You are here

The Effects of Dichoptic and Isoluminant-Chromatic Stimuli on the Perception of Object and Objectless Motion

Download pdf | Full Screen View

Date Issued:
2015
Summary:
Visual motion can be conveyed by a variety of information sources in the environment, and those types of information may be detected at various levels by different motion-perceiving mechanisms in the visual system. High-level visual information has been demonstrated to have 3rd order, or salience-based properties (Lu & Sperling, 1995). The perceptual system they describe that computes motion from these types of information shares several characteristics with Hock and colleagues' counterchange detection system, notably flexibility with respect to types of input from which motion can be computed, which comes at the cost of diminished processing speed. The mechanism of counterchange detection is well suited to processing visual features often present in environmental scenes, e.g., objects and surfaces, and may be a mechanism of 3rd order motion. Consistent with reported properties of 3rd order motion, the current experiments tested count erchange-, luminance-, and color-based motion stimuli with 3 objectives: to identify whether the 3 systems framework generalizes beyond the stimulus type with which it was defined, to test whether counterchange shares similarities with the 3rd order system with respect to dichoptic integration, and perception of isoluminant color-based motion, and to test subjectively objectless sources of motion-defining information (spreading luminance and hue) to see if they display properties of the 1st order system derived from sine wave gratings. Results indicate that counterchange-based stimuli displayed predicted properties of dichoptic integration, and perception at isoluminance, but putative 1st order (spreading) stimuli also displayed these properties. This may suggest that object-like surfaces, even when not directly the source of motion information, can contribute to computation of motion. Further, these results highlight the difficulty of generalizing from one theoretical framework to another, and specifically, of psychophysically testing high-level information while isolating contributions from low level information upon which high level visual stimuli are built.
Title: The Effects of Dichoptic and Isoluminant-Chromatic Stimuli on the Perception of Object and Objectless Motion.
150 views
76 downloads
Name(s): Seifert, Matthew S., author
Hong, Sang Wook, Thesis advisor
Florida Atlantic University, Degree grantor
Charles E. Schmidt College of Science
Department of Psychology
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2015
Date Issued: 2015
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 83 p.
Language(s): English
Summary: Visual motion can be conveyed by a variety of information sources in the environment, and those types of information may be detected at various levels by different motion-perceiving mechanisms in the visual system. High-level visual information has been demonstrated to have 3rd order, or salience-based properties (Lu & Sperling, 1995). The perceptual system they describe that computes motion from these types of information shares several characteristics with Hock and colleagues' counterchange detection system, notably flexibility with respect to types of input from which motion can be computed, which comes at the cost of diminished processing speed. The mechanism of counterchange detection is well suited to processing visual features often present in environmental scenes, e.g., objects and surfaces, and may be a mechanism of 3rd order motion. Consistent with reported properties of 3rd order motion, the current experiments tested count erchange-, luminance-, and color-based motion stimuli with 3 objectives: to identify whether the 3 systems framework generalizes beyond the stimulus type with which it was defined, to test whether counterchange shares similarities with the 3rd order system with respect to dichoptic integration, and perception of isoluminant color-based motion, and to test subjectively objectless sources of motion-defining information (spreading luminance and hue) to see if they display properties of the 1st order system derived from sine wave gratings. Results indicate that counterchange-based stimuli displayed predicted properties of dichoptic integration, and perception at isoluminance, but putative 1st order (spreading) stimuli also displayed these properties. This may suggest that object-like surfaces, even when not directly the source of motion information, can contribute to computation of motion. Further, these results highlight the difficulty of generalizing from one theoretical framework to another, and specifically, of psychophysically testing high-level information while isolating contributions from low level information upon which high level visual stimuli are built.
Identifier: FA00004545 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2015.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Movement, Psychology of
Perceptual motor processes
Physiological optics
Space and time
Visual perception
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Links: http://purl.flvc.org/fau/fd/FA00004545
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00004545
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.