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Professional imaging systems, particularly motion picture cameras, usually employ larger 

photosites and lower pixel counts than many amateur cameras. This results in the 

desirable characteristics of improved dynamic range, signal to noise and sensitivity. 

However, high performance optics often have frequency response characteristics that 

exceed the Nyquist limit of the sensor, which, if not properly addressed, results in aliasing 

artifacts in the captured image. 

Most contemporary still and video cameras employ various optically birefringent materials 

as optical low-pass filters (OLPF) in order to minimize aliasing artifacts in the image. Most 

OLPFs are designed as optical elements with a frequency response that does not change 

even if the frequency responses of the other elements of the capturing systems are 

altered. An extended evaluation of currently used birefringent-based OLPFs is provided. 

In this work, the author proposed and demonstrated the use of a parallel optical window 

positioned between a lens and a sensor as an OLPF. Controlled X- and Y-axes rotations of 
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the optical window during the image exposure results in a manipulation of the system's 

point-spread function (PSF). Consequently, changing the PSF affects some portions of the 

frequency components contained in the image formed on the sensor. The system 

frequency response is evaluated when various window functions are used to shape the 

lens' PSF, such as rectangle, triangle, Tukey, Gaussian, Blackman-Harris etc. 

In addition to the ability to change the PSF, this work demonstrated that the PSF can be 

manipulated dynamically, which allowed us to modify the PSF to counteract any alteration 

of other optical elements of the capturing system. There are several instances presented 

in the dissertation in which it is desirable to change the characteristics of an OLPF in a 

controlled way. In these instances, an OLPF whose characteristics can be altered 

dynamically results in an improvement of the image quality. 

 



 

Table of Contents 

List of Tables .....................................................................................................     ix 
 
List of Figures....................................................................................................      x 
 
1 Introduction and Motivation ..........................................................................    01 

1.1 Contribution...........................................................................   05 
1.2 Organization ..........................................................................   05 

 
2 Preliminaries ..................................................................................................    07 

2.1 Sampling.............................................................................................  08 
2.1.1 Two-dimensional sampling and sensors' MTF.............................   09 
2.1.2 Aliasing..................................................................................  14 
2.1.3 Binning and decimation ...........................................................  15 

2.2 Optical Prefiltering ................................................................................  16 
2.3 Lens's MTF...........................................................................................  17 
2.4 Cascading optical elements and their MTFs..............................................  20 

 
3 Overview of Optical Low-Pass Filters..............................................................   22 

3.1 Birefringent-based OLPF........................................................................  22 
3.1.1 Two-plate birefringent OLPF .....................................................  23 
3.1.2 Multiple birefringent plate OLPF ................................................  29 
3.1.3 Birefringent OLPF - Conclusion..................................................  36 

3.2 Adjustable Optical Low-Pass Filters.........................................................  36 
3.3 Diffraction-Based OLPF..........................................................................  38 

 
4 Dynamic Optical Low-Pass Filter  ...................................................................   40 

4.1 Introduction.........................................................................................  40 
4.2 Principle of Operation............................................................................  42 

4.2.1 Optical Simulation...................................................................  44 
4.2.2 Practical Considerations ...........................................................  45 

4.3 Designing Filter Shape  ........................................................................  46 
4.3.1 Standard approach..................................................................  48 
4.3.2 Coupling DOLPF and lens .........................................................  57 

4.4 Controlling Bandwidth...........................................................................  59 
 
5. Experiment Setup and Results.......................................................................   62 

5.1 Experiment Setup.................................................................................  62 
5.1.1 The DOLPF construction...........................................................  62 
5.1.2 Target ...................................................................................  64 
5.1.3 Camera and supporting electronics ...........................................  66 

 vii 



5.1.4 Overall experiment setup.........................................................  67 
5.2 Tuning the DOLPF.................................................................................  68 
5.3 Results................................................................................................  72 

5.3.1 The shape of the DOLPF...........................................................  73 
5.3.2 Coupling the DOLPF with the lens .............................................  78 
5.3.2 The bandwidth of the DOLPF ....................................................  80 
5.3.3 Additional observations............................................................  82 

 
6 Conclusions and Future Research...................................................................   85 
 
A Optical Simulation Details...............................................................................   88 
 
Bibliography .......................................................................................................   99 
  
  

 

 

 

 

 viii 



 

List of Tables 

Table 4.1 : A comparison of the window functions used in the analysis. The 
passband area represents a normalized surface under the frequency 
response graph in the passband region. An ideal low-pass filter 
measures 1 for the passband area parameter. The stopband area 
represents a normalized surface under the frequency response 
graph in the stopband region.......................................................... 50 

Table A.1 Tabulated RMS of OPDs for all field angles and all three optical 
systems used in the simulation. ...................................................... 92 

 

 ix 



 

List of Figures 

Figure 2.1 (a) 400x-magnified photosites of the Panavision Genesis camera, 
demonstrating the stripe CFA. (b) The Bayer pattern CFA of the 
Olympus E510 sensor. (c) Panavision Dynamax Blue photosites with 
a diagonal stripe pattern. ............................................................... 9 

Figure 2.2 The spatial distribution of same-color photosites found in the 
Genesis sensor is shown on the left. The horizontal and vertical 
Nyquist frequencies are shown on the right. ..................................... 10 

Figure 2.3 On the left are the horizontal and vertical MTFs of the Genesis 
sensor. On the right is a 2D representation of the sensor's MTFs......... 11 

Figure 2.4 Green photosites from the Olympus sensor are depicted on the left. 
The horizontal and vertical Nyquist limits are shown on the right. ....... 12 

Figure 2.5 On the left is the horizontal MTF for the three colors in the Olympus 
sensor. On the right is a 2D representation of the sensor’s MTFs for 
the color green.............................................................................. 12 

Figure 2.6 Green photosites in the Dynamax sensor are depicted on the left. 
The horizontal and vertical Nyquist frequency limits are shown on 
the right....................................................................................... 13 

Figure 2.7 On the left are the main and minor diagonals of the sensor's MTFs 
for the three colors. On the right is a 2D representation of the 
sensor's MTFs. .............................................................................. 13 

Figure 2.8 An illustration of the aliasing of an arbitrary signal, with the 
frequency components above the Nyquist frequency. ........................ 14 

Figure 2.9 The green color plane of an image captured with the Genesis sensor, 
illustrating aliasing. On the right are indicated the original frequency 
components of the continuous scene that is formed on the sensor. ..... 15 

Figure 2.10 MTFs of the Nikon 50 mm lens, measured with the MTF bench. .......... 17 

Figure 2.11 The MTFs for a diffraction-limited lens and various aperture intensity 
functions. ..................................................................................... 18 

   

 x 



Figure 2.12 Theoretical MTFs of an aberration-free lens that is diffraction limited. 
The curves, calculated for monochrome light λ=587nm, are shown 
in full black lines. The dashed lines show the measured MTFs of the 
Nikon 50mm lens, with the aperture set to F16, F11, and F8.............. 19 

Figure 2.13 A capturing system consisting of two optical elements, each with 
different impulse responses and MTFs.............................................. 20 

Figure 3.1 Under certain conditions, the incident ray splits into ordinary and 
extraordinary rays. The difference between refractive indices and 
the thickness of the plate determines offset d between emerging 
rays............................................................................................. 23 

Figure 3.2 A single ray decomposition in a simple optical low-pass filter 
consisting of two plates with a retarder between them. The crystal 
axis of the second plate is rotated at 90 degrees relative to the 
crystal axis of the first plate............................................................ 24 

Figure 3.3 Spatial impulse response of a two-plate birefringent OLPF.................. 25 

Figure 3.4 Modulation transfer function of an OLPF with two birefringent plates, 
arranged as shown in Figure 3.3. .................................................... 25 

Figure 3.5 The vertical (horizontal) MTF of the two-plate OLPF with the first 
zero-crossing set at the Nyquist frequency of the imager. The 
frequency response is a periodic function; because of its features, it 
is closer to a comb filter [19] than a low-pass filter. .......................... 26 

Figure 3.6 (a) 100x-magnified emerging rays when a single ray passes through 
the Olympus E510 OLPF. Measured distances between emerging 
rays are shown in (b). Code V simulated output of two-plate 
birefringent OLPF is shown in (c)..................................................... 28 

Figure 3.7 Horizontal MTF of the two-plate Olympus OLPF. The first zero-
crossing coincides with the Nyquist frequency for green samples. 
The Nyquist frequency for red/blue samples is half the Nyquist 
frequency for the green samples..................................................... 29 

Figure 3.8 Spatial impulse response of the three-plate OLPF [11]....................... 29 

Figure 3.9 Code V simulation of the three-plate birefringent OLPF [11]. .............. 30 

Figure 3.10 The horizontal and vertical MTF of the three-plate OLPF..................... 31 

Figure 3.11 (a) 100x-magnified emerging rays when a single ray passes through 
the F900 OLPF. The measured distances between emerging rays are 
shown in (b). The Code V simulated output of the four-plate 
birefringent OLPF is shown in (c)..................................................... 32 

   

 xi 



Figure 3.12 The spatial impulse response of a four-plate birefringent OLPF. The 
axes are positioned at the diagonals of the filter. .............................. 33 

Figure 3.13 Horizontal and diagonal MTF of OLPF from Figure 3.12. Horizontal 
Nyquist frequency is also shown for reference. ................................. 33 

Figure 3.14 (a) 100x-magnified emerging rays when a single ray passes through 
the OLPF. Measured distances between emerging rays are shown in 
(b). Code V simulated output of a five-plate birefringent OLPF is 
shown in (c). ................................................................................ 34 

Figure 3.15 The spatial distribution of output rays, which is the result of a single 
ray passing through the Genesis OLPF. The impulse response along 
the x axis is highlighted in black...................................................... 35 

Figure 3.16 The horizontal and vertical MTF of Genesis OLPF. The Nyquist 
frequency of the Genesis sensor is also added for reference. .............. 35 

Figure 3.17 A transmission phase grating used as an optical low-pass filter........... 38 

Figure 4.1 The DOLPF, based on a parallel optical window with two rotational 
degrees of freedom. The coordinate system is also indicated.............. 41 

Figure 4.2 An alternative proposal for the dynamically controlled OLPF, based 
on the rigid mirror. ........................................................................ 41 

Figure 4.3 A ray incident to a parallel optical window, tilted in the optical path, 
is laterally displaced after emerging on the opposite side. .................. 42 

Figure 4.4 A lateral displacement of the emergent ray as a function of the 
window tilt angle and its thickness as a parameter............................ 43 

Figure 4.5 An illustration of the window moving in three discrete steps during 
the exposure. Only the imager is shown. The darker gray square 
represents the object projected onto the imager. The lateral move is 
exaggerated; in reality, it is less than the dimensions of the 
photosite...................................................................................... 47 

Figure 4.6 Theoretical frequency response of window functions typically used in 
harmonic analysis. The distance between window taps is chosen so 
that the first zero-crossing is at 30 lp/mm........................................ 49 

Figure 4.7 The pole-zero plot of the two-tap rectangle filter is shown on the 
left. One real zero is located at -1, and one real pole is located in the 
origin. The pole-zero plot of the three-tap rectangle filter is shown 
on the right. The three-tap filter has two complex-conjugate zeros 
located on the unit circle. ............................................................... 53 

   

 xii 



Figure 4.8 The pole-zero plot for the 10-tap Hann window. The system function 
is a ninth-order polynomial, which results in 9 zeros located on the 
unit circle. .................................................................................... 53 

Figure 4.9 Pole-zero plots of two filters with the same numbers of zeros and 
poles. The positions of the complex-conjugate zeros are different in 
these two filters. ........................................................................... 54 

Figure 4.10 Pole-zero plots of a filter; the zeros and poles reflect the results of 
combining the two filters from Figure 4.10 into one filter. .................. 56 

Figure 4.11 The theoretical magnitude frequency response of the filters from 
Figures 4.10 and 4.11. The zero-crossings’ frequencies of the five-
tap filter are the same as those of the two three-tap filters. The 
passband frequency components of the five-tap filter are lower than 
the passband frequency components of both three-tap filters............. 56 

Figure 4.12 An example of a system that has a fixed OLPF. The four-tap OLPF 
has its first zero-crossing set to 80 lp/mm. Changing the F-stop of 
the lens also changes its frequency response.................................... 57 

Figure 4.13 An example of a system with the dynamically controlled OLPF. 
Initially, the four-tap OLPF has its first zero-crossing set to 80 
lp/mm. As the lens aperture is modified, the first zero-crossing of 
the filter is altered to keep the energy above the Nyquist frequency 
the same...................................................................................... 58 

Figure 4.14 Theoretical MTF of two-, three-, and four-tap rectangle filters, whose 
spatial distances between taps are equal (τa=τb=τc)........................... 59 

Figure 4.15 Theoretical modulation transfer functions of two-, three-, and four-
tap rectangle filters, whose distances between taps are set to 
τa=3τb/2=2τc................................................................................. 60 

Figure 4.16 Theoretical modulation transfer functions of a three-tap rectangle 
filter for three different distances between filter taps (τa, τb, and τc)..... 60 

Figure 5.1 The optical test fixture designed for the DOLPF experiment. ............... 63 

Figure 5.2 The target designed for the experiment. When the target's image is 
formed on the sensor, the frequencies indicated on the target are 
present in the captured image. ....................................................... 64 

Figure 5.3 The linearity of the final target is shown on the left. On the right is 
the target's MTF before and after compensation for the printer's 
MTF. ............................................................................................ 65 

Figure 5.4 The overall optical setup shows the camera, DOLPF, lens mount, and 
lens. The DOLPF is positioned between the lens and the camera......... 67 

 xiii 



Figure 5.5 The optical experiment for tuning the DOLPF. In the foreground—on 
the optical bench—is the alignment laser, the optical test fixture, 
and the CPU board.  In the background is the board with the 
calibrated scale. ............................................................................ 69 

Figure 5.6 The trace of the laser beam bouncing off the glass window and 
stopping at four points. The laser beam travels from the resting 
point on the right to the resting point on the left. The left side shows 
the trace when the control signal is uncompensated. The right side 
shows the trace when the window is controlled with a compensated 
signal........................................................................................... 70 

Figure 5.7 The white square in the left figure shows the position of the 
magnified area of the target shown on the right. The DOLPF is not 
moving during the single exposure. 70 

Figure 5.8 The two-tap rectangle filter is shown in (a). The three-tap rectangle 
filter is shown in (b). Figures (c) and (d) show the three-tap and 
five-tap triangle filters, respectively. 71 

Figure 5.9 An illustration of the lens’s effect on the overall response. The black 
line represents the observable response after the OLPF response is 
altered by the lens’s MTF................................................................ 72 

Figure 5.10 Theoretical MTFs for the DOLPF, implementing two-, three-, four-, 
and ten-tap rectangle filters. .......................................................... 74 

Figure 5.11 Measured overall MTFs for a system with a rectangle filter. Four 
measurements, with the filters having different numbers of taps (M 
= 2, 3, 4 and 10), are shown.......................................................... 74 

Figure 5.12 Theoretical MTFs for the DOLPF, implementing a ten-tap Tukey filter 
for four different alphas.................................................................. 75 

Figure 5.13 Measured overall MTFs for a system with a ten-tap Tukey filter and 
varying parameters α. ................................................................... 75 

Figure 5.14 Theoretical MTFs for the DOLPF, implementing a ten-tap Gaussian 
filter and three different alphas. ...................................................... 76 

Figure 5.15 Measured MTFs of a system with a ten-tap Gaussian filter and three 
different alphas............................................................................. 76 

Figure 5.16 Theoretical MTFs of the DOLPF, implementing ten-tap triangle, 
Hamming, and Blackman-Harris filters............................................. 77 

Figure 5.17 Measured MTFs of a system with ten-tap triangle, Hamming, and 
Blackman-Harris filters................................................................... 77 

   

 xiv 



Figure 5.18 Measured system MTFs without an OLPF. This figure shows that the 
lens’s MTF when is mostly dominated by the lens’s diffraction 
limitation...................................................................................... 78 

Figure 5.19 Measured overall MTFs for a system with a fixed four-point 
separation birefringent OLPF, set at approximately 30 lp/mm and at 
various aperture positions. ............................................................. 79 

Figure 5.20 An example of a system that uses the dynamically controlled OLPF..... 79 

Figure 5.21 Demonstration of the MTF bandwidth control for a system that uses 
a two-tap rectangle filter. Note the significant sidelobes in the filter's 
response. ..................................................................................... 80 

Figure 5.22 Demonstration of the MTF bandwidth control for a system that uses 
a three-tap rectangle filter.............................................................. 81 

Figure 5.23 Measured MTFs of a system with a five-tap triangle filter and a 
variable bandwidth. ....................................................................... 81 

Figure 5.24 Measured MTFs of a system with a ten-tap Blackman-Harris filter 
and a variable bandwidth. .............................................................. 82 

Figure 5.25 Measured system MTFs with a ten-tap Tukey filter (α=0.75) and a 
variable bandwidth. ....................................................................... 82 

Figure 5.26 Theoretical MTFs of a two-tap filter, where the parameter “a” 
represents a ratio between the filter's coefficients. ............................ 83 

Figure 5.27 Measured overall MTF for a system with a two-tap OLPF, where the 
parameter “a” represents a ratio between the filter's coefficients. ....... 83 

Figure A.1 The three systems under evaluation are tested with five field angles 
chosen to cover the critical points of the sensor. The circle 
represents the boundary of the surface that the lens optically covers. . 90 

Figure A.2 The three optical setups used in the simulation. Top figure shows the 
setup without the optical window, used as a reference setup. The 
middle figure shows the setup with the window perpendicular to the 
optical axis. The window in the last setup is tilted to displace the 
passing rays. ............................................................................... 91 

Figure A.3 Optical path differences for the reference system evaluated at the 
five critical field angles................................................................... 93 

Figure A.4 Optical path differences for the system, with the optical window 
perpendicular to the optical path, evaluated at the five critical field 
angles.......................................................................................... 94 

   

 xv 



 xvi 

Figure A.5 Optical path differences for the system, with the tilted optical 
window, evaluated at the five critical field angles. ............................. 95 

Figure A.6 MTFs of the reference system evaluated up to the cut-off frequency. .. 96 

Figure A.7 MTFs of the reference system evaluated up to the sensor Nyquist 
frequency..................................................................................... 96 

Figure A.8 MTFs of the system, with the optical window perpendicular to the 
optical axis, evaluated up to the cut-off frequency............................. 97 

Figure A.9 MTFs of the system, with the optical window perpendicular to the 
optical axis, evaluated up to the sensor Nyquist frequency................. 97 

Figure A.10 MTFs of the system, with the optical window tilted, evaluated up to 
the cut-off frequency. .................................................................... 98 

Figure A.11 MTFs of the system, with the optical window tilted, evaluated up to 
the sensor Nyquist frequency.......................................................... 98 

 
 
 



 

Chapter 1 

Introduction and Motivation 

The common use of terminology such as “digital photography” and “digital audio” belie the 

fact that virtually all transducers such as microphones for recording audio or CCDs and 

CMOS devices for capturing images are analog devices. It is commonly accepted that 

digital equivalents of images, video, music, and other signals that originate in the analog 

world can be the starting point for various post processes, evaluation, and research.  What 

is often ignored is that, before digital processing algorithms can be implemented, from the 

simplest to the most complex, an operation involving the conversion of a continuous 

analog signal into a discrete, quantized digital equivalent has to be performed. The 

conditions for capturing and converting analog signals into their digital equivalents, which 

are often unknown, are fundamental to our understanding of the validity of the results of 

any subsequent processing, evaluation, or research. Once the signal is digitized, an 

accurate reconstruction from the quantized digital data may not be possible. 

Commercially available imaging systems in particular often employ preprocessing before 

digitization, the details of which are often well guarded secrets by the equipment 

manufacturers. This, despite the fact that the characteristics of these preprocesses 

fundamentally affect the accuracy of the reconstructed result. In the following work, an 

attempt to shed some light on this portion of the technology will be presented.   
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In any imaging system, the lens is an essential part of the capturing system, performing 

the function of collecting light energy from the scene and producing an image on the 

transducer. A lens can be as simple as a single element, or as complex as modern cine 

zoom lens with more than 26 optical elements. Minimizing optical aberrations has 

occupied some of the greatest minds of mankind for over a thousand years. The 

corrections of these artifacts, both achromatic and chromatic, are done in the analog 

domain, which makes these corrections especially challenging. Lenses are entirely analog 

devices, and they have been used in “digital” image acquisition unmodified, even though 

they may originally have been designed for an analog imager such as a silver halide film 

emulsion. Interchangeable lenses are often used on cameras with various resolution 

sensors that match only in optical size. Even with today's highs speed computers running 

sophisticated ray tracing software, designing and manufacturing high-quality lenses is an 

expensive and lengthy process. Mass production of electronics has resulted in a situation 

in which producing a good-quality lens can be more expensive than all other aspects of 

the image acquisition system.  

Although image sensors are based on an analog process—the conversion of photons to 

electrons—with the advent of CMOS devices with integral A/D converters they became 

digital devices that perform conversion from the continuous to the discrete spatial domain. 

Their system performance is often not defined by technology but by their manufacturer's 

marketing department. Currently we are at a crossroad between CMOS and CCD 

processes used for sensor manufacturing. However, whatever process is used, the 

photosite dimension and the distance between their centers determine the sampling 

frequency of the sensor and, therefore, its Nyquist frequency. Recently, the size of the 

photosite has been determined mostly by market forces rather than optimization. The 

race to market to manufacture a sensor with a higher number of photosites than the 
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competition has resulted in very small photosite sizes that place an impossible burden on 

camera optics, electronics, and storage. An often ignored rule of thumb, suggests that the 

smallest desired resolution element should be matched in size by the minimum sensor 

element. Another useful rule of thumb states that, in a diffraction-limited system, the Airy 

disk diameter in the visible part of the spectrum is approximately equal to the F-number 

of the system expressed in microns. For example, the smallest photosite dimension is 

currently 1.4 μm x 1.4 μm, which would require, based on the aforementioned rules, an 

aberration-free lens faster than F1.4 to appreciate such small photosites (pixels). The race 

to produce the smallest photosite and, therefore, the highest pixel count has gone so far 

that some sensors are being compared by their pixel density rather than the total number 

of pixels. Beside the dynamic range and noise problems present in the systems with such 

minute pixels, these capturing systems suffer from optical limitations as well. The sensor 

is often designed independently from the lens, resulting in frequency response 

discrepancies between these two critical elements of the capturing system. 

Recognizing this problem, professional imaging systems, particularly motion picture 

cameras, usually employ larger photosites (pixels) and lower pixel counts than many 

amateur cameras.  This results in the desirable characteristics of improved dynamic range, 

signal to noise and sensitivity.  However, high performance optics often have frequency 

response characteristics that exceed the Nyquist limit of the sensor.   

This mismatch between the lens and the sensor frequency characteristics results in an 

irreparable artifact that must be minimized for the majority of applications.  

The Nyquist criterion requires that the sampling frequency must be at least twice the 

desired system bandwidth; therefore it is necessary to reduce the bandwidth of the lens 

before the image is formed on the discrete imaging array.  Typically, an optical filter, 

employing the principle of birefringence, is placed between the lens and the imager. This 
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optical low-pass filter (OLPF) is designed to match the lens performance with sensor 

performance. Despite the fact that the frequency response of the capturing system is, in 

good part, determined by the frequency response of the OLPF (the frequency response of 

the OLPF is in the upper boundary of the frequency response of the system), the 

characteristics and construction of this obscure optical element are rarely published. This 

might be partially because its function is to intentionally blur the image before it is formed 

on the sensor. Inserted between the lens and the sensor, the optical low-pass filter 

degrades the image in spite of the hard work that was put into designing the lens and the 

sensor. It will be shown in the dissertation that certain types of optical low-pass filters can 

be analyzed using the tools from discrete signal processing, although they essentially 

belong to the analog domain. 

Due to its interesting position between the analog and digital worlds, the fundamental 

importance of the OLPF in defining the imaging system performance is often ignored. This 

situation has motivated the author to investigate the current limitations of OLPFs and to 

propose and demonstrate an alternative approach. As we will see, the proposed solution 

can dynamically modify its characteristic, which allows an interesting possibility in 

reference to performing real-time signal processing in the analog domain.  

There are several instances in which it is desirable to change the characteristics of an 

optical low-pass filter in a controlled way; to compensate for the performance of a 

particular lens or the characteristics of a lens that varies with aperture, or when the spatial 

characteristics of an sensor change due to binning or sub-sampling, or when integration 

time and subject or camera movement result in a reduction of high frequency content. In 

all of these instances, an optical low pass filter whose characteristics can be altered 

dynamically results in an improvement in image quality when compared to the fixed 
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frequency response of the traditional birefringent OLPF. Thus, there is a need for an 

improved optical low-pass filter that remedies the shortcomings of the prior solutions. 

1.1 Contribution 

The main contributions of this work are that it provides: 

• A novel optical low-pass filter based on a dynamically controlled parallel optical 

window or rigid mirror, 

• Theoretical analysis and practical implementation of various window functions for 

shaping the point spread function of the optical capturing system using the DOLPF, 

• A proposal and demonstration of coupling the DOLPF with other elements of the 

capturing system with a goal to dynamically counteract alterations of the 

modulation transfer functions,  

• The practical implementation and related problems of an optical low-pass filter 

based on the parallel optical window, 

• Detailed analysis of currently used birefringent optical low-pass filters.   

1.2 Organization 

This Ph.D. dissertation is structured as follows: Chapter 2 introduces some basic theory 

that is necessary for a better understanding of the work, including the sampling theory 

with examples, cause of aliasing in the sample systems, introduction to optical prefiltering, 

a brief introduction to the modulation transfer function of lenses, and a rule for MTFs of 

optical elements when they are cascaded. Chapter 3 contains a review of the theory 

behind the OLPFs with an emphasis on their current implementation in modern digital still 

and video cameras. In Chapter 4, we propose a novel, dynamically controlled optical low-

pass filter, its principle of operation, and the possible use of such a device. Chapter 5 
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 6 

summarizes the results of the experiments with a device built based on the proposal. In 

Chapter 5, we present the methods used in evaluation of the system with a dynamically 

controlled optical low-pass filter. Chapter 6 provides conclusions and proposes some 

future research regarding the presented work. Lastly, the appendix contains graphs from 

the optical simulation that were not reported in the main text.    



 

Chapter 2 

Preliminaries  

In this chapter, the modulation transfer function (MTF) is used, for the first time, to 

describe the frequency responses of the optical elements of the image capturing system. 

The MTF is the magnitude response of the optical element or system to sinusoidal patterns 

of different spatial frequencies [1]. It is often plotted as a function of frequency, expressed 

in line pairs per millimeter (lp/mm).  

Throughout all chapters, the characteristics of the capturing system or its elements are 

frequently shown as a function of the F-number—i.e., the lens’s focal length divided by the 

clear aperture diameter [2]. In addition to controlling the amount of light energy that 

reaches the sensor, the frequency components of the continuous scene that passes 

through the lens are altered by an amount that is a function of the F-number. Due to the 

importance of the lens’s frequency response, a section of this chapter is dedicated to that 

phenomenon.   

Sampling is the essential part of the digitizing process, and a section of this chapter is 

dedicated to two-dimensional sampling. The sampling theory is supported by three 

practical examples. An adverse consequence of sampling, aliasing, is briefly discussed in 

this chapter as well. 

The last section of this chapter analyzes the MTF of the capturing system when the system 

consists of several cascaded optical elements that are characterized by their own MTFs.  
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2.1 Sampling 

The first step of any digital image or video processing is the conversion of a continuous 

scene into a digital equivalent by digitization. The digitization can be applied onto the 

various scopes of the signal such as intensity, time, and space. The digitization over the 

regular sampling grid—a grid with equal distance between samples in one direction—is the 

most common, and it will be a focus of this study.        

When sampling a continuous signal over the regular grid, a question arises about the 

distances between the sampling points. The Nyquist sampling theorem states that in order 

to acquire a discrete equivalent of a continuous signal, the signal should be sampled by at 

least twice the maximum bandwidth of the continuous signal. Half of the sampling 

frequency is called the Nyquist frequency.  

When a continuous tone image is sampled by a device that has a discrete sampling 

structure, the frequencies present in the scene tend to exceed the Nyquist frequency 

because of the practical constraints of the capturing system. Violating the Nyquist-

Shannon sampling theorem results in aliasing, an irreversible process that permanently 

contaminates the discrete equivalent of the continuous scenes. 

For practical reasons, a sensor has a finite size and a finite number of photosites. The 

physical dimensions of the sensor and the number of photosites determine the 

geometrical shape and dimensions of the photosites. The centers of the photosites' light-

sensitive areas mark the positions of the sensor's sampling points. The distances between 

these points determine the sampling frequency, which is usually expressed in pixels per 

millimeter. In the following sections, the sampling structures of three different sensors are 

studied in detail. The sensors are evaluated depending on two characteristics: their 

Nyquist frequencies (expressed in lp/mm) and their modulation transfer functions. 
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2.1.1 Two-dimensional sampling and sensors' MTFs 

The photosites of an image sensor are designed with various geometrical shapes and 

orientations. Furthermore, to separate color information in the sampled scene, the color 

sensors are designed with various color filter arrays (CFA), which are placed over the 

photosites. Figures 2.1(a) and 2.1(b) show examples of the two typical modern color 

sensors: the stripe CFA and the Bayer pattern CFA, respectively. Figure 2.1(c) shows the 

experimental diagonal stripe CFA pattern incorporated in the Panavision Dynamax sensor 

[3]. Note that the photosites in the third sensor are rotated by 45o. 

 

Figure 2.1: (a) 400x-magnified photosites of the Panavision Genesis camera, 
demonstrating the stripe CFA. (b) The Bayer pattern CFA of the Olympus E510 sensor. (c) 
Panavision Dynamax Blue photosites with a diagonal stripe pattern.  
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The shape of the photosite determines the frequency response of the image sensor. The 

pixel pitch, defined as the distance between the centers of photosites of the same color, 

determines the sampling frequency and the Nyquist frequency of the sensor.  

       

Figure 2.2: The spatial distribution of same-color photosites found in the Genesis sensor is 
shown on the left. The horizontal and vertical Nyquist frequencies are shown on the right.   
 
Using the lattice theory [4], we can formalize the sampling structure and the frequency 

response of a sensor. Figure 2.2, on the left, shows same-color photosites and the 

distances between them. As seen in the figure, the horizontal and vertical distances 

between centers of same-color photosites are both 12.3 μm. Hence, the horizontal and 

vertical sampling frequencies for each color are 81.3 samples/mm. The lattice 

representation of the Genesis sensor, shown on the right side of Figure 2.2, helps us to 

determine the Nyquist frequencies. As seen in the figure, the horizontal and vertical 

Nyquist frequencies are 40.65 lp/mm. The gray square on the same figure shows a 

contour of the ideal frequency prefilter for this sampling structure that is required to 

prevent aliasing.  

The lattice theory is useful for determining the Nyquist frequency of a sensor sampling 

structure, but it does not reveal the sensor’s frequency response. The frequency response 
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is determined by the shape of the photosensitive area of a photosite. If the photosensitive 

area is infinitely small (i.e., point sampling), then the frequency response of the imager 

would be infinite. Of course, a sensor with infinitely small photosites would have poor 

sensitivity. Therefore, the pixel designers' goal is to maximize the photosensitive area of a 

photosite.  A measure of their success is the ratio between the photosensitive area and 

the total photosite area; this ratio is called the fill factor [5]. To demonstrate how the 

dimensions of a photosite determine the sensor frequency response, we will assume that 

the fill factor has a value of 100% (a value not achievable in practice). As seen in Figure 

2.2, the photosensitive area forms a rectangle in the spatial domain, which results in a 

sinc function in the frequency domain. The left side of Figure 2.3 shows the horizontal and 

vertical MTFs of the sensor. On the right side is a 2D representation of the sensor's MTFs. 

   

Figure 2.3: On the left are the horizontal and vertical MTFs of the Genesis sensor. On the 
right is a 2D representation of the sensor's MTFs. 
 
As seen in the figure, the horizontal MTF of the sensor is better than the vertical MTF. It 

will be shown in Chapter 3 that this asymmetric MTF requires an asymmetric optical low-

pass filter. The stripe-pattern CFA has the same bandwidth for all three colors; hence, the 

MTFs for all three colors are the same. The sensor found in the Olympus E-510 camera 

has the Bayer pattern CFA, with red and blue photosites located on a rectangular structure 
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while the green photosites form a diagonal sampling structure. Figures 2.4 and 2.5 show 

the spatial distribution of the green samples, the Nyquist frequency response, and the 1D 

and 2D MTFs. The diagonal Nyquist frequency is lower than the horizontal and vertical 

Nyquist frequencies. The sensor’s frequency responses for the red and blue samples are 

different from those for the green samples. In all cases, the MTF responses are 

symmetric.         

     

Figure 2.4: Green photosites from the Olympus sensor are depicted on the left. The 
horizontal and vertical Nyquist limits are shown on the right. 
 

   

Figure 2.5: On the left is the horizontal MTF for the three colors in the Olympus sensor. On 
the right is a 2D representation of the sensor’s MTFs for the color green. 
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The Dynamax sensor has the diagonal stripe CFA; the spatial distribution of its one-color 

photosites is shown in Figure 2.6. The same figure shows the Nyquist limits for the sensor. 

The sensor's MTFs are evaluated on the main and minor diagonals and are shown in 

Figure 2.7. As seen on the right side, the horizontal and vertical MTFs are equal, whereas 

the diagonal frequency responses differ significantly.      

      

Figure 2.6: Green photosites in the Dynamax sensor are depicted on the left. The 
horizontal and vertical Nyquist frequency limits are shown on the right.  
 

  

Figure 2.7: On the left are the main and minor diagonals of the sensor's MTFs for the 
three colors. On the right is a 2D representation of the sensor's MTFs. 
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2.1.2 Aliasing 

As the frequency-domain representation of sampling [6] shows, the result of sampling is 

periodically repeated copies of the Fourier transform of the continuous scene formed on 

the sensor. The copies are shifted by integer multiples of the sampling frequency. Hence, 

when a continuous scene contains frequency components greater than half of the 

sampling frequency (i.e., greater than the Nyquist frequency), aliasing will occur in the 

captured image.  Figure 2.8 depicts the "wrapping" effect of the frequency components 

that are above the Nyquist frequency. As seen in the figure, the frequency components 

higher than the Nyquist frequency "wrap" around the Nyquist frequency. The frequency 

components above the sampling frequency wrap around the DC level.   

 

Figure 2.8: An illustration of the aliasing of an arbitrary signal, with the frequency 
components above the Nyquist frequency. 
  
On the right sides of Figures 2.2, 2.4, and 2.6 are shown 2D illustrations of the Nyquist 

limitations for the three sensors.  The gray squares represent the extent of the frequency 

components that are correctly captured if they are present in the image formed on the 

sensor. However, the frequency components that are outside the gray square will be 

incorrectly interpreted by the sensor. Figure 2.9 shows one example of the scene, 
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captured with the Genesis sensor (with the OLPF removed), which contains horizontal 

frequency components that are below and above the Nyquist limits. The original 

frequencies and the sensor's Nyquist limit are indicated in the figure. The frequency 

components above the Nyquist frequency wrap around and appear as the lower 

frequencies. For example, the 70 lp/mm sinusoidal pattern appears as a 10 lp/mm pattern 

in the digital equivalent.         

        

Figure 2.9: The green color plane of an image captured with the Genesis sensor, 
illustrating aliasing. On the right are indicated the original frequency components of the 
continuous scene that is formed on the sensor.    
 

2.1.3 Binning and decimation 

Some sensors [7] reduce the number of photosites that are transferred off-chip in order to 

increase the frame rate and/or sensitivity. There are two ways to conduct this operation 

on-chip: binning and spatial decimation. In the binning method, two or more photosites 

are tied together and transferred off-chip as one value. The binning can be deployed 

horizontally, vertically, or in both directions. The spatial decimation approach transfers 

only selected photosites off the sensor. For example, every second vertical photosite can 
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be sent off-chip (i.e., every second line). As in the binning method, the decimation can be 

deployed horizontally, vertically, or in both directions. 

When two or more photosites are binned, the locations of the binned photosites' centroids 

determine the Nyquist frequency in the direction of the binning. For example, vertically 

binning two photosites from Figure 2.2 would halve the vertical Nyquist frequency. In 

addition to altering the Nyquist frequency, the binning lowers the sensor’s MTF in the 

given direction, due to the changed dimensions of the photosensitive area. 

When the spatial decimation is used, the locations of the selected photosites determine 

the Nyquist frequency in the direction of decimation. For example, vertically decimating 

every second photosite from Figure 2.2 would halve the vertical Nyquist frequency. Unlike 

the binning method, the decimation improves the MTF of the sensor in the direction of 

decimation, due to the relatively smaller photosensitive area that results.          

2.2 Optical prefiltering 

As seen in the previous sections, the frequency components that are contained in the 

continuous scene formed on the sensor and that are higher than the Nyquist frequencies 

are incorrectly interpreted by the sensor, which results in aliasing. When an application 

requires minimizing aliased components, the frequency components above the Nyquist 

frequency must be minimized, using an optical element called an anti-aliasing filter or an 

optical low-pass filter (OLPF). The right sides of Figures 2.2, 2.4, and 2.6 show the non-

zero regions of the ideal OLPFs for each given sensor, beside the Nyquist limits of the 

sensors. The amplitude of such an ideal filter is the unity across the non-zero region and is 

zero elsewhere. In Chapter 3, various implementations of OLPFs, a detailed explanation of 

their principles, and various examples are presented.  
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2.3 Lens’s MTF  

A study of the sensor's MTFs is a topic of the previous section, whereas a detailed study of 

the OLPF is presented in Chapter 3. The lens is the third essential optical element of the 

capturing system, and its influence on the overall system performance is briefly analyzed 

in the following text. A lens’s performance can be appraised on many parameters, but in 

this section, the focus is the lens's effect on the frequency responses of the capturing 

system. Figure 2.10 shows the MTFs of a Nikon 50 mm lens, which is a typical 35mm 

photographic lens, measured on the optical axis using the MTF bench.  

 

Figure 2.10: MTFs of the Nikon 50 mm lens, measured with the MTF bench.  
 
As seen in the figure, the best lens performance, in terms of MTF, occurs when the 

aperture size is set to F5.6. Other aperture settings result in lower MTFs. In general, when 

a smaller aperture is selected, the most dominant limitation of the lens’s MTF is caused by 

the diffraction. On the other hand, when a selected aperture is greater than F5.6, the 

MTFs of the lens are mostly dominated by the lens’s geometrical aberrations. The cutoff 

frequency of the MTF that is dominated by aberration is still determined by the diffraction 

effect. However, aberration can reduce the high frequency components of the MTF and 

can effectively lower the cutoff frequency much more than what is predicted by diffraction.      
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The lens’s optical transfer function (OTF) can be found directly from a Fourier transform of 

the lens’s point spread function (PSF). The lens’s modulation transfer function is then 

obtained by taking a modulus of the OTF. In the case of the diffraction-limited incoherent 

imaging, the lens’s PSF (also known as the lens’s impulse response) is proportional to the 

Fraunhofer diffraction pattern of the exit pupil—i.e., the image of the aperture stop when 

looking into the rear of the lens [2]. When the conditions for the Fraunhofer approximation 

are satisfied, the Fraunhofer diffraction pattern (and the lens’s PSF) can be found directly 

from a Fourier transform of the aperture intensity function [8].    

 

Figure 2.11: The MTFs for a diffraction-limited lens and various aperture intensity 
functions.  
 
A high-quality lens usually has an aperture stop that approximates a circle, resulting in a 

circular intensity function. Figure 2.11 shows the MTFs of a diffraction-limited lens, with 

various aperture intensity functions calculated for the same F-number. As seen in the 

figure, the lens with the aperture stop constructed of three blades (resulting in a triangular 

intensity function) has a lower MTF than the same lens with other types of aperture stops. 

The MTF of the aperture stop constructed with six blades is similar to the MTF of the 

aperture that has a circular intensity function. Figure 2.12 shows the theoretical MTFs of 

an aberration-free lens that is diffraction limited, with various circular aperture sizes. The 
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dashed curves on the figure show the measured MTFs for the Nikon 50mm lens and for 

three aperture sizes. As seen in the figure, the measured MTFs closely track the 

theoretical curves for F16 and F11. On the other hand, when the lens aperture size 

increases, other lens limitations become dominant in affecting the lens’s MTF. Hence, the 

diffraction limitation curves are no longer valid.  

 

Figure 2.12: Theoretical MTFs of an aberration-free lens that is diffraction limited. The 
curves, calculated for monochrome light λ=587nm, are shown in full black lines. The 
dashed lines show the measured MTFs of the Nikon 50mm lens, with the aperture set to 
F16, F11, and F8.   
 
As the lens aperture increases, the geometrical aberrations start to dominate the 

limitation of the MTF. Spherical aberration, coma, and other aberrations are complex and 

not straightforward; hence, they are difficult to describe in a closed form like the 

diffraction-based limitation. Lens designers exercise great effort in order to minimize these 

aberrations, and the quality of a lens is often determined by its success or failure in 

minimizing the geometrical aberrations. In the following chapters, the effects of the 

aberrations on the lens’s MTF are observed and considered, albeit without examining the 

specifics of these aberrations.  
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2.4 Cascading optical elements and their MTFs 

An image-capturing system typically consists of multiple optical elements cascaded into 

one device. Before the continuous scene reaches the sensor, it is altered by each of the 

optical elements that precede the sensor. By passing through the optical elements, many 

image parameters are affected; however, the alteration of the image frequency 

components is the primary interest of this study. The behavior of each optical element (in 

the frequency domain) is described by its MTF. Figure 2.12 illustrates a system that 

consists of two optical elements, each with a different MTF. As the aggregate MTF 

explicitly shows, the frequencies in the image that enters the system are altered before 

the image emerges at the opposite end. The aggregate MTF is obtained by calculating the 

Fourier transform of the combined impulse response, which is calculated by spatially 

convolving the impulses responses of the two optical elements. The aggregate MTF is 

obtained by normalizing (i.e., providing unit value at zero spatial frequency) the frequency 

magnitude response of the system. When the MTF of each optical element is known, the 

easiest way to find the aggregate MTF is by multiplying the MTFs of the two elements, 

frequency by frequency [6].  

 

Figure 2.13: A capturing system consisting of two optical elements, each with different 
impulse responses and MTFs.  
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The consequence of multiplying normalized functions, which are less than or equal to 

unity, is that the aggregate MTF is always lower than or at least equal to the lowest MTF of 

the element. For example, if the MTF of the first element in Figure 2.12 at 30 lp/mm is 

0.5, and the MTF of the second element, at the same frequency, is 1.0, then the overall 

MTF at the given frequency is 0.5. Hence, only one optical element of the capturing 

system that has a poor MTF is sufficient to affect the aggregate MTF negatively.   



 

Chapter 3  

Overview of Optical Low-Pass Filters 

Previously related works on optical low-pass filtering are reviewed in this chapter, and 

several different approaches will be summarized. The first part of the chapter will primarily 

focus on birefringent-based OLPF, which accounts for the majority of filters used in both 

video and still cameras.  The second part of this chapter is dedicated to adjustable optical 

low-pass filters. The last section briefly discusses grating optical low-pass filters, a type of 

filters that are based on diffraction. The purpose of this chapter is to present the theory, 

practical implementations, and limitations of a range of OLPF solutions.  

3.1 Birefringent-based OLPF 

The basics of birefringent materials will be briefly considered. Pritchard [9] presents one of 

the first investigations of possibilities for using the birefringent plates for spatial low-pass 

filtering. In addition to this work, there is a significant body of papers (including many 

typical examples [10][11][12][13][14][15]) whose topics of study are the birefringent-

based filters, their construction, and their performance. All of these prefilters are 

monochromatic; they treat all colors in the same way. In order to address modern sensor 

color patterns, Greivenkamp in [16] and [17] presents color-dependent birefringent 

prefilters.  
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A birefringent optical low-pass filter comprises an arrangement of at least two birefringent 

plates that might have different thicknesses. They are interleaved with quarter wave delay 

elements. Under certain conditions, a single unpolarized ray passing through a uniaxial 

birefringent plate splits into two orthogonal linearly polarized rays. Figure 3.1 shows a ray 

that is split within a piece of uniaxial birefringent material [2]. These two rays are known 

as ordinary and extraordinary rays, and each of them is governed by different refractive 

indices. The thickness of the birefringent plate and the difference between extraordinary 

and ordinary refractive indices determine the offset between the emerging rays.  Many 

materials exhibit birefringence [18], but quartz and lithium niobate are preferred materials 

for making OLPFs in contemporary digital video and still cameras. In lithium niobate, the 

difference between extraordinary and ordinary refractive indices is more significant than in 

quartz. The required displacement between emerging rays would result in a thinner filter 

when made of lithium niobate than when made of quartz.  

 

Figure 3.1: Under certain conditions, the incident ray splits into ordinary and extraordinary 
rays. The difference between refractive indices and the thickness of the plate determines 
offset d between emerging rays. 

3.1.1 Two-plate birefringent OLPF 

As its name indicates, this filter consists of two birefringent plates. This construction of 

birefringent OLPF is used in many still and video cameras with Bayer CFA, such as the 
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Canon Mark II, the Olympus E510, the Red One, and others. The crystal axis is oriented at 

approximately 45 degrees [18] relatively to the surface, which results in splitting an 

incoming ray into two linearly polarized rays on the opposite side of the first plate. In 

order to utilize the birefringence of the second plate, emerging rays from the first plate 

must be circularly polarized. A quarter-wave retarder is inserted between the first and 

second plates to carry out the linear-to-circular polarization. If the crystal axis of the 

second plate is oriented under some set angle (usually 90 degrees), relatively to the first 

plate, then the single ray, after passing through two successive plates with the retarder 

between them, splits into four output rays. The two-plate birefringent filter is also called a 

four-point separation filter. The optical axis of the retarder is oriented in such a way, 

relatively to the polarized light, that the intensity of each emerging ray is a quarter of the 

intensity of the incoming ray. The assembly is depicted in Figure 3.2.    

 

Figure 3.2: A single ray decomposition in a simple optical low-pass filter consisting of two 
plates with a retarder between them. The crystal axis of the second plate is rotated at 90 
degrees relative to the crystal axis of the first plate.   
 
As discussed earlier, the distance between output rays is a function of the thickness of the 

plates and the type of birefringent material. If the two plates shown in Figure 3.2 are of 

different thicknesses, then the resulting spatial impulse response appears as shown in 

Figure 3.3. 
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Figure 3.3: Spatial impulse response of a two-plate birefringent OLPF.  
 
The spatial impulse response may be analytically written as: 
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Using two-dimensional Fourier transformation, this is the corresponding frequency 

response of the two-plate OLPF: 

  
( ) ( ) )2cos(2cos, yx vuvuF τπτπ=

 

The result is a two-dimensional function whose absolute value is a modulation transfer 

function (MTF). It is graphically presented in Figure 3.4.   

 

Figure 3.4: Modulation transfer function of an OLPF with two birefringent plates, arranged 
as shown in Figure 3.3.  
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Several important points should be noted here. First, from Figure 3.4 and the equation for 

filter's frequency response, it can be seen that the filter's zero-crossing is a function of the 

thickness of the plate and the type of birefringent material. Consequently, for a given 

birefringent material, varying the thickness of the plate changes the zero-crossing 

frequency. The second important point can be observed in the frequency response 

equation; it is a periodic function in which the period is equal to the inverse distance 

between emerging rays. Since it is a periodic function, it has non-zero values for even 

high frequency components. As a result, the two-plate OLPF is not a low-pass filter but 

rather a comb filter [19] whose frequency components below and above zero-crossing are 

passed with little or no alteration.  

 

 

Figure 3.5: The vertical (horizontal) MTF of the two-plate OLPF with the first zero-crossing 
set at the Nyquist frequency of the imager. The frequency response is a periodic function; 
because of its features, it is closer to a comb filter [19] than a low-pass filter.  
 
Assume that the zero-crossing of the OLPF is set at the Nyquist frequency of an imager. In 

addition, assume that the thicknesses of both plates are equal, which results in equally 

horizontal and vertical frequency responses. Figure 3.5 illustrates the vertical or horizontal 

modulation transfer functions of the OLPF. An ideal low-pass filter lets low-frequency 

components pass undisturbed but attenuates high-frequency components. As seen in 

Figure 3.5, the rolloff rate of the filter in the passband also attenuates frequencies below 
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the Nyquist frequency. This attenuation of passband frequencies will be perceived as a 

loss of image sharpness. Moreover, the frequency components in stopband that are not 

attenuated will fold back into the baseband signal and create aliasing. To reiterate an 

earlier statement, Figure 3.5 shows that the MTF of a two-plate OLPF is a periodic function 

in which the period is equal to the inverse distance between the emerging rays. 

Example of a two-plate OLPF in Olympus E510 

The Olympus E510 has Bayer pattern CFA with a 4.8μm distance between centers of 

photosites. When observed horizontally and vertically, the sensor has different sampling 

frequencies for red and blue samples than for green samples. Due to the specific spatial 

arrangement of green photodetectors, the horizontal Nyquist frequency of green samples 

is twice that of the red and blue samples. 

Figure 3.6 shows actual and simulated results of a single ray of light passing through the 

OLPF from Olympus E510. The input ray is generated by light passing through a 1-μm 

pinhole. An optical microscope with 100x magnification and a digital camera were used to 

capture rays at the emerging side. The same figure also shows measured distances 

between output rays. When the distance in the frequency response equation is substituted 

for the two-plate OLPF with the measured value, the first zero-crossing is located at 

approximately 104 lp/mm. The Nyquist frequency for green samples coincides with the 

first zero-crossing of the OLPF. 

Figure 3.7 shows only the horizontal MTF of the Olympus E510 OLPF because the vertical 

MTF is identical. As explained earlier, due to the specific arrangement of the Bayer CFA, 

the Nyquist frequency of red and blue samples is half the Nyquist frequency of green 

samples. It would be ideal to have separate OLPFs with appropriate zero-crossing 

frequencies for green and red/blue samples. Unfortunately, only one OLPF can be 

physically positioned in front of a sensor. If the OLPF is not color-dependent [16], then 
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both green and red/blue photodetectors will sample the same signal prefiltered by one 

OLPF. This situation results in a different amount of aliased signal for green image 

components than for red and blue ones. In other words, an OLPF designer can optimize an 

optical filter either for green samples or for red and blue ones, but not for both at the 

same time. In the case of the Olympus E510 digital still camera, the designers decided to 

match the filter’s zero-crossing to the green Nyquist frequency, allowing more aliasing in 

red and blue image components. 

 

Figure 3.6: (a) 100x-magnified emerging rays when a single ray passes through the 
Olympus E510 OLPF. Measured distances between emerging rays are shown in (b). Code 
V simulated output of two-plate birefringent OLPF is shown in (c).  
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Figure 3.7: Horizontal MTF of the two-plate Olympus OLPF. The first zero-crossing 
coincides with the Nyquist frequency for green samples. The Nyquist frequency for 
red/blue samples is half the Nyquist frequency for the green samples.   

3.1.2 Multiple birefringent plate OLPF 

Example of a three-plate OLPF 

One of the main disadvantages of OLPF, as examined thus far, is its poor performance for 

frequency components in stopband. Several forms of the three-plate birefringent filter are 

possible, differing in material and complexity of construction. One way to combine these 

forms is reported in [11]; this method results in a spatial impulse response, as shown in 

Figure 3.8. 

 

Figure 3.8: Spatial impulse response of the three-plate OLPF [11]. 
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This can be achieved by adding one more plate, rotated at 45 degrees, to the assembly 

displayed in Figure 3.2. This birefringent OLPF has six output rays, with 1/8 of intensity of 

the input ray, and one ray, with 1/4 intensity, located in the center. Figure 3.9 illustrates 

Code V simulation of the same filter. 

 

Figure 3.9: Code V simulation of the three-plate birefringent OLPF [11]. 
  
The impulse response derived from Figure 3.8 can be expressed analytically: 
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Using trigonometric identities and two-dimensional Fourier transformation, the frequency 

response of the three plates OLPF is a two-dimensional function: 
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The horizontal and vertical MTF can be obtained by substituting zero for horizontal or 

vertical frequencies in the above equation: 

  ( ) ( ) ( ) ( ) ( )yxx vvFanduuuF τπτπτπ 22 cos,02coscos0, ==    

The horizontal MTF has two zero-crossings, which are a function of the plate thickness and 

the type of birefringent material. At the same time, the vertical MTF has only one zero-
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crossing. If the first zero-crossing in the horizontal MTF is set at 40 lp/mm, then the 

second zero-crossing will be at twice that frequency, or 80 lp/mm. MTF is a periodic 

function with a period of 160 lp/mm. Comparing the MTF of a two-plate OLPF with the MTF 

of a three-plate OLPF reveals that the latter attenuates stopband frequency components 

more successfully. A graphical representation of both horizontal and vertical MTF is shown 

in Figure 3.10.   

 

Figure 3.10: The horizontal and vertical MTF of the three-plate OLPF. 
  

Example of a four-plate OLPF 

The Sony F900 video camera is based on three 2/3-inch CCDs [20]. Each color is captured 

by a separate sensor with square 5μm x 5μm photosites. The distance between the 

centers of the photosites determines the Nyquist frequency at 100 lp/mm for each color 

component. Figure 3.11 shows the actual and simulated results of a single ray of light 

passing through the OLPF from F900. The same figure also shows the measured distances 

between emerging rays. 

Figure 3.12 illustrates the two-dimensional impulse response of the filter. The four 

centered impulses are twice as large in amplitude than peripheral impulses. Observed 

along both diagonals, the output responses form a triangular impulse response.    
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Figure 3.11: (a) 100x-magnified emerging rays when a single ray passes through the 
F900 OLPF. The measured distances between emerging rays are shown in (b). The Code V 
simulated output of the four-plate birefringent OLPF is shown in (c). 
  
The impulse response of the filter is symmetric; as a result, the vertical and horizontal 

MTFs are identical. This is expected in a design where the photosites are square and, 

hence, where the vertical and horizontal distances between samples are identical. This is a 

nonseparable filter; finding a close-form equation for MTF is not trivial. The MTF of the 

filter was found using the fast Fourier transform (FFT). Figure 3.13 shows the diagonal and 

horizontal modulation transfer functions. The figure reveals that the diagonal MTF has a 

lower zero-crossing frequency and a different shape than the horizontal MTF.  
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Figure 3.12: The spatial impulse response of a four-plate birefringent OLPF. The axes are 
positioned at the diagonals of the filter.  
  

 

Figure 3.13: Horizontal and diagonal MTF of OLPF from Figure 3.12. Horizontal Nyquist 
frequency is also shown for reference.   
  

Example of a five-plate OLPF 

The sensor in a Genesis digital film camera is based on a single sensor that has a stripe-

patterned CFA. The distance between the centers of same-color photosites is 12.3μm. This 

corresponds to a sampling frequency of 80 photosites/mm, which results in a horizontal 

Nyquist frequency of 40 lp/mm. Each photosite is a 12.3μm x 4.1μm rectangular shape. 

Observed in both horizontal and vertical directions, the number of red, green, and blue 

photodetectors are identical, which results in an equal frequency response of all three 
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color components. Due to the rectangular shapes of the photosites, the vertical footprint 

response is different from the horizontal response. 

Figure 3.10 shows the actual and simulated results of a single ray of light passing through 

the OLPF from Genesis camera. The single-incident ray splits into 20 emerging rays. The 

rays’ spatial distribution, with measured distances, is shown in Figure 3.14.  

 

Figure 3.14: (a) 100x-magnified emerging rays when a single ray passes through the 
OLPF. Measured distances between emerging rays are shown in (b). Code V simulated 
output of a five-plate birefringent OLPF is shown in (c). 
 
Figure 3.15 shows the two-dimensional impulse response, along with the accompanying 

amplitudes of the Genesis OLPF. As seen in the figure, along the x and y axes, the impulse 

responses are different; however, both of them form a triangular shape. The Genesis 

OLPF is a nonseparable filter, and since a closed-form MTF equation was not easily 
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accessible, the response was found using FFT. Horizontal and vertical MTFs are shown in 

Figure 3.16. 

 

Figure 3.15: The spatial distribution of output rays, which is the result of a single ray 
passing through the Genesis OLPF. The impulse response along the x axis is highlighted in 
black.  
  
 

 

Figure 3.16: The horizontal and vertical MTF of Genesis OLPF. The Nyquist frequency of 
the Genesis sensor is also added for reference. 
  
A comparison of the modulation transfer function of the Genesis OLPF, from Figure 3.16, 

with the response of the Olympus OLPF, from Figure 3.7, demonstrates that the sidelobes 

in the response of the Genesis OLPF are lower than that of the Olympus OLPF. This implies 

that the frequency components above the Nyquist frequency will be more attenuated, 
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which may result in less aliasing after the image is digitized. When all other variables are 

equal, smaller filter sidelobes result in lower aliasing. 

The vertical OLPF response has greater bandwidth than the horizontal OLPF response. Due 

to the rectangular shapes of the photosites, the horizontal photodetector response has 

greater bandwidth than the vertical response, and, consequently, it must be more limited 

in order to prevent aliasing.   

3.1.3 Birefringent OLPF - Conclusion 

As explained by the preceding material, designers have been using two or more 

birefringent plates to create spatial, two-dimensional OLPFs. In their basic form, 

birefringent OLPFs are simple, reliable, and relatively inexpensive, but they also possess a 

few drawbacks. Due to these filters’ rolloff rates, camera designers must either under-

correct, to maintain passband resolution and to allow some aliasing, or they must 

eliminate aliases with a more aggressive design that will also alter image information. 

Adding birefringent plates may improve MTF in the stopband region, to some extent.    

In addition, most OLPFs are designed as passive optical elements with fixed frequency 

characteristics, and they do not adjust even if other parts of the capturing systems are 

changed.  

3.2 Adjustable Optical Low-Pass Filters 

One of the drawbacks of the birefringent OLPF is that it has fixed frequency 

characteristics. Several different attempts have been conducted to address this problem, 

and their summaries follow.  

Pritchard [9] proposes using two birefringent filters, as described above, positioned in a 

sequence in the light path. Their rotations at different angular relationships, relatively to a 
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pickup device, produced a continuously adjustable frequency response of the OLPF. 

Authors in [21] propose various mechanical methods for rotating one of the birefringent 

plates, which would result in varying the distance between the emerging rays and varying 

the modulation transfer function of the filter.   

Nishioka et al. [22] uses an optical low-pass filter comprised of liquid crystal. Liquid crystal 

has the ability to change the direction of the crystal axis when exposed to an electric field. 

This possibility allows control of the birefringent index, as requested; consequently, the 

ability to control the filter is enabled or disabled. The author also suggests the possibility 

of variably controlling the crystal axis and therefore controlling the frequency response 

during the observation of the image.   

Authors in [23] present the idea of using a plurality of optical low-pass filters with different 

optical characteristics mounted on a wheel, which is externally controlled to set an 

appropriate filter in the light path.   

Kreymerman in [24], proposes using a thin pellicle (i.e. 2μm), positioned in the path of 

light. Light bounces off the pellicle onto a pickup device. The author recommends using 

this apparatus in two possible ways. If a camera consists of color and luminance image 

sensors, then portions of the light rays pass undisturbed through the semitransparent 

pellicle onto the luminance sensor, while the other portions reflect from it onto the color 

sensor. If a camera consists of one sensor with CFA, then all light energy reflects from the 

pellicle onto the sensor. Alternating current is applied to piezo-ceramic stripes, which are 

attached to the pellicle, thereby forcing it to vibrate. The pellicle distortion affects the 

reflected light, thereby also affecting its higher-frequency components.  

Although this is a very elegant approach, this solution may have several potential 

problems. The flange focal distance in the camera varies from manufacturer to 

manufacturer, ranging from a few millimeters to several dozens of millimeters. The 
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apparatus requires positioning a lens at 90 degrees relatively to the sensor, and it requires 

inserting the pellicle between. That can be challenging, if not impossible, for compact 

cameras. Bigger optical sensors require bigger pellicles to prevent obscuring the light 

bundle, which may cause a problem of uniformity of spatial distortion of the pellicle. If the 

pellicle has a nonuniformly distorted surface, then the captured image will be 

nonuniformly filtered. The author reported that the resulting OLPF MTF, with a certain 

voltage level, is a constant for lower frequencies (i.e., a flattop filter). However, that is 

physically impossible, as will be explained in the following chapter. 

3.3 Diffraction-Based OLPF 

The earliest proposal to use a diffraction grating as a low-pass filter in a video camera can 

be found in [25]. The authors proposed using phase elements provided on a transparent 

base plate to produce a blur in the images formed by the optical system. The principle 

behind the grating low-pass filter (GOLF) has been well-known for decades; a fine 

description can be found in [18], and it will be briefly presented in the following text. 

Figure 3.17 shows a transmission phase grating, which was made by ruling or scratching 

parallel notches onto the surface of a flat, clear glass plate.  

 

Figure 3.17: A transmission phase grating used as an optical low-pass filter.  
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Due to the grating, emerging light radiates with different phases over the grating surface 

and forms various principal maxima, whose positions can be found using the grating 

equation [18]. By controlling the density, orientation, and shape of the grating, it is 

possible to control the intensity distribution of the emerging light and therefore to control 

the frequency response of the GOLF.     

There is a significant body of work, with some examples found in [26][27] 

[28][29][30][31][32] and [33], whose topics of study are the diffraction-based optical 

low-pass filters. The authors of these papers reported various shapes, orientations, and 

densities of grating used in GOLF. More recently, in [34], the authors presented 

comparisons between GOLF-based OLPF and birefringent-based OLPF.  

It is important to note one of the most significant differences between GOLF and 

birefringent-based OLPF, as seen in Figures 3.2 and 3.17. In the case of a birefringent 

OLPF, emerging rays are parallel to each other. On the other hand, in a GOLF-type filter, 

emerging rays diverge from each other. This requires a precise positioning of the grating-

based filters relatively to the pickup device, since the distance between the filter and the 

sensor will determine the system’s frequency response. In the birefringent-based filters, 

emerging rays are parallel; hence, precise positioning of the filter is not required. As 

another drawback of GOLF, the position of a local maximum of scattered light is a function 

of the wavelength of incident light, which makes the modulation transfer function a 

function of wavelength.  

 



 

Chapter 4 

Dynamic Optical Low-Pass Filter   

To address the deficiencies of the classic birefringent and diffraction-based OLPFs, 

specifically their stopband performances and fixed frequency responses, a dynamic optical 

low-pass filter (DOLPF) is proposed. The underlying principle of the DOLPF and some 

practical aspects of it are presented in the first half of this chapter. The second half of the 

chapter is dedicated to the theoretical analysis, design, and evaluation of the filters that 

are intended for implementation in the DOLPF.  

4.1 Introduction 

In this chapter, we propose the use of a parallel optical window or, alternatively, a rigid 

mirror positioned between the lens and the imager as a dynamically controlled optical low-

pass filter. Simplified illustrations of the two proposed solutions are shown in Figure 4.1 

and Figure 4.2. As seen in the figures, the DOLPF consists of either an optical window or a 

rigid mirror that has two rotational degrees of freedom: pitch and yaw. The underlying 

ideas for both solutions are the same, but the following study will focus on the former 

solution, the optical window. Due to the space constraints between the lens and the 

imager in a camera, that solution is easier to implement. Nevertheless, all conclusions 

drawn from the window implementation are relevant to the mirror solution, although with 

minor differences. The DOLPF utilizes the fact that image capturing is not an 
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instantaneous process and that in order to collect enough photons, the imager must be 

exposed to light for some finite amount of time. The mirror and the optical window move 

during the exposure. Therefore, the reflected ray (in the case of the mirror solution) and 

the emerging ray (in the case of the optical window) each strike more than one spot on 

the imager.  

 

Figure 4.1: The DOLPF, based on a parallel optical window with two rotational degrees of 
freedom. The coordinate system is also indicated. 
 

 

Figure 4.2: An alternative proposal for the dynamically controlled OLPF, based on the rigid 
mirror. 
  
Since the window and mirror rotation directly manipulate the resulting point spread 

function of the system, their motions must be carefully controlled. Manipulating the point 

spread function of the optics before the image is digitized alters the frequency 
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components of the imaged continuous scenes. The effects of different paths and velocities 

onto the point spread function are analyzed later in the chapter. 

4.2 Principle of Operation  

The principal idea that enables the window-based DOLPF is the phenomenon of the lateral 

displacement of the emergent ray when the incident ray is not perpendicular to the 

window. When a parallel optical window with a thickness T and a refraction index n is 

tilted in the optical path, then the ray incident at an angle α is displaced laterally by 

amount δ, given by [35]: 
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Figure 4.3 shows a top view of the DOLPF in two different positions when it rotates in the 

XZ plane. When the window is in a neutral position (position A), the incident ray is 

perpendicular to the surface of the window. Position B marks the location of the window 

when it is rotated at angle α, relatively to the neutral position.  

 

Figure 4.3: A ray incident to a parallel optical window, tilted in the optical path, is laterally 
displaced after emerging on the opposite side. 
  
The rotation around the Y axis results in a displacement in the XZ plane. Furthermore, 

when the window rotates around the X axis, the ray displacement occurs in the YZ plane.  
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By enabling the window to rotate in both XZ and YZ planes, the incident ray can be 

laterally moved in two dimensions across the imager.  

The parallel displacement of rays is used, for example, in the ophthalometer, an 

instrument for measuring the distance between points that cannot be measured directly 

[35]. This technique is also used in other fields; for example, it is used for image 

registration in scanners [36] and in cameras for image motion compensation [37].  

 

Figure 4.4: A lateral displacement of the emergent ray as a function of the window tilt 
angle and its thickness as a parameter. 
  
For a given refractive index, Figure 4.4 shows the lateral displacement of the emergent 

ray as a function of the window tilt angle and its thickness as a parameter. As seen in the 

figure, for a small tilt angle, the lateral displacement is a linear function. To put the values 

from the figure in perspective, the lateral displacement should be similar in size to the 

imager photosites, which range from a few micrometers up to a few dozens of 

micrometers in imagers for special applications.  

It is worth noting that in the window-based DOLPF, the emergent ray is parallel to the 

incident ray. Parallel emerging rays imply that the lateral displacement of rays, when they 

reach the imager, is not a function of the distance between the DOLPF and the imager. 

Consequently, a precise positioning of the window-based DOLPF between the lens and the 
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imager is not required. This is not the case in the mirror-based DOLPF, where the relative 

position of the mirror to the imager determines the ray deflection.       

4.2.1 Optical Simulation 

As part of the DOLPF design process, a study was undertaken to estimate the adverse 

effects caused by the window inserted between the imager and the lens. For that purpose, 

two optical simulation packages were used: 'Code V' from Optical Research Associates 

[38] and 'Zemax' from Zemax Development Corporation [39]. In this section, only the 

conclusion of the study is presented. The details of the optical simulation are presented in 

Appendix A. The parallel optical window used in the optical simulation is the same as the 

window used in the experiments.  

The window inserted between the lens and the imager causes two noteworthy adverse 

effects. First, due to the longitudinal displacement of the image, the imager must be 

moved from its original position for approximately 0.625 mm. A similar problem is present 

with the birefringent OLPF, and it is normally addressed during the camera design.  

The second and more significant adverse effect is illustrated in the figures showing Optical 

Path Difference (OPD) curves. The most affected OPD curves are those for the field angles 

that cover the corners of the imager. From those curves, it can be seen that for both non-

tilted and tilted windows, the peak-to-valley OPD is greater than 1/4 of the reference 

wavelength. Furthermore, for all wavelengths, the blue light at 486nm is affected more 

than the other spectral frequencies. This is also reflected in the RMS OPD and MTF curves. 

Two observations are worth noting here. First, the Nyquist frequency of the imager used 

in the experiments is 67 lp/mm. The higher image frequency components will alias after 

sampling, so this frequency may be considered to be the limiting frequency of the system. 

Relatively to the reference system, the MTF at that frequency is affected less than 10% 
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when the window is maximally tilted. In the non-tilted window case, degradation at the 

same frequency is less than 5%. It can be argued that this degradation at the limiting 

frequency is acceptable, considering that we are building an optical low-pass filter. 

Second, Code V and other software packages are not intended to evaluate a time varying 

system such as the DOLPF. In our situation, the window will stay in simulated positions for 

only a fraction of the exposure time. This may grant some insight into the system’s 

behavior when the window is at certain positions, but our final setup is more complex. 

4.2.2 Practical Considerations 

Several factors must be considered in the practical implementation of the DOLPF. Some of 

those considerations are discussed here. Minimal physical dimensions of the parallel 

optical window are limited by the optical dimensions of the imager. The window inserted in 

the optical path should not obstruct the light bundle between the lens and the imager. 

Sensor formats are not standardized, but typical diagonal dimensions range from 2.3 mm 

to 43.27 mm [40]. The camera used in our experiments is based on a one-inch sensor 

whose diagonal is 16.0 mm. For the experiments, a square optical window with 

dimensions 25 mm x 25 mm proved to be large enough to avoid any image vignetting. 

The required lateral displacement is determined by the frequency response of the optical 

low-pass filter that we aim to create. As shown in the examples with the birefringent 

OLPF, the ray lateral displacement is tailored based on the dimensions of the imager 

photosite. For example, considering the case of the two-plate birefringent OLPF designed 

for the Bayer CFA imager, which has square 4.8 μm x 4.8 μm photosites, the lateral 

displacement is 4.8 μm in both horizontal and vertical directions. In our experiments, for 

the purpose of presenting our ideas clearly, we designed filters that have their first zero-
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crossings at 30 lp/mm. To be equivalent to the two-plate birefringent OLPF, the DOLPF 

filter requires a lateral displacement of 16.6 μm.  

The thickness of the parallel optical window determines the lateral displacement and the 

weight of the window. Thicker glass results in more lateral displacement but also leads to 

increased total weight. A heavier window requires more force applied in order to achieve 

the necessary angular acceleration and velocity. For our experiments, we use a 2 mm 

thick optical window that has 2.55 g/cm3 density. This results in a window weight of 3.19 

g. For that thickness, every 1o of the window rotation results in 12 μm of lateral 

displacement.    

The mirror and the optical window move during the exposure, and the path that the ray 

should trace on the imager surface must be finished before the exposure ends.    

4.3 Designing Filter Shape   

This section studies the design of the spatial filters used in the DOLPF and focuses on their 

shape. OLPFs are analog domain devices; their functionality is applied on a continuous 

signal before discretization. However, as seen with the birefringent-based OLPFs, their 

spatial impulse responses can fully be described using discrete-space signals, and they 

can be treated using discrete signal processing. 

During the imager exposure, the optical window or mirror rotates around one or both axes 

and, as a consequence, results in a two-dimensional lateral displacement of the image. In 

our implementation, these optical elements move in discrete steps, which results in a 

finite number of image lateral displacements during the exposure. If the time that the 

optical elements spend traveling from one position to another is negligible in comparison 

to the exposure time, then the output of the imager is the integration of several spatially 

displaced images. Figure 4.5 illustrates an example when the window moves three times 
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during the exposure, resulting in a lateral move of the projected image on the imager. 

After the image exposure is over, all three image positions are accumulated in the final 

image. 

It is important to note that the positions of laterally shifted continuous images on the 

imager are independent from the sampling structure of the imager. These positions on the 

imager are a function of the continuous angle at which the optical window travels around 

the axes. The lateral displacements of the image also determine the spatial position of 

impulses in the two-dimensional impulse response of the filter. 

    

 

Figure 4.5: An illustration of the window moving in three discrete steps during the 
exposure. Only the imager is shown. The darker gray square represents the object 
projected onto the imager. The lateral move is exaggerated; in reality, it is less than the 
dimensions of the photosite.   
  
While the angular positions of the window determine the spatial distribution of the 

impulses in the filter’s impulse response, the amplitude of these impulses is determined by 

the time that the optical element spends on each discrete position.  

The same tools from the discrete signal processing that are used to analyze the 

birefringent OLPF are used in the DOLPF analysis as well. Also, the physical limitations of 

the DOLPF impose certain constraints on the filter design and must be taken into account.   
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Two strategies are used in the DOLPF filter development. The first strategy is a classic 

approach where a filter is designed independently from the other elements of the optical 

system. Filters are designed to maximize the passband frequencies while minimizing the 

stopband frequency components. If it exists, the first zero-crossing of the filter frequency 

response will be considered as a border between the passband and the stopband of the 

filter. The second approach in the filter design attempts to exploit the frequency 

characteristics of other elements of the optical system, specifically the inherent low-pass 

characteristic of the lens. The DOLPF filter coefficients are designed in combination with 

the lens—whose frequency response varies with the F-number—while using a 

predetermined amount of energy in the stopband as a criterion.  

4.3.1 Standard approach 

The previous section stated that the impulse amplitudes in the two-dimensional impulse 

response are directly proportional to the time that the window spends on each discrete 

position. A reexamination of both Chapter 3 and the impulse response of the birefringent 

OLPF reveals that the envelope of the impulse response forms either a rectangular or a 

triangular window function. In harmonic analysis, a window function is applied to the 

truncated signal in order to minimize the effects of spectral leakage. In the DOLPF filter 

design process, a similar problem is encountered: we want to minimize the stopband 

frequency but also to minimize the alteration of the passband frequencies’ components. In 

addition to harmonic analysis, applications of window functions include filter design [6] 

and beamforming [41].  

A comparison graph of several windows frequently used in harmonic analysis is shown in 

Figure 4.6. The distance between window taps is carefully chosen so that the first zero-

crossing of the frequency response is exactly at 30 lp/mm. The same zero-crossing 
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facilitates comparisons between the characteristics of the frequency responses for several 

typical window functions. The first four analyzed window functions are considered to be 

the classic windows: rectangle, triangle, Hanning, and Blackman-Harris. The other two are 

constructed windows: Tukey and Gaussian [42]. If a window frequency response (i.e., the 

Gaussian window function) does not have a zero-crossing, then the frequency where the 

magnitude reaches -60 dB is considered a zero-crossing frequency.  

 

Figure 4.6: Theoretical frequency response of window functions typically used in harmonic 
analysis. The distance between window taps is chosen so that the first zero-crossing is at 
30 lp/mm. 
  
Table 4.1 lists specific performance parameters of the examined window functions: 

highest side-lobe, 6 dB bandwidth, passband area, and stopband area.  

The highest side lobe parameter is defined as the peak level of the highest side lobe, 

relative to the peak level of the main lobe. The table column named “6 dB bandwidth” 

presents the frequencies where the window frequency response reaches -6 dB, or 50% of 

the response at DC. The passband area represents a normalized surface under the 

frequency response graph for the passband frequency components. For reference, an ideal 

low-pass filter with a zero-crossing at 30 lp/mm has a passband area of 1. The stopband 

area represents a normalized surface under the frequency response graph for the 
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stopband frequency components. For an ideal low-pass filter, the surface under the 

stopband frequencies is 0. 

Window 
Highest 

side-lobe 
level (dB) 

6 dB BW 
(lp/mm) 

Pass-band 
area 

Stop-
band 
area 

Rectangle (M=2) 0 20.00 0.6449 0.6288 

Rectangle (M=10) -13 18.12 0.5984 0.1558 

Triangle -27 13.60 0.4706 0.0198 

Tukey (α=0.5) -15 17.72 0.5881 0.1184 

Hanning -32 15.04 0.5158 0.0102 

Gaussian (α=3.0) -55 10.12 0.3670 0.0037 

Blackman-Harris -67 11.11 0.3954 0.0012 

 
Table 4.1: A comparison of the window functions used in the analysis. The passband area 
represents a normalized surface under the frequency response graph in the passband 
region. An ideal low-pass filter measures 1 for the passband area parameter. The 
stopband area represents a normalized surface under the frequency response graph in the 
stopband region. 
 
As seen in Figure 4.6 and Table 4.1, a window function that performs poorly in the 

stopband region behaves better in the passband region. The opposite is also true; a 

window function that performs well in the stopband region behaves poorly in the passband 

region. For example, the Gaussian window effectively attenuates the stopband frequency 

components, but it is only half the bandwidth of the rectangle filter. An attempt to find the 

answer for such a behavior will be discussed in the following text.  

Analyzing filters’ frequency responses using the z-transform 

The z-transform is used to discover how the selection of the window function coefficients 

affects the frequency response. For better understanding, the following analysis is only 

aimed at one-dimensional spatial filters, although the same analysis could be extended to 

the separable two-dimensional spatial filters. Linear space-invariant filters, with input 

signal x[n] and output y[n], satisfy a linear constant-coefficient difference equation: 
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In the case of the OLPF, additional constraints to the system function are enforced by the 

physical limitations of the optical system. The first constraint is that OLPFs cannot form an 

infinite impulse response filter. They can only create finite impulse response spatial filters 

(FIR), which means that all ak coefficients except a0 are zeros. When a0 = 1, the above 

equation can then be rewritten in this way: 
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If the z-transform is applied to both sides of the above equations, this is the result: 
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The system function then has the following form when rearranged in terms of zeros ck: 

 ( )∏∑
=

−

=

− −===
M

k
k

M

k

k
k zcbzb

zX
zYzH

1

1
0

0

1
)(
)()(  

Due to physical limitations, OLPFs cannot subtract or amplify light, which adds two 

additional constraints onto the filters’ coefficients. These constraints can be expressed by 

these equations: 
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The first constraint is based on the assumption that the total light energy that enters the 

OLPF is equal to the energy that exits the OLPF. This is an acceptable assumption since 

the energy loss is negligible when light is passing through the optical window.  

The resulting system function is an Mth-degree polynomial, which has M roots in the 

complex numbers. The following examples illustrate the z-transform applied to OLPF 

filters.  
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Example 1: Suppose that the impulse response for the two-tap rectangle OLPF can be 

expressed this way: 

 [ ] [ ] [ ]110 −+= nxbnxbny , 

where b0 = b1 = 1/2. This, then, is the system function: 
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Note that the system function is a first-order polynomial with positive coefficients. The 

positions of the zeros and poles of the system function are shown in Figure 4.7. 

Example 2:  Suppose this is the impulse response for the three-tap rectangle OLPF:  

  [ ] [ ] [ ] [ ]21 210 −+−+= nxbnxbnxbny , 

where b0 = b1 = b2 = 1/3. This, then, is the system function: 
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The system function is a second-order polynomial with positive coefficients. This 

polynomial has two complex zeros:  
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It also has two poles in the origin. The constellation of zeros and poles for the three-tap 

rectangle filter is shown in Figure 4.7. 

Example 3: Suppose this is the system function for the ten-tap Hann filter:  
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where bk = {0.0144, 0.0531, 0.1038, 0.1504, 0.1781, 0.1781, 0.1504, 0.1038, 0.0531, 

0.0144}. The system function is a ninth-order polynomial with positive coefficients; it has 
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9 zeros located on the unit circle and 10 poles located in the origin, as shown in Figure 

4.8.   

  

Figure 4.7: The pole-zero plot of the two-tap rectangle filter is shown on the left. One real 
zero is located at -1, and one real pole is located in the origin. The pole-zero plot of the 
three-tap rectangle filter is shown on the right. The three-tap filter has two complex-
conjugate zeros located on the unit circle.    
  

  

Figure 4.8: The pole-zero plot for the 10-tap Hann window. The system function is a 
ninth-order polynomial, which results in 9 zeros located on the unit circle.  
 
The interpretation of zero-plane plots offers an insight into the way the location of zeros 

and poles affects the frequency response magnitude. In general, it is hard to determine 

the position of a polynomial’s zeros based on its coefficients; however, several algebraic 

rules predict their general positions in the z-plane [43]. As determined earlier, the 

coefficients of a polynomial representing a DOLPF filter must be real and positive. When 

the coefficients of the polynomial are real, then complex-valued roots must occur in 
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complex-conjugate pairs. If it is not located on the unit circle, then a zero of a symmetric 

spatial filter must have a reciprocal pair. When the polynomial coefficients are positive, 

then there is no real positive zero.     

  

Figure 4.9: Pole-zero plots of two filters with the same numbers of zeros and poles. The 
positions of the complex-conjugate zeros are different in these two filters.    
  
The left side of Figure 4.9 shows the locations of the zeros of a symmetric three-tap filter. 

One real zero is located on the unit circle’s negative real axis. The other two are located on 

the unit circle at an angle of ±φ1 from the positive real axis. The right side of Figure 4.9 

shows the pole-zero plot of a three-tap filter, but with the complex zeros located on the 

unit circle at an angle of ±φ2 from the positive real axis. Note that poles of a FIR filter are 

always located in the origin.  

The magnitude response of a filter can be found by evaluating the filter's system function 

on the unit circle [44]. A zero’s presence close to the unit circle causes the magnitude of 

the frequency response to be attenuated. In contrast, a pole located close to the unit circle 

causes the magnitude of the frequency response to be amplified. How much a zero or pole 

affects a specific frequency in the frequency response is determined by its distance from 

the evaluated point on the unit circle. In the example shown in Figure 4.10, d1, d2, and d3 

represent distances between the zeros and a point of the unit circle that corresponds to an 

evaluated frequency ω. The magnitude of H(ω) may be expressed by this equation [44]: 
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where dn is the distance from a zero to the evaluated point on the unit circle and where vn 

represents the distance from a pole to the same point. Since all poles are located in the 

origin, the distance between a pole and any point on the unit circle is 1. Hence, the 

equation above can be simplified: 

( ) MdddbH ⋅⋅⋅⋅⋅= 210ω  

Figure 4.11 shows the frequency response curves for the two filters shown in Figure 4.9. 

The filter shown on the left side of Figure 4.10 has zeros on the unit circle with angles π 

and φ1 from the positive real axis. The corresponding frequency response has zero-

crossings at those two frequencies. The second filter has zeros on the unit circle with 

angles π and φ2 from the positive real axis, which results in zero-crossings at different 

frequencies. As demonstrated by the equation above, it is obvious that any given 

frequency in the magnitude frequency response is affected by every zero and every pole 

of the system function; the influence of zeros and poles is determined by their distances 

from the evaluated point. 

Figure 4.10 shows a pole-zero plot of a filter constructed from the two filters shown in 

Figure 4.9. The position of the zeros is identical to the position of the zeros for the 

constituting filters. Therefore, the zero-crossing frequencies of these filters are the same. 

The magnitude frequency response of the combined filter is shown in Figure 4.12, which 

shows that the passband frequency components are lower than those of the individual 

three-tap filters. Similarly, the stopband frequency components are also more attenuated 

because additional zeros are located beyond the first zero-crossing.    
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Figure 4.10: Pole-zero plots of a filter; the zeros and poles reflect the results of combining 
the two filters from Figure 4.10 into one filter. 
   
As seen earlier, adding zeros to the system functions results in a better attenuation of the 

frequency components beyond the first zero-crossing. Since every zero and pole has a 

certain influence on each frequency of a response, adding zeros will have a negative 

consequence on the frequency components lower than the first zero-crossing.  

  

Figure 4.11: The theoretical magnitude frequency response of the filters from Figures 4.10 
and 4.11. The zero-crossings’ frequencies of the five-tap filter are the same as those of 
the two three-tap filters. The passband frequency components of the five-tap filter are 
lower than the passband frequency components of both three-tap filters.    
  
Adding zeros located on the unit circle to a system function of a low-pass filter improves 

the attenuation of the stopband frequency components, but the adverse result of adding 

zeros is the degradation of the passband frequency components.      
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4.3.2 Coupling DOLPF and lens 

The previous section explained how to design filter coefficients for the DOLPF when a fixed 

frequency response of the filter is one of the requirements. It also provided a few 

examples of such coefficients. In this section, we propose incorporating the lens 

characteristics into the design of the DOLPF filter coefficients. The DOLPF is dynamically 

controlled, and it is not imperative to have the frequency response of the filter fixed. Any 

alteration of the frequency response of the optical elements that are preceding and/or 

following the DOLPF may have effects on its coefficients while continuing to satisfy certain 

overall criteria. As shown earlier, the optical elements in the capturing system are 

cascaded, and each of them contributes to the system frequency response. 

The fact that the frequency response of the lens is a function of the F-number is 

considered when designing the DOLPF filters. The amount of energy allowed in the 

stopband is a criterion.  

    

Figure 4.12: An example of a system that has a fixed OLPF. The four-tap OLPF has its first 
zero-crossing set to 80 lp/mm. Changing the F-stop of the lens also changes its frequency 
response. 
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Figure 4.12 illustrates an example of a system with a fixed frequency four-tap OLPF and a 

diffraction limited lens for two lens apertures. For demonstration purposes, the first zero-

crossing of the OLPF is set to 80 lp/mm.  

When observing the stopband frequency components of the combined response, it can be 

seen that the system whose aperture is set to F11 has these components attenuated 

better. This is easy to explain; the lens itself better attenuates higher frequency 

components when the aperture is set to F11 instead of F8.        

 

Figure 4.13: An example of a system with the dynamically controlled OLPF. Initially, the 
four-tap OLPF has its first zero-crossing set to 80 lp/mm. As the lens aperture is modified, 
the first zero-crossing of the filter is altered to keep the energy above the Nyquist 
frequency the same. 
  
If the energy of a system above the Nyquist frequency is used as a parameter with the 

aim to keep it constant, then the frequency response of the DOLPF can be altered to 

compensate for the changes of the lens’s frequency response. An example is shown in 

Figure 4.13. The DOLPF zero-crossing frequency, for a lens aperture of F11, is set to 

approximately 150 lp/mm to keep the energy equally above the Nyquist frequency in both 

systems. As a positive outcome, the passband frequency components for the system 

whose aperture is set to F11 are less attenuated, and its image appears sharper.     
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4.4 Controlling Bandwidth 

The shape of the DOLPF’s frequency response, as explained in the section 4.3, is 

determined by its number of filter taps and their amplitudes. This section will explain that 

for any given shape, the spatial distance between taps affects the bandwidth of the DOLPF 

frequency response. Earlier in this chapter, it was explained that the spatial positions of 

impulses in the impulse response of a filter are a function of the continuous angle at which 

the optical window travels around the axes. Therefore, the spatial distance between the 

impulses can be of any value and is only limited by the maximum angles of the window’s 

rotation. In the following bandwidth control examples, the rectangle filters are used for 

illustration. This choice does not limit our study, and using any other filter would lead to 

the same conclusions.    

Figure 4.14 shows the MTF for a rectangular filter with two taps, with three taps, and with 

four taps. In all three cases, the spatial distance between taps is kept the same.  The 

figure shows that by adding filter taps, the number of zero-crossing is increased, but the 

width of the main lobe is decreased.  

  

Figure 4.14: Theoretical MTF of two-, three-, and four-tap rectangle filters, whose spatial 
distances between taps are equal (τa=τb=τc). 
  
The frequency response of the filters is a periodic function with period 1/τ. Since it is a 

periodic function, one usually shows only the first period of the function. Figure 4.15 
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shows the theoretical MTFs of the two-, three-, and four-tap rectangle filters whose spatial 

distances between taps are set so that the first zero-crossing is at the same frequency for 

all three filters. 

 

Figure 4.15: Theoretical modulation transfer functions of two-, three-, and four-tap 
rectangle filters, whose distances between taps are set to τa=3τb/2=2τc.  
  

 

Figure 4.16: Theoretical modulation transfer functions of a three-tap rectangle filter for 
three different distances between filter taps (τa, τb, and τc). 
   
Figure 4.16 shows the theoretical modulation transfer functions of a three-tap filter with 

three different spatial distances between taps. Decreasing the distance between filter taps 

is equivalent to increasing the sampling frequency. When the distance is infinitely small, 

all filter taps merge into one tap, and the filter becomes an all-pass filter. Increasing and 

decreasing the distance between taps can be viewed as stretching and contracting the 

frequency response of the filter. It will be shown later that the practical implementation of 
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the DOLPF can control the spatial distances between taps with fine precision. This 

technique offers close control of the main lobe of the implemented filter and, 

consequently, of the filter's bandwidth. The control of the spatial distance between filter 

taps and the experimental results of the DOLPF will be addressed in the following chapter.        

 



 

Chapter 5 

Experiment Setup and Results 

To validate the theory introduced in Chapters 3 and 4, a dynamic optical low-pass filter 

experiment is created, and its results are presented in this chapter. The first half of this 

chapter is dedicated to the description of the experiment and its elements, and the second 

half focuses on the results of the experiment.   

5.1 Experiment Setup 

This section provides information about the optical elements used in the experiment. It 

also provides details about the elements' settings and the tunings needed to achieve the 

desired effects. This experiment is designed to test the theoretical and practical aspects of 

the DOLPF. A part of the DOLPF consists of a window that is able to rotate only around the 

Y axis. Therefore, the lateral displacement of the image is in the horizontal direction only. 

As mentioned in Chapter 4, the window must also rotate around the X axis for the full 

two-dimensional spatial filter. Nevertheless, even this simplified experiment is sufficient to 

prove the theory presented in the previous chapters.  

5.1.1 The DOLPF construction 

Figure 5.1 shows a custom-built optical test fixture that was designed for the DOLPF 

experiment. A glass window made of B270 glass with an index of refraction n = 1.53 and 
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with dimensions of 25mm x 25mm x 2mm is mounted on an aluminum frame. Other 

materials with similar or better performance, such as crown glass (including BK7 glass) or 

sapphire, can be used. The window is coated on both sides with a single-layer 

antireflective magnesium fluoride coating. The window is fixed on the frame using optical 

cement. The frame with the window has one degree of freedom of motion, and it is able to 

rotate around the vertical axis (Y axis). The window is mounted on a fixed frame, which 

also holds a linear piezo actuator. The depth of the fixed frame is set to 11mm so that the 

whole test fixture can be positioned between the lens mount and the imager. The whole 

construction is attached to a plate, which allows anchoring to a stable platform, such as an 

optical bench. 

 

Figure 5.1: The optical test fixture designed for the DOLPF experiment. 
  
The frame with the optical window is subject to rapid movement; hence, it is important to 

keep it as light as possible. The total weight of the frame with the glass window is 5.3 

grams, which allows the piezo actuator to move the frame in a rapid manner.   

The linear piezo actuator, P-653, manufactured by Physic Instruments, is a miniature 

linear motor with a 2mm travel range and a velocity of up to 200 mm/s without load. The 

piezo actuator is controlled, in an open loop, by a custom-built microprocessor board, 
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which allows precise timing. The motor is attached to the frame at the exact edge of the 

window glass, at 12.5 mm from the axis of rotation. Therefore, for every 1μm of piezo 

motor linear travel, the window rotates for approximately 0.00458o.  The travel range of 

the motor is 2mm, which allows a maximum rotation of 9.1o. For every 1μm of piezo 

motor linear travel, the emergent ray is displaced relatively to the incident ray by 

approximately 55nm, provided that the optical glass window is 2mm thick.  

5.1.2 Target 

The quality of the target used for the MTF measurements plays a determining role in the 

accuracy of the results. Among several MTF measurement methods and their applicable 

targets [1], one with sinusoidal patterns proved to be the easiest to manufacture and to 

use for the MTF evaluation. The target, shown in Figure 5.2, is designed specifically for the 

experiment, with the goal of obtaining a detailed MTF measurement of the elements of the 

image capturing system.  

 

Figure 5.2: The target designed for the experiment. When the target's image is formed on 
the sensor, the frequencies indicated on the target are present in the captured image.  
  
The sinusoidal patterns, which have the same modulations but varying frequencies, are 

printed in eleven groups with six patterns in each group. In order to minimize the off-axis 
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effects of the lens MTF, the groups with higher frequency components are printed at the 

center of the target, whereas the groups with the lower frequency components are printed 

closer to the edges of the target. There are a total of 66 sinusoidal patterns, the 

frequencies of which range from 0.031056 lp/mm to 1.040366 lp/mm. When the target is 

properly framed, an image of the target, consisting of sinusoidal patterns whose 

frequencies range from 2 lp/mm up to 67 lp/mm, is formed on the sensor. The highest 

frequency formed on the sensor is also the Nyquist frequency of the sensor used in the 

experiment. The target is printed using a continuous tone printer Durst Lambda, 

manufactured by Durst Phototechnik AG [45]. A printing density of 400 dpi (15.75 

dots/mm) guarantees that the highest frequency sinusoidal pattern is represented by at 

least 15 dots per cycle.  

After each printing cycle, the target is assessed according to two criteria: linearity and 

modulation transfer function. The printing is repeated until a target that has a satisfactory 

linearity and modulation transfer function is created.   

   

Figure 5.3: The linearity of the final target is shown on the left. On the right is the target's 
MTF before and after compensation for the printer's MTF.  
  
To aid the linearity test of the printing process, two linear grayscales with 9 steps ranging 

from black to white are printed on the target. The linearity is estimated using a digital 

camera whose linearity was previously established using a calibrated exposure chart 
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manufactured by Sekonic [46]. The left side of Figure 5.3 shows the output of the camera 

when pointed to the grayscale of the target, after the final target corrections have been 

incorporated and before printing. The X axis represents the grayscale patch number, 

whereas the Y axis represents the average value of the given patch. A straight line 

connects the lowest and highest values in the figure for reference. The MTF of the printer 

alters the frequency components of the prints, and it must be counteracted in the target 

printing process. The MTF of the printer is estimated by capturing a close-up of each 

sinusoidal pattern with the digital camera. When the target is captured from a close 

distance, the lens and camera have less influence on the frequency components in the 

captured target. For instance, when the target is correctly framed, the center sinusoidal 

pattern forms a pattern on the sensor with a frequency of 67 lp/mm. However, when the 

target is captured from a close distance, the same sinusoid forms a pattern with a 

frequency of 7.5 lp/mm. The black line in the graph on the right side of Figure 5.3 shows 

an uncorrected MTF of the target affected by the printer MTF. For reference, the graph 

also indicates the MTF of the lens used for the printer MTF estimation. The gray line shows 

the estimated MTF of the final target after compensation for the printer's MTF. As seen in 

the figure, the MTF error of the final target is approximately 2%. 

5.1.3 Camera and supporting electronics 

The 2-megapixel GE1900 is a high-resolution CCD camera with a gigabit Ethernet 

interface [47]. The GE1900 incorporates a 1"-format HD-resolution Kodak KAI-2093 CCD 

sensor [48]. The sensor's resolution is 1920 x 1080, and its dimensions are 14.208mm x 

7.922mm with 7.4μm square photosites. The sensor's Nyquist frequency is 67.5 lp/mm, 

and it is the same in both vertical and horizontal directions. The camera is equipped with 

an external trigger control, and it provides a line that indicates when the sensor is being 
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exposed. Both the external trigger and the exposure indication are required in order to 

synchronize the DOLPF with the camera.    

The main controller board consists of a general-purpose processor SC143, made by BECK 

IPC GmbH [49], and a Virtex II field programmable gate array (FPGA) made by Xilinx 

[50]. The driving signals for the piezo linear actuator are designed based on 1μs timing 

increments, and they should never be interrupted when the actuator is moving. Any 

departure from the designed timing of the piezo control signals will affect the impulse 

response of the implemented filter. A custom-written FPGA firmware driver, controlled by 

CPU, provides the desired precision and repeatability.      

5.1.4 Overall experiment setup 

The camera is mounted onto a linear stage with a micrometer. The DOLPF is placed 

between the camera and the lens mount with a 55mm Nikon lens, as shown in Figure 5.4. 

The flange focal distance for the Nikon lens is 46.5mm, and our system does not violate 

this constraint. The DOLPF, the lens mount, and the lens are anchored to the optical 

bench. 

  

Figure 5.4: The overall optical setup shows the camera, DOLPF, lens mount, and lens. The 
DOLPF is positioned between the lens and the camera.  
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The lens aperture is set to F8.0, which was established earlier (using the MTF bench) as 

the aperture setting that has the best MTF response. The coarse focusing is accomplished 

with the lens, while the back focusing is accomplished using the linear stage with the 

micrometer. Focusing is aided by a custom software program that indicates when the 

optimal focus is reached. The ability to focus on the target and the negligible vignetting 

are determined when setting up the experiment. The DOLPF and the camera are 

connected to a CPU board, which provides timing and synchronization. All elements of the 

experiment are controlled from a PC, which allows interactive modifications of the DOLPF. 

The DOLPF rotation must occur simultaneously with the imager exposure, which is why 

the DOLPF is synchronized with the camera. The captured frames are transferred to the 

PC via Ethernet cable for image processing and MTF estimation.  

5.2 Tuning the DOLPF 

The displacements and angles in the DOLPF are in the order of microns and fractions of 

degrees. To measure such small values, an experiment (shown in Figure 5.5) is conducted 

to determine the accuracy of the DOLPF control. An alignment laser is pointed toward the 

DOLPF at a 30o angle. A laser beam, partially reflected from the glass window surface, is 

projected onto a board positioned several meters away. A measurement tape is attached 

to the board so that the bounced laser motion displacement can be read directly.  

The distance between the DOLPF and the board is carefully set so that the window 

rotation, which corresponds in a lateral displacement of 1 μm of the ray passing through 

the window, would result in a laser beam displacement of 10 mm on the board. A digital 

still camera, not synchronized with the window rotation, is used to capture the trace of the 

laser beam as it moves across the board when the window is in motion.  
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Figure 5.5: The optical experiment for tuning the DOLPF. In the foreground—on the optical 
bench—is the alignment laser, the optical test fixture, and the CPU board.  In the 
background is the board with the calibrated scale. 
 
The camera exposure is set to 1 second so that it can capture the trace that the laser 

beam travels. Figure 5.6 shows the trace of the laser beam on the board as the window 

rotates from its resting point on the right to its resting point on the left. The control 

software is set to stop for a few milliseconds at the four positions between the resting 

points. For measurement purposes, the scale under the beam trace consists of 10 mm x 

10 mm squares. As seen in Figure 5.6, the beam travels between the stops for 

approximately 50 mm, which corresponds to a ray lateral displacement of 5 μm. It can 

also be seen that due to the rapid window movement between stops, the window does not 

immediately stop at the desired position but rather keeps oscillating before it comes to a 

complete rest. The maximum amplitude of the oscillation is estimated at 2 μm. It is 

important to emphasize that we are interested in the points between the resting positions, 

which are highlighted by white squares. In order to minimize the oscillations when the 

window reaches a desired position, the control signal is modified using the “input shaping” 

technique [51]. This yields excellent results in canceling the oscillations, as shown in 

Figure 5.6. The window oscillations are canceled, which results in a single dot on the board 
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for each stop. The window spends an equal time at each of the four points, resulting in 

spatial filtering of a passing image with the four-tap rectangle filter. 

  

Figure 5.6: The trace of the laser beam bouncing off the glass window and stopping at 
four points. The laser beam travels from the resting point on the right to the resting point 
on the left. The left side shows the trace when the control signal is uncompensated. The 
right side shows the trace when the window is controlled with a compensated signal. 
  
In the following few examples, the spatial effects of the DOLPF on the image are 

demonstrated. It was shown in Chapter 4 that when the DOLPF moves during the single 

exposure, it causes a lateral movement of the formed image on the imager, forming 

several copies of the scene. After the image exposure is completed, all image copies are 

integrated into one resulting image. On the left side of Figure 5.7, the properly framed 

target captured by the Prosilica camera is shown.  

 

Figure 5.7: The white square in the left figure shows the position of the magnified area of 
the target shown on the right. The DOLPF is not moving during the single exposure.   
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The white square located at the top left corner of the target shows the enlarged portion 

that is shown on the right side of the figure. During the sensor exposure, the DOLPF is not 

moving, and the output image is formed from only one copy. The feature on the target 

activates a small portion of the sensor, which is approximately one photosite in size.   

 

Figure 5.8: The two-tap rectangle filter is shown in (a). The three-tap rectangle filter is 
shown in (b). Figures (c) and (d) show the three-tap and five-tap triangle filters, 
respectively. 
 
Figure 5.8 illustrates four examples of the resulting images formed by the integration of 

the several laterally displaced image copies during the single exposure. The copies are the 

results of the DOLPF rotating around the Y axis. In these examples, the DOLPF rotation is 

intentionally exaggerated for demonstration purposes. Normally, the DOLPF rotation will 

result in a lateral displacement of the copy that is less than the dimensions of a photosite. 

For example, the copies in Figure 5.8(a) are more than one photosite apart, which would 

result in the zero-crossing frequency being significantly lower than the Nyquist frequency 
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of the sensor. Figures 5.8(a) and 5.8(b) respectively show the continuous scene filtered by 

the two- and three-tap filters.  Figures 5.8(c) and 5.8(d) show the target filtered by the 

three- and five-tap triangle filters, respectively.    

To reiterate a conclusion made in Chapter 4, the lateral moves of the copies across the 

imager are not limited by the sampling structure of the sensor, only by the continuous 

angles at which the filter travels around the axes. This allows us to create a prefilter that is 

not limited by the sensor’s sampling structure. 

5.3 Results 

This section demonstrates the achieved level of control over the DOLPF, in terms of the 

filter's bandwidth and shape. An OLPF is not an image-forming device; therefore, its 

frequency response can be observed only when it is combined with other optical elements. 

In order to interpret the results properly, Figure 5.9 illustrates how the observable overall 

frequency response (the black line) is the result of the interaction between the lens and 

the OLPF responses.  

 

Figure 5.9: An illustration of the lens’s effect on the overall response. The black line 
represents the observable response after the OLPF response is altered by the lens’s MTF.     
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For the demonstration only, the spatial optical filters used in the examples are designed to 

attenuate frequencies above 30 lp/mm. As a reminder, the Nyquist frequency for the 

sensor is 67 lp/mm, and setting the first zero-crossing frequency of the filter at 30 lp/mm 

allows us to evaluate the characteristics of the DOLPF without aliasing.  

5.3.1 The shape of the DOLPF 

The results of implementing several different filters with the DOLPF (such as rectangle, 

Tukey, Gaussian, triangle, Hanning, and Blackman-Harris) are presented in this section. In 

addition to discussing theoretical and practical results, brief information about each filter is 

given.  

Using complex filters has been validated in certain fields. It will be shown in the following 

subsections, however, that their implementations with the DOLPF are not always justified. 

In Chapter 3, we highlighted two characteristics of the system frequency response that 

are of critical interest when selecting a filter: the attenuation of the stopband frequency 

components and the width of the main lobe. In the following examples, we examine these 

two parameters in both measured and theoretical system frequency responses for the 

selected filters. It will be shown that the implementation of a complex filter (such as 

Blackman-Harris or Hanning) instead of a simpler filter (such as Tukey or Gaussian) 

contributes little to the improvement of the overall system performance.  

DOLPF based on a rectangle filter  

The rectangle filter is the simplest filter to implement since it is a constant over the 

nonzero interval. Figure 5.10 shows the rectangle DOLPF theoretical response, and Figure 

5.11 shows the measured system response. In both figures, several frequency responses 

are calculated for different numbers of filter taps. As seen in both figures, when observing 

the attenuation of the stopband frequency components, there is a modest gain in 
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attenuation if the number of taps is increased beyond four. The main lobe is minimally 

affected with any selection of tap number.  

 

Figure 5.10: Theoretical MTFs for the DOLPF, implementing two-, three-, four-, and ten-
tap rectangle filters. 
  

 

Figure 5.11: Measured overall MTFs for a system with a rectangle filter. Four 
measurements, with the filters having different numbers of taps (M = 2, 3, 4 and 10), are 
shown.  
 

DOLPF based on a Tukey filter 

The Tukey filter represents an attempt to smooth the boundaries at the end of the 

rectangle filter. The parameter α controls the smoothness of the edges; for α close to 0, 

the filter resembles the rectangle filter, whereas when α is close to 1, the Tukey filter 
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resembles a cosine function. As seen in Figures 5.12 and 5.13, the stopband frequency 

components for α greater than 0 are more attenuated than with the rectangle filter. 

However, the main lobe is also affected, especially for α closer to 1.     

 

Figure 5.12: Theoretical MTFs for the DOLPF, implementing a ten-tap Tukey filter for four 
different alphas.   
 

 

Figure 5.13: Measured overall MTFs for a system with a ten-tap Tukey filter and varying 
parameters α.  
 

DOLPF based on a Gaussian filter 

This filter is parameterized on α, the reciprocal of the standard deviation, which is a 

measure of the width of the filter's Fourier transform. For α close to 1, the severity of the 
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discontinuity at the filter's edges is significant, which results in noticeable sidelobes. As 

seen in Figure 5.14, the MTF of the Gaussian filter, for α close to 1, is similar to the MTF of 

the rectangle filter. On the other hand, for α greater than 1, the tail of the filter in the 

spatial domain is thinner, and the stopband frequency components are better attenuated. 

However, as seen in both Figures 5.14 and 5.15, the width of the main lobe is also more 

affected; when α is greater than 2, the main lobe of the system MTF is significantly 

altered. 

 

Figure 5.14: Theoretical MTFs for the DOLPF, implementing a ten-tap Gaussian filter and 
three different alphas.  

 

Figure 5.15: Measured MTFs of a system with a ten-tap Gaussian filter and three different 
alphas. 
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DOLPF based on triangle, Hanning, and Blackman-Harris filters  

The modulation transfer function of the triangle filter is the squared MTF of the rectangle 

filter [42]. The Hanning and Blackman-Harris filters are constructed from cosine kernels, 

and they are not easy to generate. As seen in Figures 5.16 and 5.17, the two filters’ 

stopband frequency components behave in the same fashion, but the Blackman-Harris 

filter has the best characteristics (although it also has the narrowest main lobe).   

 

Figure 5.16: Theoretical MTFs of the DOLPF, implementing ten-tap triangle, Hamming, 
and Blackman-Harris filters.  
 

 

Figure 5.17: Measured MTFs of a system with ten-tap triangle, Hamming, and Blackman-
Harris filters.  
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5.3.2 Coupling the DOLPF with the lens 

In Chapter 4, we stated that it would be beneficial to couple the DOLPF with other optical 

elements of the capturing system. The rationale for this assertion is the idea that any 

alteration of the frequency response of the optical elements that precede and/or follow the 

DOLPF may alter the filter's coefficients while continuing to satisfy certain overall criteria. 

Figure 5.18 shows the measured MTFs of the Nikon 55mm lens with the lens aperture as a 

parameter. As seen in the figure, the lens itself behaves as a low-pass filter.   

 

Figure 5.18: Measured system MTFs without an OLPF. This figure shows that the lens’s 
MTF when is mostly dominated by the lens’s diffraction limitation.     
 
Figure 5.19 shows the measured MTFs of a system in which the equivalent of a classic 4-

point separation birefringent OLPF is placed in front of the sensor. The first zero-crossing 

of the filter is set at 30 lp/mm. As seen in the figure, for the lens aperture set to F8, there 

is a possibility of aliasing since the filter attenuates the stopband frequencies only to a 

certain extent. However, as the lens aperture changes, the diffraction limitation of the lens 

has more influence. Finally, when the lens aperture is set to F32, the frequency 
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components above 30 lp/mm are almost completely attenuated by the lens’s low-pass 

filtering characteristics. 

 

Figure 5.19: Measured overall MTFs for a system with a fixed four-point separation 
birefringent OLPF, set at approximately 30 lp/mm and at various aperture positions. 
  

 

Figure 5.20: An example of a system that uses the dynamically controlled OLPF. 
 
Figure 5.20 illustrates an example when the DOLPF MTF is altered to accommodate for a 

change in the MTF of the lens. The three-tap rectangle filter, with its first zero-crossing set 

at 30 lp/mm, is used when the lens aperture is set to F8. If we desire to keep the power of 

the signal above the Nyquist frequency constant, then the first zero-crossing of the filter 

can be moved to 50 lp/mm when the lens aperture is set to F16. This modification 
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decreases the passband frequency attenuation, which results in an increased sharpness of 

the resulting image. 

5.3.2 The bandwidth of the DOLPF  

In Chapter 3, we explained how the distance between the filter's taps alters the bandwidth 

of the DOLPF. In essence, the filter's bandwidth is determined by the angles at which the 

window travels around the axes of rotation before stopping at the selected points. Figures 

5.21-5.25 demonstrate the level of bandwidth control for several filters previously 

discussed (rectangle, triangle, Blackman-Harris, and Tukey).  

In the given examples, we attempt to raise the first zero-crossing frequencies from 30 

lp/mm to 80 lp/mm, moving in 10 lp/mm steps. The selected zero-crossing values are 

chosen only for demonstration purposes; they can be any desired values. These examples 

clearly demonstrate that we can accomplish precise control of the optical prefilter 

bandwidth with the DOLPF and with dynamic changes, if required by the application.   

 

Figure 5.21: Demonstration of the MTF bandwidth control for a system that uses a two-
tap rectangle filter. Note the significant sidelobes in the filter's response.   
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Figure 5.22: Demonstration of the MTF bandwidth control for a system that uses a three-
tap rectangle filter.    
 

 

 

Figure 5.23: Measured MTFs of a system with a five-tap triangle filter and a variable 
bandwidth.  
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Figure 5.24: Measured MTFs of a system with a ten-tap Blackman-Harris filter and a 
variable bandwidth.  
 

 

Figure 5.25: Measured system MTFs with a ten-tap Tukey filter (α=0.75) and a variable 
bandwidth.  
 

5.3.3 Additional observations 

In the previous section, we studied symmetric filters with positive coefficients that have all 

zeros located on the unit circle in the zero-pole plane. As shown in Chapter 3, a zero 

located on the unit circle results in a zero-crossing in the frequency domain. The dynamic 

optical low-pass filter does not necessarily require that the implemented filters have 
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symmetric responses. In such a case, the zeros of the system function are not necessarily 

located on the unit circle in the zero-pole plane—this results in the absence of a zero-

crossing in the frequency domain. 

            

 

Figure 5.26: Theoretical MTFs of a two-tap filter, where the parameter “a” represents a 
ratio between the filter's coefficients. 
 

     

Figure 5.27: Measured overall MTF for a system with a two-tap OLPF, where the 
parameter “a” represents a ratio between the filter's coefficients.       
 
Figure 5.26 shows the theoretical modulation transfer function of a two-tap filter, where 

the parameter “a” is a ratio between the amplitudes of the filter. When two taps are equal 

in amplitude, then the filter is a regular two-tap filter, which we presented and analyzed in 
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Chapter 3. Conversely, as the coefficient ratio decreases, the filter tends to behave as an 

all-pass filter. As seen in Figure 5.26, we can control the attenuation at a desired 

frequency by varying the ratio between the filter's coefficients. Figure 5.27 shows the 

measurements of the practical implementation of such a filter.     

  



 

Chapter 6 

Conclusions and Future Research 

In this work, the author proposed and demonstrated the use of a parallel optical window 

positioned between a lens and a sensor as an optical low-pass filter. Controlled X- and Y-

axes rotations of the optical window result in a manipulation of the point-spread function 

of the system. Consequently, changing the point-spread function of the system affects 

some portions of the frequency components contained in the image formed on the sensor. 

The ability to manipulate the frequency components of the image before it is digitized is 

important when we want to prevent aliasing. Despite the fact that an optical low-pass 

filter is intended to manipulate a continuous signal, we demonstrated that it can be 

analyzed with tools coming from the discrete signal domain. We also showed that, due to 

physical laws, the filters used for shaping the system PSF can be implemented only as FIR 

filters with nonnegative coefficients.    

In the dissertation, the author demonstrated the ability to precisely control the optical 

window rotation, which enabled the use of various filter functions: rectangle, triangle, 

Tukey, Blackman-Harris, and others. Based on the evaluation of two critical characteristics 

of the system frequency response (i.e., the attenuation of the stopband frequency 

components and the width of the main lobe), we showed that the implementation of a 

complex filter (such as the Blackman-Harris or Hanning) instead of a simpler filter (such 
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as the Tukey or Gaussian) contributes little to the improvement of the overall system 

performance. 

In addition to the ability to change the PSF, this study demonstrated that the PSF can be 

manipulated dynamically, which allowed us to change the PSF to counteract any alteration 

of other optical elements of the capturing system. This ability was demonstrated by 

altering the frequency response of the OLPF to compensate for the lens's frequency 

response changes when the aperture is changed. It was also demonstrated in theoretical 

analysis and supported by practical examples that this implementation of the optical low-

pass filter has the ability to control the bandwidth with fine precision.  

In the dissertation, an optical simulation software package was used to demonstrate that 

positioning the parallel optical window in front of the sensor does not significantly affect 

the performance of the system, and that it is an acceptable tradeoff, considering that the 

intended purpose of the window is low-pass filtering.      

An extended evaluation of currently used birefringent-based optical low-pass filters is 

provided. In their basic form, birefringent OLPFs are simple, reliable, and relatively 

inexpensive, but they also present a few drawbacks, which the author attempted to 

address with this work.   

Nevertheless, the DOLPF has several shortcomings. One of them is the requirement to 

complete the motion of the parallel optical window before the image exposure is complete. 

In modern digital still cameras, exposure time can be very short, which would require very 

fast window rotations.  This requirement may limit the use of this approach to image 

acquisitions with relatively longer exposures, such as digital film and video capturing.     

A second important drawback was noticed during the experiment execution: there is a 

minimum time required for rotating the window from one position to another. The angle of 

the window rotation directly determines the distances between the taps in the filter. As we 
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demonstrated in the work, the distances between taps determine the bandwidth of the 

filter. To cover even the smallest distance between filter's taps, the time that the window 

spends traveling from one point to another is greater than zero. When the number of filter 

taps is bigger and/or the image exposure is shorter, the time that the window spends 

traveling between the taps can negatively affect the frequency response. On the contrary, 

for a smaller number of taps or a longer image exposure, the traveling time can be 

neglected.  

In this particular implementation of the DOLPF, a piezo actuator was used for rotating the 

parallel optical window. Although this actuator met the requirements for speed and travel 

distances, a noise generated during the rotation was not acceptable. 

In order to maintain a reasonable scope for this work, some additional ideas were left for 

further research. Future works should investigate the possibility of designing a dynamically 

controlled, optical low-pass filter that takes into consideration the sensor color filter array. 

Specifically, for the sensors with color filter arrays that sample the color information with 

unequal sampling frequency (e.g., Bayer pattern CFA), achromatic DOLPFs can be tuned 

only to a single color. That would leave the color with a different bandwidth that is 

insufficiently filtered or filtered too aggressively, resulting in aliasing or damaging the 

image MTF, respectively.  

Another direction for research concerns the extension of the DOLPF’s implementation to a 

two-dimensional filter. The current implementation used to experimentally support the 

claims stated in this dissertation, showed its ability to rotate around one axis only, which 

results in a one-dimensional filter. This was sufficient to demonstrate the idea, but 

extending the filter's support to a second dimension would allow experiments with 

separable, nonseparable, symmetrical, nonsymmetrical, and other types of filters.  



 

Appendix A 

Optical Simulation Details 

The lens used in the simulation is a Double Gauss type lens, which prescription is a part of 

the Code V software package. The reasoning behind the use of this particular type of lens 

is that the lens that is used in the final experiment is a Nikon 55mm lens, which is also a 

Double Gauss type of lens. The inability to obtain the prescription for a Nikon 55mm lens 

left me with no option but work with a similar lens. The lens was scaled to have an 

effective focal length (EFL) of 55mm. The aperture stop of the lens was set to F4.0 to 

make it a diffraction limited lens. The goal was to minimize the influence of the lens 

aberration on the results.   

The angles under which the tracing rays are entering the system (field angles) are X = 

0°/Y = 0°, X = 7.36°/Y = 4.16°, X = -7.36°/Y = -4.16°, X = 0°/Y = 4.16° and X = 

7.36°/Y = 0° to cover all critical points of the sensor as shown in Figure A.1. These field 

angles were chosen to cover the critical points of the sensor (14.208mm x 7.992mm) 

which will be used in the final experiment. As it can be seen from the figure, a total of five 

points are observed in the image plane. The circle represents boundary of the surface that 

the lens optically covers. 

All simulations were done using three typical wavelengths, specifically 656nm, 587nm and 

486nm which represent red, green and blue lights, respectively.       
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Three types of criterions were used to quantify the effects of the glass window insertion in 

our simulation:  

• Optical path difference (OPD): the optical path difference is the difference 

between the real wavefront and a spherical reference wavefront. Rayleigh criteria 

says that if the OPD is less than or equal to one-quarter of the wavelength of the 

light, then the performance will be almost indistinguishable from perfect. This is 

also called peak-to-valley OPD, 

• Root-Mean-Square (RMS) wavefront error: represents more of an 

averaging over the wavefront than the peak-to-valley OPD measure, 

• Modulation transfer function (MTF).  

The aforementioned measures were used to evaluate the three optical setups shown in 

Figure A.2. The setup shown on the top is the reference design with lens and sensor only. 

This is a baseline case. The second case, shown in the middle, has the 2 mm optical 

window inserted between the lens and the sensor. The third case has the optical window 

tilted for 1.250° around two perpendicular axes, and represents the worst case scenario in 

our optical setup. This angle is a required angle to achieve the desired ray displacement. 

The optical window results in a longer optical path; therefore there is a difference in the 

position of the detector between the baseline and the other two cases. 

All the figures presented in the following text are the results of simulations with Code V 

software package. Figures A.3-A.5 show the optical path differences for all field angles. It 

can be seen in Figure A.3—the lens without the glass window—that the OPD is less than 

1/4 of the wavelength of light. That implies a near perfect lens, limited only by the 

diffraction limit. In Figures A.4 and A.5 the worst results are highlighted. They are, as 

expected, for a situation when the window is tilted for 1.250° around both perpendicular 

axes. Table A.1 shows the RMS of OPDs for all three cases, while Figures A.6-A.11 show 
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the MTFs of all three cases. Each optical setup is accompanied by two MTF curves: the first 

one shows the MTF up to the diffraction cut-off frequency. The second graph shows the 

MTF up to the Nyquist frequency of the sensor which is 67 lp/mm.    

It is important to remember here that the second and third optical arrangements 

represent only two of many positions of the dynamically controlled optical low-pass filter. 

During the exposure time, the window moves around two axes, and dwells on these two 

particular positions only for a fraction of the total exposure time. Therefore, the 

degradation caused by the window located as shown in the third case will have less 

influence than the window positioned normally to the optical axes.    

 

Figure A.1: The three systems under evaluation are tested with five field angles chosen to 
cover the critical points of the sensor. The circle represents the boundary of the surface 
that the lens optically covers. 
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Figure A.2: The three optical setups used in the simulation. Top figure shows the setup 
without the optical window, used as a reference setup. The middle figure shows the setup 
with the window perpendicular to the optical axis. The window in the last setup is tilted to 
displace the passing rays.   
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 Field Best individual focus Best composite focus 

  
Degrees Shift    

[mm] 
Focus  
[mm] 

RMS   
[waves] 

Shift    
[mm] 

Focus  
[mm] 

RMS   
[waves] 

X 0.00 0.000000 0.000000
Y 0.00 0.000000

0.000569 0.0481 
0.000000

0.000000 0.0481 

X 7.36 -0.000274 -0.000120
Y 4.16 -0.000160

-0.001539 0.0536 
-0.000072

0.000000 0.0540 

X -7.36 0.000274 0.000120
Y -4.16 0.000160

-0.001540 0.0536 
0.000072

0.000000 0.0540 

X 0.00 0.000000 0.000000
Y 4.16 0.000291

0.001629 0.0502 
0.000197

0.000000 0.0506 

X 7.36 0.000103 0.000043
Y 0.00 0.000000

0.000600 0.0505 
0.000000

0.000000 0.0506 

R
ef

er
en

ce
 D

es
ig

n 

Composite RMS : 0.05145 
X 0.00 0.000000 0.000000
Y 0.00 0.000000

-0.004837 0.0468 
0.000000

0.000000 0.0509 

X 7.36 -0.000535 -0.000744
Y 4.16 -0.000305

0.002074 0.0860 
-0.000424

0.000000 0.0864 

X -7.36 0.000536 0.000744
Y -4.16 0.000305

0.002071 0.0859 
0.000424

0.000000 0.0863 

X 0.00 0.000000 0.000000
Y 4.16 -0.000239

-0.001208 0.0519 
-0.000170

0.000000 0.0522 

X 7.36 -0.000336 -0.000581
Y 0.00 0.000000

0.002455 0.0748 
0.000000

0.000000 0.0755 

W
ith

 D
O

LP
F 

0°
 

Composite RMS : 0.07167 
X 0.00 -0.000137 -0.000137
Y 0.00 -0.000137

-0.003500 0.0482 
-0.000137

0.002386 0.0541 

X 7.36 -0.000305 -0.000886
Y 4.16 -0.000231

0.008166 0.0995 
-0.000564

0.002386 0.1022 

X -7.36 0.000982 0.000603
Y -4.16 0.000500

-0.001390 0.0758 
0.000282

0.002386 0.0774 

X 0.00 -0.000137 -0.000137
Y 4.16 -0.000330

0.002012 0.0571 
-0.000308

0.002386 0.0571 

X 7.36 -0.000248 -0.000713
Y 0.00 -0.000133

0.007055 0.0852 
-0.000133

0.002386 0.0873 

W
ith

 D
O

LP
F 

1.
25

° 

Composite RMS : 0.07744 
 
Table A.1. Tabulated RMS of OPDs for all field angles and all three optical systems used in 
the simulation.  
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Figure A.3: Optical path differences for the reference system evaluated at the five critical 
field angles.   
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Figure A.4: Optical path differences for the system, with the optical window perpendicular 
to the optical path, evaluated at the five critical field angles.  
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Figure A.5: Optical path differences for the system, with the tilted optical window, 
evaluated at the five critical field angles.  
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Figure A.6: MTFs of the reference system evaluated up to the cut-off frequency.  
 

 

Figure A.7: MTFs of the reference system evaluated up to the sensor Nyquist frequency.  
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Figure A.8: MTFs of the system, with the optical window perpendicular to the optical axis, 
evaluated up to the cut-off frequency.  
 

 

Figure A.9: MTFs of the system, with the optical window perpendicular to the optical axis, 
evaluated up to the sensor Nyquist frequency.  
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Figure A.10: MTFs of the system, with the optical window tilted, evaluated up to the cut-
off frequency.  
 

 

Figure A.11: MTFs of the system, with the optical window tilted, evaluated up to the 
sensor Nyquist frequency.  
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