You are here

On projected planes

Download pdf | Full Screen View

Date Issued:
2010
Summary:
This work was motivated by the well-known question: "Does there exist a nondesarguesian projective plane of prime order?" For a prime p < 11, there is only the pappian plane of order p. Hence, such planes are indeed desarguesian. Thus, it is of interest to examine whether there are non-desarguesian planes of order 11. A suggestion by Ascher Wagner in 1985 was made to Spyros S. Magliveras: "Begin with a non-desarguesian plane of order pk, k > 1, determine all subplanes of order p up to collineations, and check whether one of these is non-desarguesian." In this manuscript we use a group-theoretic methodology to determine the subplane structures of some non-desarguesian planes. In particular, we determine orbit representatives of all proper Q-subplanes both of a Veblen-Wedderburn (VW) plane of order 121 and of the Hughes plane of order 121, under their full collineation groups. In PI, there are 13 orbits of Baer subplanes, all of which are desarguesian, and approximately 3000 orbits of Fano subplanes. In Sigma , there are 8 orbits of Baer subplanes, all of which are desarguesian, 2 orbits of subplanes of order 3, and at most 408; 075 distinct Fano subplanes. In addition to the above results, we also study the subplane structures of some non-desarguesian planes, such as the Hall plane of order 25, the Hughes planes of order 25 and 49, and the Figueora planes of order 27 and 125. A surprising discovery by L. Puccio and M. J. de Resmini was the existence of a plane of order 3 in the Hughes plane of order 25. We generalize this result, showing that there are subplanes of order 3 in the Hughes planes of order q2, where q is a prime power and q 5 (mod 6). Furthermore, we analyze the structure of the full collineation groups of certain Veblen- Wedderburn (VW) planes of orders 25, 49 and 121, and discuss how to recover the planes from their collineation groups.
Title: On projected planes.
198 views
104 downloads
Name(s): Caliskan, Cafer.
Charles E. Schmidt College of Science
Department of Mathematical Sciences
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Issued: 2010
Publisher: Florida Atlantic University
Physical Form: electronic
Extent: x, 60 p. : ill.
Language(s): English
Summary: This work was motivated by the well-known question: "Does there exist a nondesarguesian projective plane of prime order?" For a prime p < 11, there is only the pappian plane of order p. Hence, such planes are indeed desarguesian. Thus, it is of interest to examine whether there are non-desarguesian planes of order 11. A suggestion by Ascher Wagner in 1985 was made to Spyros S. Magliveras: "Begin with a non-desarguesian plane of order pk, k > 1, determine all subplanes of order p up to collineations, and check whether one of these is non-desarguesian." In this manuscript we use a group-theoretic methodology to determine the subplane structures of some non-desarguesian planes. In particular, we determine orbit representatives of all proper Q-subplanes both of a Veblen-Wedderburn (VW) plane of order 121 and of the Hughes plane of order 121, under their full collineation groups. In PI, there are 13 orbits of Baer subplanes, all of which are desarguesian, and approximately 3000 orbits of Fano subplanes. In Sigma , there are 8 orbits of Baer subplanes, all of which are desarguesian, 2 orbits of subplanes of order 3, and at most 408; 075 distinct Fano subplanes. In addition to the above results, we also study the subplane structures of some non-desarguesian planes, such as the Hall plane of order 25, the Hughes planes of order 25 and 49, and the Figueora planes of order 27 and 125. A surprising discovery by L. Puccio and M. J. de Resmini was the existence of a plane of order 3 in the Hughes plane of order 25. We generalize this result, showing that there are subplanes of order 3 in the Hughes planes of order q2, where q is a prime power and q 5 (mod 6). Furthermore, we analyze the structure of the full collineation groups of certain Veblen- Wedderburn (VW) planes of orders 25, 49 and 121, and discuss how to recover the planes from their collineation groups.
Identifier: 610569074 (oclc), 1927609 (digitool), FADT1927609 (IID), fau:2958 (fedora)
Note(s): by Cafer Caliskan.
Thesis (Ph.D.)--Florida Atlantic University, 2010.
Includes bibliography.
Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
Subject(s): Projected planes
Combinatorial designs and configurations
Surfaces, Algebraic
Manifolds (Mathematics)
Persistent Link to This Record: http://purl.flvc.org/FAU/1927609
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU