on the ${\rm LiOH-CO_2}$ absorption.

Figure 4. The effects of (L/D) ratio on the LiOH-CO $_{\rm 2}$ absorption.

Figure 5. The effects of granular size on the LiOH-CO $_{\rm 2}$ absorption.

Figure 6. The effects of CO_2 concentration on the $\mathrm{LiOH-CO}_2$ absorption.