You are here
Nitrate Use Efficiency In Tobacco Plants Constitutively Expressing A Maize Nitrate Transporter ZmNRT2.1
- Date Issued:
- 2015
- Summary:
- The NRT2 (high affinity nitrate transporter 2) family is a part of the iHATS (inducible high affinity system) that studies have shown is responsible for the influx of nitrate into the plant cell after provision of nitrate. The ZmNRT2.1 from Zea mays was constitutively expressed in Nicotiana tabacum. To assess how over-expression of this foreign NRT2.1 affects nitrate influx by plants, nitrate content in leaf and root tissue, gene expression, and vegetal growth were analyzed in media with deficient or high nitrate concentrations (0.1, 1, or 10 mM). Compared to wild type plants: the transgenic lines had a significantly larger fresh weight in all nitrate conditions; primary root length was significantly longer in the 0.1 and 1 mM nitrate conditions; both the fresh weight and the primary root length were significantly higher when 50 mM NaCl was applied as a stress factor to medias containing 0.1 and 10 mM nitrate.
Title: | Nitrate Use Efficiency In Tobacco Plants Constitutively Expressing A Maize Nitrate Transporter ZmNRT2.1. |
108 views
33 downloads |
---|---|---|
Name(s): |
Cruz, Jessica, author Zhang, Xing-Hai, Thesis advisor Florida Atlantic University, Degree grantor Charles E. Schmidt College of Science Department of Biological Sciences |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2015 | |
Date Issued: | 2015 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 31 p. | |
Language(s): | English | |
Summary: | The NRT2 (high affinity nitrate transporter 2) family is a part of the iHATS (inducible high affinity system) that studies have shown is responsible for the influx of nitrate into the plant cell after provision of nitrate. The ZmNRT2.1 from Zea mays was constitutively expressed in Nicotiana tabacum. To assess how over-expression of this foreign NRT2.1 affects nitrate influx by plants, nitrate content in leaf and root tissue, gene expression, and vegetal growth were analyzed in media with deficient or high nitrate concentrations (0.1, 1, or 10 mM). Compared to wild type plants: the transgenic lines had a significantly larger fresh weight in all nitrate conditions; primary root length was significantly longer in the 0.1 and 1 mM nitrate conditions; both the fresh weight and the primary root length were significantly higher when 50 mM NaCl was applied as a stress factor to medias containing 0.1 and 10 mM nitrate. | |
Identifier: | FA00004492 (IID) | |
Degree granted: | Thesis (M.S.)--Florida Atlantic University, 2015. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Nitrogen--Fixation. Nitrogen-fixing plants--Metabolism. Crops and nitrogen. Field crops--Genetic engineering. Plants--Effect of nitrogen on. Soil microbiology. |
|
Held by: | Florida Atlantic University Libraries | |
Sublocation: | Digital Library | |
Links: | http://purl.flvc.org/fau/fd/FA00004492 | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00004492 | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |