You are here
Optical 2D Positional Estimation for a Biomimetic Station-Keeping Autonomous Underwater Vehicle
- Date Issued:
- 2015
- Summary:
- Underwater vehicles often use acoustics or dead reckoning for global positioning, which is impractical for low cost, high proximity applications. An optical based positional feedback system for a wave tank operated biomimetic station-keeping vehicle was made using an extended Kalman filter and a model of a nearby light source. After physical light model verification, the filter estimated surge, sway, and heading with 6 irradiance sensors and a low cost inertial measurement unit (~$15). Physical testing with video feedback suggests an average error of ~2cm in surge and sway, and ~3deg in yaw, over a 1200 cm2 operational area. This is 2-3 times better, and more consistent, than adaptations of prior art tested alongside the extended Kalman filter feedback system. The physical performance of the biomimetic platform was also tested. It has a repeatable forward velocity response with a max of 0.3 m/s and fair stability in surface testing conditions.
Title: | Optical 2D Positional Estimation for a Biomimetic Station-Keeping Autonomous Underwater Vehicle. |
452 views
69 downloads |
---|---|---|
Name(s): |
Nunes, Christopher, author Dhanak, Manhar R., Thesis advisor Florida Atlantic University, Degree grantor College of Engineering and Computer Science Department of Ocean and Mechanical Engineering |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2015 | |
Date Issued: | 2015 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 135 p. | |
Language(s): | English | |
Summary: | Underwater vehicles often use acoustics or dead reckoning for global positioning, which is impractical for low cost, high proximity applications. An optical based positional feedback system for a wave tank operated biomimetic station-keeping vehicle was made using an extended Kalman filter and a model of a nearby light source. After physical light model verification, the filter estimated surge, sway, and heading with 6 irradiance sensors and a low cost inertial measurement unit (~$15). Physical testing with video feedback suggests an average error of ~2cm in surge and sway, and ~3deg in yaw, over a 1200 cm2 operational area. This is 2-3 times better, and more consistent, than adaptations of prior art tested alongside the extended Kalman filter feedback system. The physical performance of the biomimetic platform was also tested. It has a repeatable forward velocity response with a max of 0.3 m/s and fair stability in surface testing conditions. | |
Identifier: | FA00004528 (IID) | |
Degree granted: | Thesis (M.S.)--Florida Atlantic University, 2015. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Biometric identification Feedback control systems Oceanographic submersibles -- Design and construction Optical pattern recognition Remote submersibles -- Design and construction |
|
Held by: | Florida Atlantic University Libraries | |
Sublocation: | Digital Library | |
Links: | http://purl.flvc.org/fau/fd/FA00004528 | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00004528 | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |