You are here

Mitochondrial regulation pathways in the lens: pink1/parkin- and bnip3l-mediated mechanisms

Download pdf | Full Screen View

Date Issued:
2015
Summary:
The mitochondrion is the powerhouse of the cell. Therefore, it is critical to the homeostasis of the cell that populations of mitochondria that are damaged or in excess are degraded. The process of targeted elimination of damaged or excess mitochondria by autophagy is called mitophagy. In this report, analysis of the mitophagy regulators PINK1/PARKIN and BNIP3L and their roles are assessed in the lens. PARKIN, an E3 ubiquitin ligase, has been shown to play a role in directing damaged mitochondria for degradation. While BNIP3L, an outer mitochondrial membrane protein, increases in expression in response to excess mitochondria and organelle degradation during cellular differentiation. We have shown that PARKIN is both induced and translocates from the cytoplasm to the mitochondria in human epithelial lens cells upon oxidative stress exposure. In addition, our findings also show that overexpression of BNIP3L causes premature clearance of mitochondria and other organelles, while loss of BNIP3L results in lack of clearance. Prior to this work, PARKIN mediated mitophagy had not been shown to act as a protective cellular response to oxidative stress in the lens. This project also resulted in the novel finding that BNIP3L-mediated mitophagy mechanisms are required for targeted organelle degradation in the lens.
Title: Mitochondrial regulation pathways in the lens: pink1/parkin- and bnip3l-mediated mechanisms.
123 views
42 downloads
Name(s): Aktan, Kerem, author
Kantorow, Marc, Thesis advisor
Florida Atlantic University, Degree grantor
Charles E. Schmidt College of Medicine
Department of Biomedical Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2015
Date Issued: 2015
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 33 p.
Language(s): English
Summary: The mitochondrion is the powerhouse of the cell. Therefore, it is critical to the homeostasis of the cell that populations of mitochondria that are damaged or in excess are degraded. The process of targeted elimination of damaged or excess mitochondria by autophagy is called mitophagy. In this report, analysis of the mitophagy regulators PINK1/PARKIN and BNIP3L and their roles are assessed in the lens. PARKIN, an E3 ubiquitin ligase, has been shown to play a role in directing damaged mitochondria for degradation. While BNIP3L, an outer mitochondrial membrane protein, increases in expression in response to excess mitochondria and organelle degradation during cellular differentiation. We have shown that PARKIN is both induced and translocates from the cytoplasm to the mitochondria in human epithelial lens cells upon oxidative stress exposure. In addition, our findings also show that overexpression of BNIP3L causes premature clearance of mitochondria and other organelles, while loss of BNIP3L results in lack of clearance. Prior to this work, PARKIN mediated mitophagy had not been shown to act as a protective cellular response to oxidative stress in the lens. This project also resulted in the novel finding that BNIP3L-mediated mitophagy mechanisms are required for targeted organelle degradation in the lens.
Identifier: FA00004427 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2015
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Cellular signal transduction
Eye -- Diseases -- Etiology
Mitochondrial pathology
Mitophagy
Molecular chaperones
Oxidative stress -- Prevention
Protein folding
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Links: http://purl.flvc.org/fau/fd/FA00004427
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00004427
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.