You are here
Generating space-time hypotheses in complex social-ecological systems
- Date Issued:
- 2014
- Summary:
- As ecosystems degrade globally, ecosystem services that support life are increasingly threatened. Indications of degradation are occurring in the Northern Indian River Lagoon (IRL) estuary in east central Florida. Factors associated with ecosystem degradation are complex, including climate and land use change. Ecosystem research needs identified by the Millennium Ecosystem Assessment (MA) include the need to: consider the social with the physical; account for dynamism and change; account for complexity; address issues of scale; and focus on ecosystem structure and process. Ecosystems are complex, self-organizing, multi-equilibrial, non-linear, middle-number systems that exist in multiple stable states. Results found are relative to the observation and the frame of analysis, requiring multi-scaled analytical techniques. This study addresses the identified ecosystem research needs and the complexity of the associated factors given these additional constraints. Relativity is addressed through univariate analysis of dissolved oxygen as a measure of the general health of the Northern IRL. Multiple spatial levels are employed to associate social process scales with physical process scales as basin, sub-basins, and watersheds. Scan statistics return extreme value clusters in space-time. Wavelet transforms decompose time-scales of cyclical data using varying window sizes to locate change in process scales in space over time. Wavelet transform comparative methods cluster temporal process scales across space. Combined these methods describe the space-time structure of process scales in a complex ecosystem relative to the variable examined, where the highly localized results allow for connection to unexamined variables.
Title: | Generating space-time hypotheses in complex social-ecological systems. |
![]() ![]() |
---|---|---|
Name(s): |
Forbes, Dolores J., author Xie, Zhixiao, Thesis advisor Florida Atlantic University, Degree grantor Charles E. Schmidt College of Science Department of Geosciences |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2014 | |
Date Issued: | 2014 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 189 p. | |
Language(s): | English | |
Summary: | As ecosystems degrade globally, ecosystem services that support life are increasingly threatened. Indications of degradation are occurring in the Northern Indian River Lagoon (IRL) estuary in east central Florida. Factors associated with ecosystem degradation are complex, including climate and land use change. Ecosystem research needs identified by the Millennium Ecosystem Assessment (MA) include the need to: consider the social with the physical; account for dynamism and change; account for complexity; address issues of scale; and focus on ecosystem structure and process. Ecosystems are complex, self-organizing, multi-equilibrial, non-linear, middle-number systems that exist in multiple stable states. Results found are relative to the observation and the frame of analysis, requiring multi-scaled analytical techniques. This study addresses the identified ecosystem research needs and the complexity of the associated factors given these additional constraints. Relativity is addressed through univariate analysis of dissolved oxygen as a measure of the general health of the Northern IRL. Multiple spatial levels are employed to associate social process scales with physical process scales as basin, sub-basins, and watersheds. Scan statistics return extreme value clusters in space-time. Wavelet transforms decompose time-scales of cyclical data using varying window sizes to locate change in process scales in space over time. Wavelet transform comparative methods cluster temporal process scales across space. Combined these methods describe the space-time structure of process scales in a complex ecosystem relative to the variable examined, where the highly localized results allow for connection to unexamined variables. | |
Identifier: | FA00004284 (IID) | |
Degree granted: | Dissertation (Ph.D.)--Florida Atlantic University, 2014. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Environmental sciences -- Mathematical models Indian River (Fla. : Lagoon) -- Environmental aspects Marine ecosystem management -- Florida -- Indian River (Lagoon) Sustainable development Wavelets (Mathematics) |
|
Held by: | Florida Atlantic University Libraries | |
Sublocation: | Digital Library | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00004284 | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |