You are here

Weakly integrally closed domains and forbidden patterns

Download pdf | Full Screen View

Date Issued:
2009
Summary:
An integral domain D is weakly integrally closed if whenever there is an element x in the quotient field of D and a nonzero finitely generated ideal J of D such that xJ J2, then x is in D. We define weakly integrally closed numerical monoids similarly. If a monoid algebra is weakly integrally closed, then so is the monoid. A pattern F of finitely many 0's and 1's is forbidden if whenever the characteristic binary string of a numerical monoid M contains F, then M is not weakly integrally closed. Any stretch of the pattern 11011 is forbidden. A numerical monoid M is weakly integrally closed if and only if it has a forbidden pattern. For every finite set S of forbidden patterns, there exists a monoid that is not weakly integrally closed and that contains no stretch of a pattern in S. It is shown that particular monoid algebras are weakly integrally closed.
Title: Weakly integrally closed domains and forbidden patterns.
122 views
41 downloads
Name(s): Hopkins, Mary E.
Charles E. Schmidt College of Science
Department of Mathematical Sciences
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Issued: 2009
Publisher: Florida Atlantic University
Physical Form: electronic
Extent: v, 39 p.
Language(s): English
Summary: An integral domain D is weakly integrally closed if whenever there is an element x in the quotient field of D and a nonzero finitely generated ideal J of D such that xJ J2, then x is in D. We define weakly integrally closed numerical monoids similarly. If a monoid algebra is weakly integrally closed, then so is the monoid. A pattern F of finitely many 0's and 1's is forbidden if whenever the characteristic binary string of a numerical monoid M contains F, then M is not weakly integrally closed. Any stretch of the pattern 11011 is forbidden. A numerical monoid M is weakly integrally closed if and only if it has a forbidden pattern. For every finite set S of forbidden patterns, there exists a monoid that is not weakly integrally closed and that contains no stretch of a pattern in S. It is shown that particular monoid algebras are weakly integrally closed.
Identifier: 351399009 (oclc), 199327 (digitool), FADT199327 (IID), fau:3003 (fedora)
Note(s): by Mary E. Hopkins.
Thesis (Ph.D.)--Florida Atlantic University, 2009.
Includes bibliography.
Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
Subject(s): Mathematical analysis
Algebra, Homological
Monoids
Categories (Mathematics)
Semigroup algebras
Persistent Link to This Record: http://purl.flvc.org/FAU/199327
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU