
Abstract 
The Alexandrov embedding theorem states that any simplicial complex homeomorphic to 
a sphere with strictly non-negative Gaussian curvature at each vertex can be isometrically 
embedded in ℝ3 as a convex polyhedron. Due to the nonconstructive nature of his proof, 
there have yet to be any algorithms that realize the Alexandrov embedding in polynomial 
time.  Following his proof, we produced the adiabatic isometric mapping (AIM) 
algorithm.  The AIM algorithm is approximately quadratic with time and reproduces 
edge lengths up to arbitrary accuracy. 

 

Results 
Using the distmesh software, we produced known embedding in ℝ3. We then remove the 
coordinates and use the triangulation and edge length as initial data for AIM. The 
following results compare extrinsic and intrinsic quantities between distmesh and AIM.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
We made log-log plots of time vs. number of vertices for each routine and the AIM 
algorithm as a whole. The slopes from these graphs tell us how run time scales with 
resolution.  
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Conclusion 
An embedding is considered successful if the Euclidean distance between vertices agrees 
with the edge lengths of the original metric 𝜌0 and the surface is approximately convex.  
Table 1 shows that the maximum discrepancy between edge lengths is on the order of 
10−6 for both surfaces.  We also see in table 1 column four that the integrated mean 
curvature also agrees up to 10−6 which only occurs if the results is approximately convex.  
Tests have shown that these results are consistent despite resolution.  In table 2 wee see 
that the AIM algorithm scales as about 2.25 for each object.  These results are preliminary 
and must be extended for greater resolutions. 

 

Introduction 
The problem of embedding surfaces homeomorphic to a sphere with a metric of positive 
Gaussian curvature into ℝ3 was posed by Herman Weyl in 1916. The first attempt to 

prove the existence of an embedding was given by Weyl himself. Though he was unable 

to complete his proof, he did make progress in outlining a solution. Following Weyl’s 
approach, a proof was given by H. Lewy in 1938 though his solution required the 
components of the metric to be infinitely differentiable. Requirements on differentiability 
of the metric were reduced to continuous fourth derivatives by L. Nirenberg in 1953. 
They were further reduced to continuous third derivatives by E. Heinz in 1962. All of 
these solutions relied on the components of the metric in the continuum. In 1941, 
Alexandrov gave an approach in the discrete that relied on proving the existence of a 
convex polyhedron given any convex polyhedral metric. He then showed that in the limit 
as the number of vertices in the polyhedral metric goes to infinity, one recovers the metric 
in the continuum thus solving the problem without restrictions on differentiability of the 
metric. 
           This poster presents the adiabatic isometric mapping (AIM) algorithm which is a 
numerical realization of Alexandrov’s proof for embedding convex polyhedral metrics. 
Our algorithm produces approximately convex polyhedrons which are adequate 
solutions to Alexandrov’s embedding problem.  A solution is considered approximately 
convex if it does not have inverted vertices.  Vertices are inverted if all the edges 
emanating from it have negative extrinsic curvature.  The integrated mean curvature of 
these approximately convex solutions  agree below a tenth of a percent.  This means each 
solution has the same global extrinsic structure. 
 

Formulation of Problem 
Polyhedral metrics are simplicial complexes homeomorphic to a sphere with N0 vertices, 
N1=3N0-6 edges and N2=2N0-4 triangles.  Their data structure is given as lists of triangles, 
edges and edge lengths.  For example, an arbitrary metric with N0=5 vertices is given as, 

 

 
 
 
 
 
 
 
 
 
 
 
 
The goal is to produce coordinates for each vertex such that the Euclidean distance  
L2

ab = (xa – xb)2  + (ya – yb)2 + (za-zb)2
 between vertices is equal to the edge lengths given by 

the original metric 𝜌0.  Six of the 3N0 coordinates can be freely specified in order to mod 
out translational and rotational degrees of freedom.  This is typically done by taking 
initial triangle Δabc and placing vertex a at the origin, b on the x-axis and c on the  
x-y plane.  Once the initial triangle is fixed, we have a quadratic system of equations with  
3N0 – 6 equations and unknowns.  Due to the non-linear nature of the equations, there is 
a “sea of solutions” that satisfy the conditions on edge lengths.  The AIM algorithm’s 
purpose is to simplify this system of equations to obtain suitable solutions that are 
approximately convex. 

    

5 

2 

4 

1 

3 

Polyhedral Metric 𝜌0 

Triangles Edges Edge Lenghs 

1 2 4 
2 1 5 
5 1 3 
3 1 4 
4 3 2 
3 2 5 

1 2 
1 3 
1 4 
1 5 
2 3 
2 4 
2 5 
3 4 
3 5 

 

L12 

L13 
L14 
L15 
L23 
L24 
L25 
L34 
L35 

 

1. Uniformization via Ricci Flow 
 At 𝑡 = 0 conformal factors are given at each vertex of 𝜌0 as *𝑢𝑎 𝑡 = 0 = 0+ where a indexes the vertices. 

 The Ricci flow equation for each conformal factor is given as 
𝑑𝑢𝑎

𝑑𝑡
= − 𝑘𝑎 − 𝑘  where ka is the Gaussian 

curvature at each vertex and 𝑘  is the average Gaussian curvature of the surface. 

 The conformal relationship between edge lengths is given as 𝐿𝑎𝑏 𝑡 = 𝐿𝑎𝑏 0 𝑒
𝑢𝑎 𝑡 +𝑢𝑏 𝑡

2 . 

 For a sufficiently long time, the Gaussian curvature at each vertex satisfies ||𝑘𝑎 𝑡𝑓 − 𝑘 ||2 < 𝜖 where 𝜖 is 

some tolerance. 
  

 2. Uniform Surface Embedding 
 We assume that 𝑃𝑡𝑓 lies on a sphere centered at the origin with radius 𝑅.  This gives us the constraint 

𝑅2 = 𝑥𝑎
2 + 𝑦𝑎

2 + 𝑧𝑎
2 for all vertices in 𝜌𝑡𝑓.  

 We fix an arbitrary triangle Δabc on the sphere by placing vertex a on the x-axis at a distance 𝑅 from the 
origin. Vertex b is placed on the equator in the x-y plane such that the Euclidean distance is equal to Lab 
from 𝜌𝑡𝑓.  The coordinates for vertex c are found by solving a system of equations given by the two 

constraints on Euclidean distance and one radial constraint.  
 This System of equations is solved for each subsequent vertex in 𝜌𝑡𝑓. 

 The uniform surface is found by minimizing 
 (𝐿𝑎𝑏

2 𝑡𝑓 − ,𝑥𝑎 𝑡𝑓 − 𝑥𝑏 𝑡𝑓 -2 − ,𝑦𝑎 𝑡𝑓 − 𝑦𝑏 𝑡𝑓 -2 − ,𝑧𝑎 𝑡𝑓 − 𝑧𝑏 𝑡𝑓 -2)2𝑎𝑏  using Newton’s method with 

the coordinates on the sphere used as the initial guess.  This is called the annealingA procedure.  The “pop 
out” and annealingB routines are used to make 𝑃𝑡𝑓 convex. 

 
3. Backward Adiabatic March (BAM) 

 We march back from 𝑃𝑡𝑓 to 𝑃0 by finding coordinates of for 𝑃𝑗 for all steps 𝑡 𝜖 𝑡0, 𝑡𝑓 .  Coordinates are 

found by minimizing  (𝐿𝑎𝑏
2 𝑡 − ,𝑥𝑎 𝑡 − 𝑥𝑏 𝑡 -2 − ,𝑦𝑎 𝑡 − 𝑦𝑏 𝑡 -2 − ,𝑧𝑎 𝑡 − 𝑧𝑏 𝑡 -2)2𝑎𝑏  using Newton’s 

method. 
 If j=2,3 we use the coordinates at time 𝑡𝑗−1 as the initial guess for Newton’s method. If j>3 we extrapolate 

the coordinates at 𝑡𝑗 using the previous three coordinate sets. These extrapolated coordinates are now used 

as the initial guess for Newton’s method. 
 Time steps from 𝑡𝑗 to 𝑡𝑗+1 are chosen so that one remains near the global minimum of a approximately 

convex solution.  This restriction on step size determines the adiabaticiy of BAM.  
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