You are here

An implementation of the IEEE 1609.4 wave standard for use in a vehicular networking testbed

Download pdf | Full Screen View

Date Issued:
2014
Summary:
We present an implementation of the IEEE WAVE (Wireless Access in Vehicular Environments) 1609.4 standard, Multichannel Operation. This implementation provides concurrent access to a control channel and one or more service channels, enabling vehicles to communicate among each other on multiple service channels while still being able to receive urgent and control information on the control channel. Also included is functionality that provides over-the-air timing synchronization, allowing participation in alternating channel access in the absence of a reliable time source. Our implementation runs on embedded Linux and is built on top of IEEE 802.11p, as well as a customized device driver. This implementation will serve as a key compo- nent in our IEEE 1609-compliant Vehicular Multi-technology Communication Device (VMCD) that is being developed for a VANET testbed under the Smart Drive initiative, supported by the National Science Foundation.
Title: An implementation of the IEEE 1609.4 wave standard for use in a vehicular networking testbed.
294 views
86 downloads
Name(s): Kuffermann, Kyle, author
Mahgoub, Imad, Thesis advisor
Florida Atlantic University, Degree grantor
College of Engineering and Computer Science
Department of Computer and Electrical Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2014
Date Issued: 2014
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 116 p.
Language(s): English
Summary: We present an implementation of the IEEE WAVE (Wireless Access in Vehicular Environments) 1609.4 standard, Multichannel Operation. This implementation provides concurrent access to a control channel and one or more service channels, enabling vehicles to communicate among each other on multiple service channels while still being able to receive urgent and control information on the control channel. Also included is functionality that provides over-the-air timing synchronization, allowing participation in alternating channel access in the absence of a reliable time source. Our implementation runs on embedded Linux and is built on top of IEEE 802.11p, as well as a customized device driver. This implementation will serve as a key compo- nent in our IEEE 1609-compliant Vehicular Multi-technology Communication Device (VMCD) that is being developed for a VANET testbed under the Smart Drive initiative, supported by the National Science Foundation.
Identifier: FA00004299 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2014.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Vehicular ad hoc networks (Computer networks).
Wireless sensor networks.
Wireless communication systems.
Wireless LANs.
Linux.
Expert systems (Computer science)
Operating systems (Computers)
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Links: http://purl.flvc.org/fau/fd/FA00004299
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00004299
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.