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ABSTRACT

Author : Mark Wess

Title : Computing Topological Dynamics from Time Series
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Degree : Doctor of Philosophy

Year : 2008

The topological entropy of a continuous map quantifies the amount of chaos ob-

served in the map. In this dissertation we present computational methods which

enable us to compute topological entropy for given time series data generated from a

continuous map with a transitive attractor. A triangulation is constructed in order

to approximate the attractor and to construct a multivalued map that approximates

the dynamics of the linear interpolant on the triangulation. The methods utilize sim-

plicial homology and in particular the Lefschetz Fixed Point Theorem to establish

the existence of periodic orbits for the linear interpolant. A semiconjugacy is formed

with a subshift of finite type for which the entropy can be calculated and provides

a lower bound for the entropy of the linear interpolant. The dissertation concludes

with a discussion of possible applications of this analysis to experimental time series.
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1 Introduction

In modeling a deterministic physical system, one often encounters difficulty in

establishing the validity of the model. One way this difficulty can arise is from the

inability of the model to completely account for all physical behavior of the system.

For example Guckenheimer and Holmes [14] describe an experiment where a cantilever

beam is suspended between two permanent magnets and an external force is applied to

the apparatus suspending the beam. This external force causes the beam to oscillate

between the two magnets. An analysis of the forces acting on the beam gives a model

for the motion of the beam given by the Duffing equation x′′+δx−x+x3 = γ cos(ωt).

In Figure 1.1 data from experimental measures are compared to numerical data from

the simulation of the Duffing equation. The experimental data seems to have spikier

oscillations than the data from the Duffing equation. This visible difference in the

data could be due to the fact that the mathematical model does not have the correct

number of degrees of freedom.

A second complication can arise when studying numerical data from a mathe-

matical model when the physical system is chaotic. The experimental data often

has some distinguishable noise. Therefore even if the numerical simulation is started

with the same initial conditions as the experimental data, the numerical orbit and the

experimental orbit will drift far apart in a short time due to noise in the experiment

and/or numerical errors. In this case, using numerical data from the mathemati-

cal model leads to gross inaccuracies when approximating individual orbits of the

physical system. However, this does not mean that characteristics of the dynamics
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cannot be compared. Indeed in this dissertation we present a computational frame-

work in which it may be possible to measure and compare chaotic dynamics in a

robust manner using topological methods.

Figure 1.1: Top: Experimental data from motion of beam. Bottom: Numerical data
from solution of Duffing equation.

The previous discussion leads us to the idea that perhaps closed-form mathemat-

ical models are not the only way to study the dynamics of a deterministic physical

system, but rather experimental measures of the system could be beneficial . A

theorem that lays the theoretical foundation for an alternative analysis by recon-

structing the dynamics from measurement data is the Takens Embedding Theorem.

Theorem 1.1 (Takens [31]). Let M be a compact manifold of dimension m. For a

diffeomorphism φ ∈ C2(M) and a real valued function y ∈ C2(M,R), it is a generic

property that the map ΦT : M → R2m+1 with T > 0 defined by

Φ(x)T := (y(x), y(φT (x)), . . . , y(φ2mT (x)))

is an embedding.

The function y : M → R is called a measurement function, and it should

be noted that the theorem does not imply that 2m + 1 is the lowest dimension for

such an embedding. This theorem gives rise to what is called a time-delay recon-

struction of the dynamics of the map φ. In the case that real-valued experimental
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measures {y1, . . . , yn} from an unknown physical system φ are known, then given an

embedding dimension k and delay time T , we can construct a series of data points

{d1, . . . , dn−Tk+1} in Rk where di = (yi, . . . , yi+T (k−1)). If we choose the correct em-

bedding dimension, then the data points generically lie on an embedded manifold,

and we can treat the sequence di as an orbit segment, then we may be able to analyze

the dynamics of the physical system. The sequence of data points di is an example

of what we call a time series, which is a finite sequence of data points in Rn. A

time series can be constructed by a time-delay reconstruction of experimental data,

or it can be constructed simply by taking a finite segment of a forward orbit of some

continuous map, or finally by projecting a forward orbit segment of some continuous

map into lower dimensions. Our goal in this thesis is to characterize dynamics and

in particular chaos from a given sequence of time series data.

One of the main goals of dynamical systems theory is to locate certain structures of

interest and to describe the behavior of the dynamics locally around and within these

structures, and if possible, to determine the global behavior of the dynamics. These

structures include, but are not limited to, equilibrium points, periodic points, stable

and unstable manifolds, chaotic sets, and other invariant sets. Besides the many

analytic tools for describing dynamics, there exist certain techniques from algebraic

topology that can be utilized. Indeed, Poincaré founded this discipline of mathematics

in order to study dynamical systems.

One can use homology theory combined with fixed-point theorems to provide

some measurement of how chaotic a system can be. Methods using cubical homology

along with the Lefschetz Fixed Point Theorem to compute the presence of periodic

orbits and chaos for a continuous map were first implemented by Szymczak [29,

28]. For an introductory description of these methods see [17]. In Day [11], these
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methods are extended to provide algorithms to prove the existence of a semiconjugacy

between the Hénon map and a shift map on a symbol sequence. A rigorous lower

bound on the entropy of the Hénon map is computed from the entropy of the shift

map. These cubical homology techniques are shown to be extendable to time-series

data in principle by Szymczak [29]. A complete description of an application of

the techniques to a specific set of time-series data derived from a real experiment is

given in [20, 21]. These cubical homologoy techniques have the advantage that they

are easily implemented on a computer, but they have some disadvantages that we

discuss later. These disadvantages and the desire to try to approximate a covering

of manifolds and attractors led us to use simplicial homology. Simplicial homology

has the disadvantage that it is not as computationally friendly as cubical homology.

Therefore we introduce new theory, algorithms, and implementation for simplicial

homology maps. We now give some basic theorems before returning to the discussion

of time series.

1.1 Dynamical Systems Preliminaries

We begin by stating some basic definitions in dynamical systems theory. Most of

these definitions are standard and can be found in any textbook, see Robinson [25].

Let X be a metric space and denote time by T where T is either R or Z and T+

is either Z+ = {0, 1, 2, . . .} or R+ = [0,∞).

Definition 1.2. A dynamical system is a continuous map ϕ : T+ ×X → X such

that

(1) ϕ(0, x) = x and

(2) ϕ(s+ t, x) = ϕ(s, ϕ(t, x)) for all x ∈ X and s, t ∈ T+.

When T is R we call the dynamical system a flow and when T is Z we say the
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dynamical system is discrete . In this thesis we only consider discrete dynamical

systems which are generated by iterating the map f(x) = ϕ(1, x). Thus ϕ(n, x) will

be denoted by fn(x) where fn is the composition of the map f n-times.

Definition 1.3. The forward orbit of a point x ∈ X is the set {fn(x) : n ≥ 0}.

We can denote the forward orbit of a point x as a sequence xn where x0 = x and

xn = fn(x) with n ∈ Z+. Similarly we can define a backward orbit.

Definition 1.4. A backward orbit of a point x ∈ X is a sequence x−n with n ∈ Z+

such that f(x−n−1) = x−n and f(x−1) = x0. An orbit through a point x ∈ X is a

sequence xn with n ∈ Z such that f(xn−1) = xn for all n ∈ Z.

Note that if f is invertible, then the backward orbit is uniquely determined by

composing the inverse i.e. x−n = f−n(x0).

Definition 1.5. A point x is called a periodic point of least period n if fn(x) = x

and f j(x) 6= x for all 0 ≤ j < n. If x has period 1, then we call x a fixed point

or an equilibrium point. If x is a periodic point of least period n, then we call the

forward orbit of x a periodic orbit.

In dynamical systems one often wishes to decompose the space X into fundamental

pieces so that the dynamics can be studied on each of the pieces separately, and then

the global description of dynamics can be inferred from the interactions of those

pieces. This decomposition is done by the invariance of subsets of X which we define

now.

Definition 1.6. A subset S ⊂ X is said to be invariant if f(S) = S. A subset

S ⊂ X is said to be forward invariant if f(S) ⊂ S, and finally a subset S ⊂ X is

said to be backward invariant if f−1(S) ⊂ S.
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The next definition describes some important invariant sets in a dynamical system

that characterize asymptotic behavior in time.

Definition 1.7. A point y is an ω-limit point of x if there exists a sequence of nk

going to infinity such that

lim
k→∞

d(fnk(x), y) = 0.

where d is the distance function of X. The set of all ω-limit points of x is called the

ω-limit set of x which we denote by ω(x).

One can easily show that ω(x) is a closed, forward invariant set. As stated earlier,

we would like to decompose the space into invariant sets so now we give the notion

of the most fundamental or indecomposable invariant sets.

Definition 1.8. A set S is a minimal set for f provided that it is nonempty, closed,

and invariant and has no closed, invariant, proper subset that is nonempty.

Periodic orbits and fixed points are obvious examples of minimal sets, and later we

will see another example when we define chaotic sets. We have a simple proposition

that tells us when certain sets are minimal sets.

Proposition 1.9 ([25]). Let X be a metric space, f : X → X a continuous map, and

S ⊂ X a nonempty, compact subset. Then S is a minimal set if and only if ω(x) = S

for all x ∈ S.

Now we give a definition of an important topological property of a map.

Definition 1.10. A map f : X → X is transitive on an invariant set S if the forward

orbit of some point p ∈ S is dense in S.

Next we define some important topological properties of sets on which a map is

defined.
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Definition 1.11. Let f : M →M be a map. A nonempty compact region N ⊂M is

called a trapping region if f(N) ⊂ int(N). A set Λ is an attractor if there is a

trapping region N such that Λ = ∩k≥0f
k(N). A set Λ is a transitive attractor if

it is an attractor and f |Λ is transitive.

If there is a point p in an invariant set S such that the forward orbit of p is dense,

then it is easy to see that ω(p) = S. This leads to a simple proposition.

Proposition 1.12. If a map f : X → X is transitive on an invariant set S, then

there exist no trapping regions that are strictly contained in S, and either S is a

minimal set or the only minimal subsets of S are nowhere dense sets.

Proof. Let p ∈ S such that the forward orbit of p is dense in Y . Then ω(p) = S. Let

T be a trapping region such that T ⊂ S and T 6= S, then there exists n ≥ 0 such

that fn(p) ∈ T . This implies that ω(p) ⊂ T which is a contradiction.

Now assume ∅ 6= B ⊂ S is closed and invariant. If B has nonempty interior, then

there exists some n ≥ 0 such that fn(p) ∈ B. This implies that ω(p) = ω(fn(p)) ⊂ B

since B is invariant. However, ω(p) = S, therefore B = S so that S is a minimal set.

If B has empty interior, then B is nowhere dense.

Given two maps f : X → X and g : Y → Y , we would like to know if we can

compare the dynamics of the two maps and conclude some sort of equivalence. This

enables us to work with a map on a space where we have an advantage and to infer

behavior of the dynamics in the other space where we might not. This leads to the

definition of conjugacy.

Definition 1.13. Let f : X → X and g : Y → Y be two maps. A map h : X → Y

is called a semiconjugacy from f to g provided that h is continuous, onto, and
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h ◦ f = g ◦ h. The map h is called a conjugacy if it is a semiconjugacy and h is a

homeomorphism.

One of the consequences of having a conjugacy is that fixed points and periodic

points for one map corresponds to fixed points and periodic points in the other, or

more generally the dynamics in one map corresponds to the dynamics in the other.

In essence, conjugacy gives us topological equivalence of the two systems.

1.2 Embedology

Theorem 1.1 is stated in terms of manifolds, but a similar theorem holds for attractors

of continuous maps [27, 3, 24].

Theorem 1.14 (Sauer, Yorke, Casdagli [27]). Let A be an attractor for φ ∈ C2(Rn)

with box-counting dimension m. If k > 2m, then for a real valued function y ∈

C2(Rn,R), it is a generic property that the map ΦT : A→ Rk with T > 0 defined by

Φ(x) := (y(x), y(φT (x)), . . . , y(φTk(x)))

is an embedding.

It is important to note that embeddings can exist for k ≤ 2m, but the generic

property does not necessarily hold. There has been much study of time delay re-

constructions from time series data since Theorems 1.1 and 1.14 were introduced, see

[18, 24, 3] and the references therein. Typically, one utilizes these theorems by picking

a large enough embedding dimension k and constructing a time-delay reconstruction

of the phase space. Then this dynamics in dimension k, is analyzed often statisti-

cally. In typical applications, chaotic attractors have small box-counting dimension,

but the problem of determining an embedding dimension which is large enough to
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contain the correct dynamics but small enough to compute with is a central one. Our

topological approach also requires knowledge of a good embedding dimension in order

to be applied to experimental or measured data.

For the purposes of this thesis, we assume that A is embedded in some low-

dimensional manifold M in Rn and that there exists a suitable projection into this

lower dimension or collection of projections on charts in an atlas of M that cover

A. Indeed, for the computations performed in Chapter 7, we consider only maps

f : R2 → R2. However, in general, these projections and the subsequent phase space

reconstruction in lower dimensions introduced in this thesis would provide a method

for reducing the dimension in the computational topological analysis of a dynamical

system, which would allow for the computation of the dynamics of a high-dimensional

system in the case where projections into lower dimensions are known. For example,

in previous work by Day, Junge, and Mischaikow [12] rigorous computations of sym-

bolic dynamics have been performed on a system in which the ambient dimension is

6 but the dynamics could be embedded in 3 dimensions. Using cubical structures,

topological computations in 6 dimensions are still feasible. However, if the ambient

dimension is much higher than 6, the cost for the topological computations becomes

large, even if the effective dimension is low. The algorithms in this thesis are an

attempt to replace the high-dimensional phase space with a lower-dimensional recon-

struction, but at the cost of replacing cubical structures with simplicial ones. The

computational cost of using simplicies is higher, but this cost should be offset by the

savings in dimension reduction for high-dimensional problems, see also Chapter 8.
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2 Chaos and Symbolic Dynamics

We now give a precise definition of chaos used in this thesis. We also describe how

to measure chaos by making entropy calculations and utilizing symbolic dynamics.

2.1 Definition of chaos

Usually when one looks for a definition of chaos there is no single all-encompassing

definition that everyone agrees defines chaotic behavior. We state the fundamen-

tal properties of what we consider as chaotic behavior on a set, and then give the

assumptions needed to characterize these properties. Unless stated otherwise, we

assume that f is a continuous map on a complete metric space X.

The first property that we would like a chaotic set to have is to be a minimal set. It

was stated earlier in Proposition 2.2 that if f is transitive on an invariant set Y , then

Y is a minimal set or the only minimal subsets of Y are nowhere dense. So having

transitivity on an invariant set implies that the set is indecomposable, but transitivity

actually gives us even more if we invoke the Birkhoff Transitivity Theorem, which we

state now.

Theorem 2.1 (Birkhoff Transitivity Theorem [25]). Let X be seperable and assume

that for every open set U of X, we have
⋃
n≤0 f

n(U) is dense in X. Then there is a

residual set A such that for every p ∈ A the forward orbit of p is dense in X.

Now we get the following proposition.
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Proposition 2.2. A map f is transitive on Y if and only if given any two non-empty

open sets U and V in Y , there is a positive integer n such that fn(U) ∩ V 6= ∅.

Proof. First suppose that f is transitive, and let p be the point with a dense forward

orbit. Let U and V be any two open subsets of Y . There exists a q ∈ U such that

q = fk(p) for some k ≥ 0. However fm(p) ∈ V for an infinite number of positive

integers m so there exists a m > k such that fm(p) ∈ V . Now let n = m− k and we

see that fn(q) ∈ V .

Now we prove the converse. Let U be open in Y . We must show that
⋃
n≤0 f

n(U)

is dense in Y . Let y ∈ Y . Let V be any open set in Y such that y ∈ V . By

the assumption there exists a n > 0 such that fn(V ) ∩ U 6= ∅. This implies that

f−n(U) ∩ V 6= ∅. Since V was arbitrary this implies that
⋃
n≤0 f

n(U) is dense.

Therefore by the Birkhoff Transitivity Theorem we have that f is transitive.

The property that given any two open sets U and V in Y , there is a positive

integer n such that fn(U)∩V 6= ∅ is a property that describes a kind of mixing of the

points in the forward iteration of the map. So, not only does f being transitive on

Y give us indecomposability, but we see that being transitive is equivalent to points

being shuffled around all of Y in future time.

Although f being transitive on Y shuffles points around in Y , this is still not

enough to be chaotic, since the shuffling can be done in an organized way. For

example, a periodic orbit for the graph of f is a compact invariant set where f is

transitive but we do not want to consider this set to be chaotic since neighborhoods

of points map in a predictable fashion inside this set. This leads to our next property

of chaos.

Definition 2.3. A map f on a metric space X is said to have sensitive dependence

on initial conditions provided there is an r > 0 such that for each point x ∈ X
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and for each ε > 0 there is a point y ∈ X with d(x, y) < ε and a k ≥ 0 such that

d(fk(x), fk(y) ≥ r. We call r a sensitivity constant.

The property of having sensitive dependence on initial conditions implies that

small errors in experimental measurements could lead to large scale divergence of the

future data. With these two properties we give the following definition.

Definition 2.4. A map f is said to be chaotic-like on an invariant set Y if

(1) f is transitive on Y , and

(2) f has sensitive dependence on initial conditions on Y .

Now a formal definition of chaos is given that is slightly different from the usual

definitions. See [26, 5].

Definition 2.5. A map f is chaotic on an invariant set Y if f is chaotic-like

on Y and if h is a conjugacy between f and any other map g, then g is chaotic-like

on h(Y ).

We have the following useful theorem based on a theorem in Banks [5], in the case

when Y is a compact, invariant set.

Theorem 2.6. If f is chaotic-like on a compact invariant set Y , then f is chaotic

on Y .

Proof. Let g : Z → Z be a map that is conjugate to f by h. We have that h is a

homeomorphism from X to Z and h(Y ) is compact. Let r be the sensitivity constant

for f . Let Dr be the set of ordered pairs in (y,1 y2) ∈ Y × Y such that d(y1, y2) ≥ r.

Since Dr is a closed subset of the compact space Y × Y , it is compact. Let Er be

the image under the map (y1, y2) 7→ (h(y1), h(y2)) where (y1, y2) ∈ Dr. Since h is a

homeomorphism we have that Er is a compact set in h(Y )× h(Y ). For (v1, v2) ∈ Er
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we have that v1 6= v2 and since the diagonal of h(Y )× h(Y ) is a compact set we have

a minimum distance δ > 0 from Er to the diagonal. We now show that g has sensitive

dependence on initial conditions with sensitivity constant δ.

Let z ∈ h(Y ) and let ε > 0 and consider Bε(z). Let x = h−1(z) and let ε2 > 0

be small enough such that Bε2(x) ⊂ h−1(Bε(z)). Since f is chaotic-like, there exists

an x2 ∈ Bε2(x) such that d(fk(x2), fk(x)) > r. Let z2 = h(x2) which implies that

z2 ∈ Bε(z). By previous arguments we have that d(h(fk(x2)), h(fk(x))) > δ, but

h(fk(x2)) = gk(h(x2)) = gk(z2) and h(fk(x)) = gk(z). Therefore g has sensitive

dependence on initial conditions with sensitivity constant δ.

The proof that g is transitive on h(Y ) follows trivially from the conjugacy. There-

fore g is chaotic-like on h(Y ), hence f is chaotic on Y .

In the case where f is chaotic-like on Y and Y is not a compact set, then there are

examples where f is conjugate to a g where g does not have sensitive dependence on

initial conditions. However if we verify some other topological properties of f , then

we may be able to conclude that f is chaotic. One such possibility is the property of

having dense periodic points. This brings us to the following theorem.

Theorem 2.7 (Banks [5]). If f is transitive and has dense periodic points on an

invariant set Y and also contains more than one periodic orbit, then f has sensitive

dependence on initial conditions.

The fact that you must have more than one periodic orbit is crucial since you

could take your space to be a periodic orbit for some map f which would make all

points periodic which trivially implies dense periodic points and f would be transitive

on this space since the orbit of any point is the space itself. However we do not have

sensitive dependence on initial conditions. In this case the combination of being
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transitive and having dense periodic orbits actually implies either trivial dynamics or

very complicated dynamics as the following lemma shows.

Lemma 2.8. If f is transitive and has dense periodic points on an invariant set Y ,

then Y consists of a single periodic orbit or it contains infinitely many periodic orbits.

Proof. First suppose that Y only contains one periodic orbit. Since in this case the

periodic points are finite and dense, then Y consists of only these periodic points.

Now assume that the number of periodic orbits is finite and greater than one.

Since f is transitive, there exists a q with a dense forward orbit which implies that q

cannot be a periodic point. However since the number of periodic orbits is finite, there

exists only finitely many periodic points which implies there exists a neighborhood

around q that does not contain a periodic point, contradicting the density of the

periodic points. Therefore if we have more than one periodic orbit, we must have

infinitely many.

We can now state the following theorem which provides a condition for chaos

without compactness.

Theorem 2.9. If a map f is chaotic-like on an invariant set Y , f has dense periodic

points in Y , and contains more than one periodic orbit, then f is chaotic on Y .

Proof. Let g be a map that is conjugate to f by h. The topological properties of

transitivity and dense periodic points are preserved by h, therefore g is transitive

and has dense periodic points on h(Y ) and by the Theorem 2.7 we have that g is

chaotic-like. Therefore f is chaotic on Y .
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2.2 Symbolic Dynamics

We now give definitions of a specific space and map which we call a symbolic dynam-

ical system. Symbolic dynamical systems have the advantage that the dynamics of

the system are easily represented and computable. If one is working with a dynam-

ical system where the dynamics are very complicated, then one strategy is to try to

build a semiconjugacy to a symbolic dynamical system and work inside the symbolic

dynamical system to make inferences about the original system.

Definition 2.10. The symbol space on n symbols, denoted by Σn, is a set of

sequences given by

Σn = {a = (. . . , a−1, a0, a1, . . .) | aj ∈ {1, . . . , n} for all j ∈ Z} .

Proposition 2.11. The symbol space on n symbols is a complete metric space with

the following metric

d(a, b) :=

j=∞∑
j=−∞

δ(aj, bj)

4|j|
,

where

δ(t, s) =

 0 if t = s

1 if t 6= s

Proposition 2.12. Σn is a compact space.

Proof. First we define a basis for the topology of Σn. Given t ∈ Σn we define Bk(t)

to be the set

Bk(t) := {a ∈ Σn| aj = tj for − k ≤ j ≤ k} .

Clearly the sets Bk(t) for t ∈ Σn are open and satisfy the properties of a topological
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basis.

Next let Sn be the topological space consisting of the discrete topology on {1 . . . n}.

Now take the infinite product of Sn with itself and give it the product topology and

label it S,

S = . . . Sn × Sn × Sn . . .

Since Sn, is a compact space we have by the Tychonoff Theorem that S is compact.

Now we form a topological basis for S. For a point s ∈ S we define βk(s) to be,

βk(s) := . . . Sn × s−k × s−k+1 × . . .× sk−1 × sk × Sn . . .

Since Sn is finite, the set βk(s) for s ∈ S clearly forms a topological basis.

Finally we define a bijection h : Σn → S by

h(t) = . . . t−k × t−k+1 × . . .× t0 × . . .× tk−1 × tk × . . .

with the inverse of h given by

h−1(s) = (. . . , s−k, . . . , s0, . . . , sk . . .)

It is easy to see that h and h−1 map basis elements to basis elements, therefore h is

a homeomorphism. Since S is compact, we have that Σn is compact.

Definition 2.13. The shift map on n symbols, denoted by σ : Σn → Σn, is

defined by

(σ(a))k = ak+1.

Proposition 2.14 ([19]). The shift map on n symbols is a uniformly continuous

16



function.

Since Σn is a complete metric space, and σn is uniformly continuous, we can say

that (Σn, σn) is a dynamical sytem which we call a symbolic dynamical system. One

can now see the ease in representing the dynamics of a symbolic dynamical system.

For example, in Σ3 the points (. . . , 1, 1, 1, . . .) , (. . . , 2, 2, 2, . . .) , (. . . , 3, 3, 3, . . .) would

be the only fixed points of the system and the point (. . . , 1, 2, 2, 1, 2, 2, . . .) would be

an example of periodic point with least period 3.

Proposition 2.15. σn is chaotic on Σn.

Proof. We first show that σn is transitive. We enumerate all possible sequences of

length one, and we let b1,1 = 1, b1,2 = 2, . . . , b1,n = n and then we enumerate all

sequences of length two with b2,1 = 1, 1, b2,2 = 1, 2, . . . , b2,2n = n, n. We continue

doing this for all possible finite sequences and we let bk,j denote the jth sequence of

length k. Define q ∈ Σn by

q := (. . . , bk,j, . . . , b1,2, b1,1, b1,2, . . . , bk,j, . . .)

where q0 = b1,1 and q is symmetrically built by adding to the front and back all

possible finite sequences.

We now show the forward orbit of q is dense. Let s ∈ Σn and let ε > 0. Let Bε(s)

denote the open ball of radius ε centered at s. There exists a smallest nonnegative

integer M such that if ti = si for −M ≤ i ≤ M then t ∈ Bε(s). Let b be the finite

sequence b = s−M , s−M+1, . . . , sM−1, sM . Now there exists an k ≥ 0 such that

σkn (q) = (. . . , b, . . .)

and
(
σkn (q)

)
i

= si for −M ≤ i ≤M which implies that σkn (q) ∈ Bε(s), and hence the
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forward orbit of q is dense.

We now show that σn has sensitive dependence on initial conditions. Let r = 1,

ε > 0, and let s ∈ Σn with Bε(s) denoting the open ball of radius ε centered at s. Let

t ∈ Bε(s) and t 6= s, then there exists a largest nonegative integer M such that if ti =

si for −M ≤ i ≤ M and tM+1 6= sM+1. This implies that d(σn
M+1(s), σn

M+1(t)) ≥ 1

which means that σn has sensitive dependence on initial conditions with sensitivity

constant equal to one.

We have shown that σn is chaotic-like, and since Σn is compact, we have that σn

is chaotic.

As we will see now, one can build a larger collection of symbolic dynamical systems

from Σn, but first we need the following definition.

Definition 2.16. An n × n matrix with entries of the form tij = 0, 1 is called a

transition matrix if there exists a nonzero element in every column j and there

exists a nonzero element in every row i.

Given a transition matrix T we can define the subset of sequences ΣT ⊂ Σn to be

ΣT :=
{
a ∈ Σn | takak+1

= 1 for k ∈ Z
}
.

Example 2.17. For the space ΣT ⊂ Σ3 defined by the transition matrix


1 0 1

0 0 1

0 1 0


we have the possible transitions of 1 → 1, 1 → 3, 3 → 2 and 2 → 3 which has

two periodic points (. . . 2, 3, 2, 3, . . .) and (. . . 3, 2, 3, 2, . . .) and only one fixed point
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(. . . , 1, 1, 1 . . .).

One can easily see that the map σn restricted to ΣT maps into ΣT which leads us

to the following definition.

Definition 2.18. The space ΣT along with the map σT := σn|ΣT is a dynamical

system which we call the subshift of finite type for the transition matrix T .

At this point we can ask whether or not the dynamical system (ΣT , σT ) is chaotic,

but first we need to determine when σT is transitive. We are of course in a more

restrictive environment where transitions are determined by a transition matrix, and

so it is not necessarily possible to concatenate all possible sequences in ΣT to obtain

a point q that has a dense forward orbit as in Proposition 2.15. We need some

additional information from our transition matrix in order to conclude transitivity.

Definition 2.19. A transition matrix T is called irreducible if for each 1 ≤ i, j,≤ n

there exists a k depending on i, j such that (T k)ij > 0.

An irreducible transition matrix should be interpreted as saying for any pair i

and j, there exists some finite sequence, allowed by the transition matrix, from i to

j. To show that a transition matrix is irreducible it is not wise to take the matrix

and actually compute powers of the matrix. Instead, construct the graph with the

i’s as vertices and with an edge from i to j if (T )ij = 1. Then the property of

being irreducible is equivalent to saying the graph is strongly connected. Finding the

connected components of a graph is easily computed in linear time using depth-first

search algorithms. Now we come to the following lemma.

Lemma 2.20. Let T be a transition matrix. The map σT is transitive if and only if

T is irreducible.
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Proof. First we show that σT being transitive implies T is irreducible. Suppose that

T is not irreducible so that there exists at least two strongly connected components

of the graph of T . Select two components and label them A and B. Without loss

of generality we assume that there does not exist a path from A to B. Let q :=

(. . . , q0, q1, . . .) be a point in ΣT with a dense forward orbit. Since A is strongly

connected there exists a fixed point or periodic point with sequence values from A.

Since the forward orbit of q must accumulate on this point this implies that there

must exist a k > 0 such that qk ∈ A. This means that for all values n > k we

have qn /∈ B. However there also exists either a fixed point or periodic point with

sequence elements inside of B on which the forward orbit of q must accumulate. This

contradicts that for all n > k we have qn /∈ B. Therefore if σT is transitive, then T is

irreducible.

Now we show the converse. Suppose that T is irreducible. Then for each i and

j there exists a finite allowable sequence from i to j which we denote by sij. As in

the proof of Proposition 2.15, we denote all possible finite sequences given by T by

bk,l, which means the l-th sequence of length k. For bk,l and bk,(l+1) there exists a sij

connecting the last sequence element of bk,l denoted by e(bk,l) to the first sequence

element of bk,(l+1) denoted by v(bk,(l+1)), and we can also find a connecting sequence

for bk,l and b(k+1),l. Now starting with q0 = b1,1 we can concatenate all possible finite

sequences given by T .

q :=
(
. . . , b1,1, se(b1,1)v(b1,2), b1,2, . . . , b1,m, se(b1,m)v(b2,1), b2,1, . . .

)
.

For the backward orbit of q we can take any allowable sequence. Thus the forward

orbit of q is dense in ΣT .
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At this point we have two options to choose from in showing that σT is chaotic.

We can use similar arguments as in Proposition 2.12 to show that ΣT is compact and

then directly show sensitive dependence on initial conditions, or we could show that

the periodic points are dense and that we have more than one periodic point. Let us

choose the latter option.

Proposition 2.21. If T is irreducible, then the periodic points of ΣT for the map σT

are dense.

Proof. Let

x = (. . . , x−N , x−N+1, . . . , x0, . . . , xN−1, xN , . . .)

be any point in ΣT , and let N be any positive integer. Since T is irreducible, there

exists an allowable sequence from xN to x−N which we denote by sxNx−N
. Let us

denote the finite sequence of x−N , x−N+1, . . . , x0, . . . , xN−1, xN by bn. Now we can

construct the periodic sequence qN by

qN :=
(
. . . , bn, sxNx−N

, x−N , x−N+1, . . . , x0, . . . , xN−1, xN , sxNx−N
, bn, . . .

)
.

The periodic sequence qN is such that (qN)i = (x)i for −N ≤ i ≤ N . As N →∞ we

have qN converging to x. Therefore the periodic points are dense.

Now one needs to check if there is more than one periodic point. But this is an

easy check of the matrix T . If a row or a column has more than one nonzero entry,

then this leads to more than one periodic point. Therefore we have the following

theorem.

Theorem 2.22. If T is an irreducible transition matrix with at least one row or at

least one column having more than one nonzero entry, then the map σT on ΣT is
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chaotic.

2.3 Entropy

Given a sequence of iterates of a map or a time series of data, one would like to

measure how chaotic or unpredictable the map or data is. One way of doing this is

to compute what is called the entropy of the map or time series. Before we give the

precise definitions and notations of entropy, we first give a brief description of entropy

due to F. Takens [8].

Suppose we are given a finite time series {xn}Nn=0. We ask whether we can predict

xN+1 without knowing the map that generates the {xn}, hence we need a prediction

procedure. Let ε > 0 and let k be a positive integer less than N . Now consider all

m < N such that |xm − xN | < ε, |xm−1 − xN−1| < ε, . . . |xm−k − xN−k| < ε. Then

for each of these values m we can form an ε-neighborhood around xm+1 and take the

union of these neighborhoods over all of the m. We can then predict that xN+1 will

be in this union.

This prediction can be bad or labeled as a failure if the region of prediction

is too large. This can happen if the region of prediction does not shrink with ε.

Let us try to quantify some meaning to this statement. Suppose we are given two

different points in the time series xm and xm′ . We look at the length k-orbit of xm

which is xm, xm+1, . . . , xm+k and compare it to the length k-orbit of xm′ which is

xm′ , xm′+1, . . . , xm′+k. We say the two orbits are ε-distinguishable if for one of the

iterates 0 ≤ j ≤ k, we have |xm+j − xm′+j| > ε. We say a list of length k orbits is

ε-distinguishable if every orbit on the list is ε-distinguishable with every other orbit

on the list. For a given k and a time-series {xn}, there can be many different ε-

distinguishable lists with the additional property that, if given any k-orbit in the
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time-series then there exists a k-orbit on the list with which it is not ε-distinguishable

i.e. there exists a k-orbit on the list so that all the iterates are within ε distance

of this orbit on the list. Given (k, ε,N), we define r(k, ε,N) as the cardinality of

the smallest list of k-orbits that is ε-distinguishable with the additional property

just mentioned. Basically, r(k, ε,N) is the smallest number of ε-distinguishable k-

orbits for the sequence {xn}Nn=0 with the additional property. Suppose that the time-

series is known for all n ∈ N . Since r(k, ε,N) is a non-decreasing function of the

variable N , then we can take the limit as N goes to infinity which we denote by

r(k, ε) = limN→∞r(k, ε,N). A straightforward argument will show that this limit is

finite if the space containing the time series is bounded and finite-dimensional.

Now we come back to the failure of our prediction procedure. To reiterate,

suppose we want to predict xN+1 by taking a k-orbit from the past that is not ε-

distinguishable from the orbit xN−k−1, xN−k, . . . , xN−1, xN , that is, we have a k-orbit

xm−k−1, xm−k, . . . , xm−1, xm such that |xm − xN | < ε, |xm−1 − xN−1| < ε, . . . , |xm−k −

xN−k| < ε. We want to predict that xN+1 is in an ε neighborhood around xm+1. Now

we can say that there are roughly r(k, ε) number of ε-distinguishable k-orbits and

that xm−k−1, xm−k, . . . , xm−1, xm is non-distinguishable with one of them. Likewise

xm−k−1, xm−k, . . . , xm−1, xm, xm+1 is a k+ 1 orbit and is non-distinguishable with one

of the r(k+ 1, ε) number of ε-distinguishable k+ 1-orbits. If r(k+ 1, ε) is much larger

than r(k, ε), then it means that k-orbits can be extended to k+ 1-orbits in many pos-

sible ways. So if we were to take any k-orbit from the past that is non-distinguishable

from xN−k−1, xN−k, . . . , xN−1, xN , take an ε-neighborhood around the next iterate,

and take the union all of these neighborhoods, then it is possible that this union

could be very large; hence we do not have a good prediction. Thus if r(k, ε) grows

too fast with respect to k, then this impedes our ability to predict.
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We measure the expansive growth rate of r(k, ε) with respect to k by

h(ε) = lim sup
k→∞

=
ln(r(k, ε))

k
.

Now we said that our prediction procedure ultimately fails if our prediction neigh-

borhood does not shrink with ε going to zero. We now define the entropy of the

time series as

h = lim
ε→0

h(ε).

It can easily be shown that if we are in a compact space, then the entropy calcu-

lation h is finite. A positive entropy h > 0 will imply unpredictability and estimate

chaotic behavior of the time series.

Now we give the definition of entropy for continuous maps.

Definition 2.23. Let f : X → X be a continuous map on a compact metric space X

with metric d. For a positive integer q, let

dq,f (x, y) = sup
0≤j<q

d(f j(x), f j(y)).

Let n be a positive integer and let ε > 0. A set S ⊂ X is said to (n, ε)-span X

provided for each x ∈ X there exists a y ∈ S such that dn,f (x, y) ≤ ε. We denote

rspan(n, ε,X, f) as being the smallest number of elements in any subset S ⊂ X which

(n, ε)-span X. Then we define hspan(ε,X, f) as

hspan(ε,X, f) := lim sup
n→∞

log(rspan(n, ε,X, f))

n
.
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Now we define the entropy of the map f on X which we denote by hspan(X, f) as

hspan(X, f) := lim
ε→0+

hspan(ε,X, f).

From here we will denote the entropy by h(f) = hspan(X, f).

We proceed with some important definitions and theorems involving entropy. For

proofs of theorems see Robinson [25].

Definition 2.24. For a continuous map f : X → X, we call a point p a nonwan-

dering provided for every neighborhood U of p there is a positive integer n and a

point q ∈ U such that fn(q) ∈ U . The set of nonwandering points for f is called the

nonwandering set and is denoted by Ω(f).

Theorem 2.25 ([25]). Let f : X → X be a continuous map on a compact metric

space X. Then, the entropy of f equals the entropy of f restricted to its nonwandering

set, h(f) = h(f |Ω).

We would like to say that the positive entropy is equivalent to chaos, but there

are obvious examples of maps with positive entropy that do not exhibit chaos. The

next theorem shows that it does imply chaos if given transitivity.

Theorem 2.26. If h(f) > 0 and there exists a p ∈ X that has a dense forward orbit

then f is chaotic.

Proof. We need to show f has sensitive dependence on initial conditions. We argue

by contradiction. Suppose f does not have sensitive dependence on initial conditions.

Then, for any δ > 0 there exists an x ∈ X and a neighborhood Bε(x) such that for all

y ∈ Bε(x) we have that fn(y) ∈ Bδ(f
n(x)) for all future time n. Since p has a dense

forward orbit, there exists an n such that fn(p) ∈ Bε(x) and that d(fn(p), x) < δ/2.
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Now take any q ∈ X. There exists a time m such that d(fm(fn(p)), q) < δ/2. This

implies that d(fm(x), q) ≤ d(fm(x), fm(fn(p))) + d(fm(fn(p)), q) < δ/2 + δ/2 = δ.

Therefore all of X is covered by the balls of radius δ around the forward orbit of x.

Since X is compact, it is covered by finitely many of these balls. Let N be the highest

iterate of f for the finite cover. Then for all n ≥ N we have that rspan(n, δ,X, f) = 1

which implies that log(rspan(n, δ,X, f)) = 0 so that hspan(δ,X, f) = 0. Since this

is true for all δ > 0, we have that hspan(X, f) = 0, which is a contradiction to the

assumption that h(f) > 0.

Definition 2.27. Given a continuous map k : X → Y we say that k is uniformly

finite to one if for each y ∈ Y we have that k−1(y) is finite and there exists a C

such that k−1(y) ≤ C for all y ∈ Y .

Theorem 2.28 ([25]). Assume f : X → X and g : Y → Y are continuous maps on

compact metric spaces X and Y . Assume that k : X → Y is a semi-conjugacy from

f to g that is onto and uniformly finite to one. Then h(f) = h(g).

Theorem 2.29 ([25]). (a) Let σ : σ : Σn → Σn be the full shift on N symbols.

Assume X ⊂ Σn is a closed invariant subset, so σ|X is a subshift. Let wn be the

number of words of length n in X, i.e.

wn = ] {(s0, . . . , sn−1) : sj = xj for 0 ≤ j < n for some x ∈ X} .

Then,

h(σ|X) = lim sup
n→∞

log(wn)

n
.

(b) Let T be an irreducible transition matrix on N symbols. Let σT : ΣT → ΣT be

the associated subshift of finite type. Then, h(σT ) = log(λ1), where λ1 is the real

eigenvalue of T such that λ1 ≥ |λj| for all other eigenvalues λj of T .
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The last two theorems are used to establish a lower bound on the entropy of a

system. If one can establish a uniformly finite to one semiconjugacy on a subset of

the state space from a continuous map f to the shift map, then Theorem 2.28 says

the entropy is the same on that subset. Moreover, Theorem 2.29 tells us that we only

have to calculate the eigenvalues of the transition matrix associated with the shift

map to compute the entropy. This entropy calculation then gives a lower bound on

the entropy over the state space of f .
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3 Simplicial Homology

In this chapter we present all definitions and theorems for a specific homol-

ogy theory we use in this thesis. Our presentation is not complete or general.

For a more general description of homology see Munkres [23] or Hatcher [15].

3.1 Simplices in the Plane

Definition 3.1. Let V be a set of points V = {v0, v1, . . . , vn} in RN . We say that V

is geometrically independent if for any real scalars λi, we have that

n∑
i=0

λi = 0 and
n∑
i=0

λivi = 0

imply that λ0 = λ1 = . . . = λn = 0. That is a set {v0, . . . , vn} is geometrically inde-

pendent if and only if the set of vectors {v1 − v0, . . . , vn − v0} is linearly independent.

From here on we restrict ourselves to R2, but much of what is done is dimen-

sion independent. The previous definition tells us that a set consisting of one point

is always geometrically independent, a set consisting of two points is geometrically

independent if and only if the two points are distinct, and a set consisting of three

points is geometrically independent if and only if the three points are non-collinear.

Definition 3.2. Given a set of three points {v0, v1, v2} in R2 that are geometrically

independent, we define the 2-simplex spanned by {v0, v1, v2} to be the set of points

x ∈ R2 such that x = λ0v0 +λ1v1 +λ2v2 where λ0 +λ1 +λ2 = 1 and λi ≥ 0. For a set
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of two points {v0, v1} that are geometrically independent, we define the 1-simplex

spanned by {v0, v1} to be the set of points x ∈ R2 such that x = λ0v0 + λ1v1 where

λ0 + λ1 = 1 and λi ≥ 0. For a set consisting of just one point {v0}, we define the

0-simplex spanned by {v0} to just be the point {v0}.

For the 1-simplex and the 2-simplex, the definition of geometric independence

implies that for a given x in those simplices, the coefficients λi in the sum are unique,

and we call the coefficients λi the barycentric coordinates of x in the simplex. From

this definition it is easy to see that 0-simplices are points in the plane, 1-simplices are

line segments between two distinct points, and 2-simplices are triangles along with

the interior points of the triangle. Therefore by this geometric description we have

that simplices as sets in R2 are compact, convex, and are the convex hulls of the

points they span. The n-points that span an n-simplex are called the vertices of the

simplex. Any simplex that is spanned by a subset of the vertices of a given simplex

is called a face of that given simplex, and if it is a proper subset of the vertices,

it is called a proper face of the given simplex. For example the proper faces of a

2-simplex would consist of each of the three edges that make up the triangle along

with each of the three vertices of the triangle, and for a 1-simplex the proper faces

would consist of the two vertices of the line segment.

Definition 3.3. A simplicial complex K in R2 is a collection of simplices such

that

(1) Every face of a simplex of K is in K,and

(2) The intersection of any two simplices in K is a face of each of them.

Definition 3.4. Given a simplicial complex K in R2, the union of all simplices of

K is called a polytope of K and is denoted by |K|. A subset P ⊂ R2 is called a
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polyhedron if P is the polytope of some simplicial complex K. In this case K is

called a triangulation of P .

We now put an algebraic structure on our simplicial complexes by defining a vector

space. To reiterate, the following definitions are not the general definitions but only

for the specific homology used here.

Definition 3.5. Let K be a simplicial complex. A p-chain on K is a function c

from the set of p-simplices of K to Z2 such that c(σ) = 0 for all but finitely many

p-simplices σ. If σ is a simplex, the elementary chain c corresponding to σ is the

function defined by having c(σ) = 1 and c(τ) = 0 for all other simplices τ .

For notational purposes we identify the symbol for a p-simplex σ with its elemen-

tary chain. The p-chains form a vector space by addition of functions with coefficients

in Z2 which we call the vector space of p-chains of K which we denote by Cp(K).

Note that each p-chain of K can be written as a unique finite linear combination of

elementary chains with coefficients in Z2. Therefore the elementary chains are a basis

for Cp(K). For p < 0, we define Cp(K) to be the trivial vector space.

Definition 3.6. We define a linear map ∂p : Cp(K)→ Cp−1(K) called the boundary

operator as follows:

(1) If p = 0, then ∂0(v) = 0 where v is a 0-simplex.

(2) If p = 1, then ∂1(e) = v1 + v2 where e is a 1-simplex, and v1 and v2 are its

vertices.

(3) If p = 2, then ∂2(s) = e1 + e2 + e3 where s is a 2-simplex, and e1, e2,and e3

are its edges.

Now extend ∂p linearly to get a linear map on Cp(K).
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For example, if e1 is a 1-simplex with vertices v0 and v1, and if e2 is a 1-simplex

with vertices v1 and v2, then ∂1(e1 + e2) = ∂1(e1) +∂1(e2) = v0 +v1 +v1 +v2 = v0 +v2

since our coefficients are in Z2.

Lemma 3.7. ∂p−1 ◦ ∂p = 0

Proof. First we show it is true for simplices, and then we will show it is true for chains.

For 0-simplices it is trivially true since ∂0 maps everything to 0, and ∂−1 is defined to

be the 0 map. For a 1-simplex e, we have ∂0(∂1(e)) = ∂0(v1 + v2) = ∂0(v1) + ∂0(v2) =

0 + 0 = 0. For a 2-simplex s, we have ∂1(∂2(s)) = ∂1(e1 + e2 + e3) = v1 + v2 + v2 +

v3 + v3 + v1 = 0. Now let c = c1 + c2 + . . . + cn be any chain. Then ∂p−1(∂p(c)) =

∂p−1(∂p(c1) + ∂p(c2) + . . .+ ∂p(cn)) = ∂p−1∂p(c1) + ∂p−1∂p(c2) + . . .+ ∂p−1∂p(cn) = 0.

Definition 3.8. The kernel of the boundary map ∂p : Cp(K) → Cp−1(K) which

we denote by Zp(K) is called the p-cycles. The image of the boundary map ∂p+1 :

Cp+1(K) → Cp(K) which we denote by Bp(K) is called the p-boundaries. From

the previous lemma we have that Bp(K) ⊂ Zp(K), and we define the p-th homology

vector space which we denote by Hp(K) to be

Hp(K) = Zp(K)/Bp(K).

For the zero-homology vector space we have the following theorem that facilitates

computability.

Theorem 3.9 ([23]). Let K be a simplicial complex. The vector space H0(K) over

Z2 has a basis consisting of the homology classes of one vertex from each connected

component of |K|.

So the dimension for H0(K) equals the number of connected components of |K|.
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Given a subcomplex K0 of a simplicial complex K, we can define homology vector

spaces of K modulo the subcomplex K0.

Definition 3.10. If K0 is a subcomplex of K, then the vector space Cp(K,K0) :=

Cp(K)/Cp(K0) is called the space of relative p-chains of K modulo K0. The vector

space Cp(K,K0) has basis {σi + Cp(K0)} where σi ranges over all p-simplices of K

which do not intersect K0. The boundary operator ∂ on Cp, induces a linear map on

Cp(K,K0) to Cp−1(K,K0), denoted also by ∂, by ∂(σi +Cp(K0)) = ∂(σi) +Cp−1(K0).

From this we define

Zp(K,K0) = ker ∂ : Cp(K,K0)→ Cp−1(K,K0),

Bp(K,K0) = im ∂ : Cp+1(K,K0)→ Cp(K,K0),

Hp(K,K0) = Zp(K,K0)/Bp(K,K0),

which we call respectively, the vector space of relative p-cycles, the vector space of

relative p-boundaries, and the relative homology vector space in dimension p

of K modulo K0.

Definition 3.11. Let ε : C0(K)→ Z2 be the surjective linear map defined by setting

ε(v) = 1 for each vertex v of K. If c is a 0-chain, then ε(c) is the sum of the

coefficients of c mod 2 and ε(∂d) = 0 if d is a 1-chain. We can now define a different

homology vector space for dimension 0 denoted by H̃0(K) by H̃0(K) = ker ε/ im ∂1.

We call this the reduced homology vector space of dimension 0 and we define the

reduced homology vector space of dimension p by H̃p(K) := Hp(K) when p 6= 0.

We treat ε as a linear map ε : C0(K)→ C−1(K) where we identify C−1(K) as the

group Z2.
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Theorem 3.12. The vector space H̃0(K) satisfies H̃0(K)⊕ Z2
∼= H0(K).

This theorem tells us that H̃0(K) is the zero vector space if K is connected and

if K is not connected then vα− vα0 form a basis for H̃0(K) where {vα} consist of one

vertex from each connected component of K and α0 is a fixed index.

Definition 3.13. We say that a simplex K is acyclic if H̃p(K) = 0 for all p.

We come to the question of whether we can compute the homology vector spaces

Hp. If we have a finite simplicial complex K, the answer to this is affirmative as we

now show.

Theorem 3.14 ([23, 17]). Let G and G′ be finite dimensional vector spaces with

coefficients in Z2. Let f : G→ G′ be a linear map. Then there exist bases for G and

G′ such that relative to these bases the matrix f has the form



b1 . . . 0 0 . . . 0

...
. . .

...
...

. . .
...

0 . . . bk 0 . . . 0

0 . . . 0 0 . . . 0

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . 0


where bi = 1. The matrix is called the normal form of f and we call k the normal

index for the map f .

Taking a matrix to its normal form consists of a series of elementary row operations

in an algorithm called the reduction algorithm. If we let G = Cp and G′ = Cp−1 then

we can write the boundary homomorphism ∂p in normal form with respect to some

base e1, e2, . . . , ek, ek+1, . . . , en for Cp where ej is a p-chain. If k is the normal index
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for the matrix, then we get that ek+1, . . . , en is a basis for Zp. If we repeat this for the

boundary map ∂p+1 with normal index m, then with g1, g2, . . . , gm, gm+1, . . . , gj being

the basis for Cp corresponding to the matrix ∂p+1 in normal form we get that g1, . . . , gm

is a basis for Bp. We can then compute Hp = Zp/Bp+1 by checking if each of the

elements in Zp are homologous to a linear combination of the g1, . . . , gm. The reason

we chose to do homology with coefficients in Z2 was because the operations in the

reduction algorithm and the last step of checking whether elements are homologous,

were easy to code for computations. So far the homology presented is standard

classical simplicial homology theory, and we do not deviate from the classical theory

until the next section.

3.2 Homology of Maps

In this section we discuss maps between homology spaces which are induced by contin-

uous maps. Homology can be used to study the action of continuous maps. Suppose

you are given a simplicial complex K and a simplicial complex L, with a continuous

map f : |K| → |L|. We want to define a homomorphism between H(K) and H(L)

which we denote by f∗ : H(K) → H(L). In the previous section we used standard

simplicial homology theory, but in this section we deviate from the standard theory

when defining maps on homology for computational reasons.

Definition 3.15. Let C = {Cp, ∂p} and C ′ =
{
C ′p, ∂p

}
be chain complexes. A chain

map is a family of homomorphisms φp : Cp → C ′p such that ∂′p ◦ φp = φp−1 ◦ ∂p.

From here on we will always define φ−1 : C−1 → C ′−1 to be the identity so that

we have ε′ ◦ φ0 = φ−1 ◦ ε. It is easy to see that a chain map maps cycles to cycles

and boundaries to boundaries, which means that φ induces a linear map between the
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vector spaces, which we denote by φ∗. So if we want to construct homomorphisms

between homology groups then we often first construct chain maps.

Definition 3.16. If φ, ϕ : Cp(K)→ Cp(L) are chain maps such that for each p there

exists a homomorphism Dp : Cp(K)→ Cp+1(L) such that

∂p+1Dp +Dp−1∂p = (ϕ)p − (φ)p,

then we say that φ and ϕ are chain homotopic and that D is a chain homotopy

between φ and ϕ.

Theorem 3.17. If there is a chain homotopy between φ and ϕ then φ∗ and ϕ∗ are

equal for the reduced and ordinary homology.

Proof. Let z be a p-cycle of K. Then

ϕ(z)− φ(z) = ∂Dz +D∂z = ∂Dz + 0

which implies that ϕ(z) and φ(z) are in the same homology class so that ϕ∗({z}) =

φ∗({z}).

The previous theorem gives us a condition for determining when two maps on

homology are the same. We just need to verify the existence of a chain homotopy.

Before we introduce how to induce maps on homology through continuous maps, we

need the following definition and theorem.

Definition 3.18. If K and L are two simplicial complexes, and Φ is a map between

K and L, then we say Φ is an acyclic carrier between K and L if Φ maps each

simplex σ of K to a subcomplex Φ(σ) of L such that the following two conditions hold:
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(1) Φ(σ) is nonempty and acyclic, and

(2) if τ is a face of σ, then Φ(τ) ⊂ Φ(σ).

Furthermore, if φ is a chain map φ : Cp(K)→ Cp(L), then we say that φ is car-

ried by Φ if for each p-simplex σ of K, the chain φ(σ) is contained in the subcomplex

Φ(σ).

Theorem 3.19 (Acyclic Carrier Theorem [23]). Suppose Φ is an acyclic carrier from

K to L. Then

(1) If φ and ϕ are chain maps from C(K) to C(L) that are carried by Φ, then

there exists a chain homotopy D of φ to ϕ that is also carried by Φ.

(2) There exists a chain map from C(K) to C(L) that is carried by Φ.

The triangulations that we consider are triangulations made up of 2-simplices and

their faces, so there will be no 0-simplices and 1-simplices in the complex that are

not a face of a 2-simplex. Therefore we only consider acyclic carriers that map to

complexes consisting of 2-simplices and their faces. We call these acyclic carriers

simplicial acyclic carriers. With the use of the acyclic carrier theorem we are now

ready to define the induced homology maps from continuous maps. First, given a

continuous map f : |K| → |L|, we say that a simplicial acyclic carrier Φ carries f if

the following properties hold:

(1) if v is a vertex, then Φ(v) consists of all 2-simplices that intersect f(v), and

(2) for any simplex σ, we have f(|σ|) ⊂ |Φ(σ)|.

We say that an acyclic carrier Φ carries another acyclic carrier Γ if for each σ

in the triangulation we have that |Γ(σ)| ⊂ |Φ(σ)|. We say that f has a minimal

simplicial acyclic carrier denoted by Φf , if Φf carries f , and if Φ is any simplicial

acyclic carrier that carries f , then Φ carries Φf . It is not necessarily true that a map

has a minimal simplicial acyclic carrier on a fixed pair of complexes K and L.

36



Definition 3.20. Let f : |K| → |L| be a continuous map, and suppose that f has

a minimal acyclic carrier Φf . Let Φ be an acyclic carrier that carries f . Then we

define the map of homology induced by the continuous map f , denoted by

f∗ : H(K)→ H(L), to be the map of homology induced by any chain map carried by

Φ.

The acyclic carrier theorem tells us there exists a chain map that is carried by Φ,

and this chain map is chain homotopic to any other chain map carried by Φ, which

means the induced homology is the same for all chains carried by Φ. If Φ1 and Φ2

are acyclic carriers that carry f , then |Φf (σ)| ⊂ |Φ1(σ)| and |Φf (σ)| ⊂ |Φ2(σ)|, and

there exists a chain map φ that is carried by Φf as well as Φ1 and Φ2. This implies

that chain maps that are carried by Φ1 are chain homotopic to chain maps carried by

Φ2. This proves that our map of homology is well-defined.

Suppose that f has a minimal acyclic carrier Φf . The acyclic carrier theorem

implies that any chain map carried by Φf induces the same homology map. We now

construct a chain map f] carried by Φf . First, for a 0-simplex v of K we define

f](v) to be any 0-simplex contained in Φf (v). Next, for a 1-simplex e with vertices

v1 and v2, we know that the subcomplex Φf (e) is acyclic and that f](v1) and f](v2)

are vertices in Φf (e). This means that f](v1) and f](v2) are homologous and so there

exists a 1-chain c in Φf (e) such that f](v1) = f](v2) + ∂1c. We define f](e) = c.

Finally, for a 2-simplex s with edges e1, e2, and e3, we know that Φf (s) is acyclic

and that the 1-chain f](e1) + f](e2) + f](e3) is a cycle in Φf (s). This means that the

1-chain f](e1) + f](e2) + f](e3) is either equal to 0 in which case we define f](s) = 0,

or it is homologous to a 2-chain d in Φf (s) in which case we define f](s) = d. By

construction we have that f] is carried by Φf and that f] was not unique. This is still

well-defined since any chain map carried by Φf induces the same homology map.
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The above outline also holds for relative homology except for some small differ-

ences. Suppose K0 is a subcomplex of K and L0 is a subcomplex of L, we define a

relative simplicial acyclic carrier to be a simplicial acyclic carrier Φ : K → L

with the additional property that if σ is a simplex of K0, then Φ(σ) ⊂ L0. Suppose

we have a continuous map f : |K| → |L| such that f(|K0|) ⊂ |L0|. We say that

a relative simplicial acyclic carrier Φ carries f if for each simplex σ ∈ K we have

f(|σ|) ⊂ |Φ(σ)| and if v is a vertex such that f(v) ⊂ |L0|, then Φ(v) will consist

only of the 2-simplices in L0 that intersect f(v). We also say that a relative simpli-

cial acyclic carrier Φ carries another relative simplicial acyclic carrier Γ if for each

simplex σ ∈ K we have |Γ(σ) mod L0| ⊂ |Φ(σ) mod L0|. Finally, we define the

minimal relative simplicial acyclic carrier for f denoted by Φf to be a relative

simplicial acyclic carrier that carries f such that if Φ is any other relative simplicial

acyclic carrier that carries f , then Φ carries Φf .

Definition 3.21. Let f : |K| → |L| be continuous such that for some subcomplex

K0 ⊂ K and subcomplex L0 ⊂ L we have that f(|K0|) ⊂ |L0|. Suppose that f has a

relative acyclic carrier Φf . If Φ is any relative simplicial acyclic carrier that carries

f , then we define the map of relative homology induced by the continuous

map f , denoted by f∗ : H(K,K0)→ H(L,L0), to be the map of homology induced by

any chain map carried by Φ̄.

With these definitions of maps of homology we can prove that we get the Lefschetz

Fixed Point Theorem. In order to prove it we need to use barycentric subdivisions.

Definition 3.22. Let K be a finite simplicial complex. A complex K ′ is a subdivi-

sion of K if

(1) each simplex of K ′ is contained in a simplex of K, and

(2) each simplex of K equals the union of finitely many simplices of K ′.
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Note that the second condition implies that K ′ is also finite.

Definition 3.23. Given a p-simplex σ = [v0, . . . , vp], we define the barycenter of σ

denoted by σ̂ to be the point

σ̂ =

p∑
i=0

1

p+ 1
vi,

that is the point whose barycentric coordinates are equal.

Definition 3.24. The barycentric subdivision of a 0-simplex v is itself v. The

barycentric subdivision of a 1-simplex e = [v0, v1] is the set of 1-simplices [v0, ê]

and [ê, v1]. The barycentric subdivision of a 2-simplex s = [v0, v1, v2] is the set

of simplices [ŝ, v0, ê0], [ŝ, v1, ê0], [ŝ, v1, ê1], [ŝ, v2, ê1], [ŝ, v2, ê2], [ŝ, v0, ê2] where ê0 is the

barycenter for edge e0 = [v0, v1], ê1 is the barycenter for edge e1 = [v1, v2], and ê2 is

the barycenter for edge e2 = [v2, v0]. The barycentric subdivision of a complex

K which we denote by bsd(K) is the complex derived from K by first taking all

barycentric subdivisions of all simplices of K.

Given the a complex K, we can take the barycentric subdivision of bsd(K), which

we denote by bsd2(K), and in general we can take the n-th barycentric subdivision

of K denoted by bsdn(K). The following lemma is straight forward.

Lemma 3.25. Given a finite simplicial complex K, let ε > 0, then there is an N

such that each simplex of bsdN(K) has diameter less than ε.

Let K ′ be a subdivision of K. If σ is a simplex of K then we denote by K(σ) the

subcomplex of σ and all its faces. We denote by K ′(σ) the subcomplex of K ′ whose

underlying space is σ.

Theorem 3.26. Let K ′ = bsdn(K) and let i : |K ′| → |K| be the identity map. Then

i∗ : Hp(K
′)→ Hp(K) is an isomorphism.
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Proof. We first prove the theorem for K ′ = bsd(K). Let Λ : K → K ′ and Θ : K ′ → K

be the minimal simplicial acyclic carriers induced by the identity map i. Note that it

is easy to see that they exist. By the acyclic carrier theorem there exists a chain map

λ carried by Λ and a chain map θ carried by Θ. Now let Ψ : K → K be the minimal

simplicial acyclic carrier induced by the identity map. It is easy to see that Ψ carries

the identity chain map i : Cp(K)→ Cp(K), and it also carries the chain map θ ◦ λ so

that θ ◦ λ is chain homotopic to the identity chain map.

We define the carrier Φ : K ′ → K ′ as follows, if τ is a simplex in K ′, then we let στ

be the subcomplex of K consisting of all 2-simplices that intersect τ and their faces.

Then we set Φ(τ) = K ′(στ ). It is easy to see that Φ is a simplicial acyclic carrier and

that it carries the identity chain map along with the chain map λ ◦ θ which implies

that λ ◦ θ is chain homotopic to the identity chain map. We now have shown that

θ and λ are chain homotopic inverses of each other which means that θ∗ and λ∗ are

isomorphisms. However θ∗ is by definition the identity map on homology, therefore

i∗ : Hp(K
′)→ Hp(K) is an isomorphism.

The arguments also work to show that i∗ : Hp(K
′) → Hp(K) is an isomorphism

where K ′ = bsdn+1(K) and K = bsdn(K). Therefore by induction we have the proof.

3.3 Lefschetz Fixed Point Theorem

Let G be a vector space with coefficients in Z2. Let f : G→ G be a linear map and

let A be the matrix representation of f for some particular basis. We define

tr f = trA.
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Recall that the trace of f is independent of any choice of basis, since if B : G→ G is

a change of basis from the basis for A, then the matrix of f in the new basis would

be B−1AB, and we have

trB−1AB = trB−1(AB) = tr(AB)B−1 = trA.

In our setting, since we can find a basis for Cp, then for a chain map φp : Cp → Cp

we can represent φp as a matrix, and we denote the trace by tr(φ,Cp(K)). Further-

more this is also true for the induced homomorphism (φ∗)p. The following theorem

is a specific case of the Hopf trace theorem for our setting of vector spaces with

coefficients in Z2. The proof is included for completness.

Theorem 3.27 (Hopf Trace Theorem [23]). Let K be a finite simplicial complex and

φ : Cp → Cp a chain map. Then

∑
p

(−1)p tr(φ,Cp(K)) =
∑
p

(−1)p tr(φ∗, Hp(K)).

Proof. Let G be a vector space with coefficients in Z2. Let H be a subspace of G and φ

a homomorphism φ : G→ G that carries H to itself. We let φ′ be the homomorphism

φ′ : G/H → G/H induced by φ that is, if [x] is an equivalence class in G/H then

we take an element y ∈ [x] and we define φ′([x]) := [φ(y)]. By taking an element yi

out of each nonzero equivalence class we form a basis {α1 +H, . . . , αn +H} for G/H.

Furthermore, we let φ′′ be the restriction of φ to H, so that φ′′ is a homomorphism

from H to itself. Let {β1, . . . , βp} be a basis of H. We show that

tr(φ,G) = tr(φ′, G/H) + tr(φ′′, H).
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Let A and B be the matrices of φ′ and φ′′ with respect to their bases, then we have

φ′(αj +H) =
∑
i

aij(αi +H);

φ′′(βj) =
∑
i

bijβi.

Standard arguments show that {α1, . . . , αn, β1, . . . , βp} is a basis for G and by

definition G/H we have by the above equation that φ′(αj + H) = [
∑

i aijαi] which

implies that

φ(αj) =
∑
i

aijαi + (some element in H);

φ(βj) =
∑
i

bijβi.

From this we get the matrix for φ is of the form

C =

 A 0

∗ B

 ,
which gives trC = trA+ trB as we wanted to show.

Applying this to the chain group Cp(K), using the fact that Bp ⊂ Zp ⊂ Cp, and

that the chain map maps cycles to cycles and boundaries to boundaries, we have

tr(φ,Cp) = tr(φ,Cp/Zp) + tr(φ, Zp/Bp) + tr(φ,Bp).

If we restrict the range of ∂p to get a new homomorphism ∂′p : Cp → Bp−1 then

Zp is the kernel, and ∂′ induces an isomorphism of Cp/Zp with Bp−1. The map φ

commutes with this isomorphism, since it commutes with the original homomorphism
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∂. Therefore we have

tr(φ,Cp/Zp) = tr(φ,Bp−1).

From this we have

tr(φ,Cp) = tr(φ,Bp−1) + tr(φ∗, Hp) + tr(φ,Bp).

Multiplying both sides by (−1)p and summing over all p we get cancelation over the

first and last terms and obtain the resulting formula.

Definition 3.28. Let K be a finite complex and let h : |K| → |K| be a continuous

map. We define the Lefschetz number of h to be

Λ(h) =
∑

(−1)p tr(h∗, Hp(K)).

Lemma 3.29. Let K be a finite simplicial complex and with K ′ = bsdN(K) for sone

N > 0. Let h1 : |K| → |K| be a continuous map and define h2 : |K ′| → |K ′| where

h2(x) = h1(x). If Φh1 and Φh2 are acyclic, then Λ(h1) = Λ(h2).

Proof. Let i : |K ′| → |K| be the identity map. We have that i∗ : Hp(K
′)→ Hp(K) is

an isomorphism and that (h2)∗ = i∗
−1 ◦ (h1)∗ ◦ i∗. Therefore (h2)∗ and (h1)∗ will have

the same trace for each summand p.

The following theorem, the Lefschetz Fixed-Point Theorem, is classical, but we

need prove it for the specific homology that we have defined.

Theorem 3.30 (Lefschetz Fixed-Point Theorem). Let K be a finite complex and

h : |K| → |K| be a continuous map. Suppose that Φh exists. If Λ(h) 6= 0, then h has

a fixed point.
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Proof. Let ||x|| = sup |xi|. Suppose that h has no fixed points. Let ε = min ||x −

h(x)|| > 0. By uniform continuity there exists a δ such that if |x − y| < δ then

|h(x) − h(y)| < ε/2. Choose N so that for all simplices σ of K ′ = bsdN(K), the

diameter of σ is less than ε/2 and δ. Let h′ be the map h′ : |K ′| → |K ′| with

h′(x) = h(x) for x ∈ |K ′|. We first show that Φh′ exists. We construct a simplicial

acyclic carrier Φ that carries h′. For a vertex v, we define Φ(v) to be all 2-simplices

in K ′ that intersect h(v). It is easy to see that the subcomplex Φ(v) is acyclic. For

an edge e, we need to construct a subcomplex that is acyclic and contains the image

of e. First we take all the 2-simplices that intersect h(e). If the collection of those

simplices are acyclic, then we define Φ(e) to be that collection For the case where

the collection is not acyclic, the image is a connected set in |K ′| so the non-acyclicity

will not come from the 0-homology but rather the 1-homology, which means that the

collection contains some holes. If the holes cannot be filled in by 2-simplices, then

this would contradict the assumption that Φh exists. Therefore the holes are made

up of 2-simplices in K ′. We add them to the collection so that we have acyclicity, and

we define Φ(e) to be this collection. For a 2-simplex s, we take the collection of all

2-simplices that intersect h(|s|) along with Φ(e) for edges e ∈ s, add all 2-simplices

that are required to fill in any 1-holes. We define Φ(s) to be this collection. The

resulting map Φ is a simplicial acyclic carrier that carries h′, and it is easy to see that

Φ = Φh′ .

Given a chain map φ carried by Φh′ we show the diagonal entries of the matrices

representing φ are all zero. Consider φ0 : C0(K ′) → C0(K ′). Let v be a vertex that

is a basis element for C0. Since |h(v)− v| > ε, and since the diameter of simplices in

K ′ is less than ε/2, we have that Φ(v) cannot contain any 2-simplices in which v is

contained, which implies that φ(v) 6= v. Therefore the diagonal for the matrix of φ0
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has all zero entries.

Now we consider the case for φ1 : C1(K ′) → C1(K ′). Let e be an edge that

is a basis element for C1. Let m be the midpoint of the edge e. By the triangle

inequality, the image h(e) has to lie outside of the circle with center m and radius

ε/2. The circle with center m and radius ε/2 will contain all 2-simplices that can

possibly intersect the edge e. We now show that Φ(e) cannot contain any 2-simplex

that intersects e. Suppose not. Then the 2-simplices inside the circle were filled in

to eliminate non-acyclicity which means that the subcomplex of 2-simplices that h(e)

intersects wraps around the exterior of the circle and has a 1-dimensional hole. Let

a be a point in h(e). The line through m perpendicular to the line segment between

m and a divides the plane into two half-planes. The half-plane containing a must

contain all of h(e), because the distance between a and m is larger than ε/2 and the

distance from a to any other point b ∈ h(e) is less than ε/2. This is a contradiction

because the 2-simplices intersecting h(e) must wrap around the circle of radius ε/2

and the diameter of each simplex is less than ε/2. Therefore Φ(e) cannot contain any

2-simplex that intersects e which also implies that e /∈ φ1(e) so the diagonal of φ1 is

made up of zeros. For φ2 : C2(K ′)→ C2(K ′) similiar arguments to the case for edges

also show that the diagonal of φ2 is made up of zeros. Therefore by the Hopf trace

theorem we get that Λ(h′) = 0 and by the previous lemma we have Λ(h) = 0.

Suppose that we have a complex K consisting of 2-simplices and their faces with

a subcomplex K0 also composed of 2-simplices and their faces. Let us consider a

continuous map h : |K| → |K| where for x ∈ |K| \ |K0| we have h(x) ∈ |K| and for

x ∈ |K0| we have h(x) lies either in |K0| or outside |K|. We denote such a map by

h : (|K|, |K0|)→ (|K|, |K0|). What we would like to know is whether the map h has

a fixed point on the domain |K| \ |K0|. If we consider relative homology on K mod
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K0, and if we are able to compute h∗ : H(K,K0) → H(K,K0) then the following

definition and theorem show we have a Lefschetz number and Lefschetz Fixed Point

Theorem that extends to maps of relative homology. This then provides such a fixed

point theorem for h.

Definition 3.31. For a continuous map h : (|K|, |K0|)→ (|K|, |K0|). We define the

Lefschetz number of h to be

Λ(h) =
∑

(−1)p tr(h∗, Hp(K,K0)).

Theorem 3.32. Let K be a finite complex and let h : (|K|, |K0|) → (|K|, |K0|) be

a continuous map and suppose that Φh is acyclic-valued. If Λ(h) 6= 0, then h has a

fixed point.

Proof. The proof is essentially the same as the regular Lefschetz Fixed Point Theorem.

Subdivide K by barycentric subdivisions so that the matrix representing the chain

map φ : Cp(K
′, K ′0) → Cp(K

′, K ′0) has zeros along the diagonal and it follows from

Hopf Trace Theorem.

This concludes the discussion of the simplicial homology we use for our computa-

tions. In the next chapter we explain how Theorem 3.32 is applied in order to show

the existence of periodic orbits.

46



4 Summary of Computational Methods

In this chapter we give a summary of the use of homology and the Lefschetz Fixed

Point Theorem used in our computations. Suppose we are given a continuous map

f : R2 → R2 and some triangulation of a compact polyhedron in R2, which gives

a finite simplicial complex ∆ made up of 2-simplices and their faces. We use the

notation |∆| to mean the underlying space of the simplicial complex ∆.

First we create a piecewise linear map f̂ that approximates f . Given a 2-simplex S1

with vertices v1, v2, v3, we map the vertices forward by f to get w1 = f(v1), w2 = f(v2),

and w3 = f(v3). We let f̂(v1) = w1, f̂(v2) = w2, f̂(v3) = w3, and then we extend

linearly for all points in S1. See Figure 4.2.
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Figure 4.2: The piecewise linear map f̂ on S1.
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Figure 4.3: The image of the vertex is moved to the nearest barycenter.

We define the domain of f̂ by |D| where

D :=
⋃
σ∈∆

{σ : f̂(σ) ∩ |∆| 6= ∅},

that is, the union of all simplices such that their image under f̂ intersects the given

triangulation. If a 2-simplex in the domain has a vertex whose image under f̂ lies

outside of |∆|, then we redefine the image of that vertex to be the nearest barycenter

of a 2-simplex in ∆, and then we recompute f̂ on that 2-simplex. If the size of the

2-simplex is small, then the change in image is expected to be a small perturbation

of the original image. This step increases the chances of obtaining a simplicial acyclic

carrier f̂ . See Figure 4.3.

In the end we have constructed a piecewise linear map f̂ : R2 → R2 whose domain

is |D|. From this map f̂ , we construct a combinatorial multivalued map F : D ⇒ ∆

from the 2-simplices of D to the 2-simplices of ∆. For each 2-simplex S ∈ D we define

F by

F(S) := {σ ∈ ∆ : |f̂(S)| ∩ σ 6= ∅}.

We say that F is a combinatorial enclosure for f̂ if for each S ∈ D we have
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Figure 4.4: The red triangles are the image of F on the simplex S1.

the following property

f̂(S) ⊂ int(|F(S)|).

If we have a combinatorial enclosure of f̂ , then we can focus on the dynamics of

the combinatorial map F , from which we can infer some dynamics for the map f̂ .

Here we give some of the definitions and theorems for dynamics on F .

Given a 2-simplex σ ∈ D, we define a full orbit with initial simplex σ under F

to be a sequence of 2-simplices Qn ∈ D with n ∈ Z such that

(1) Q0 = σ;

(2) Qn+1 ∈ F(Qn).

For example if S1 ∈ D with F(S1) = {S4, S5, S6, S7} and S4 ∈ D with F(S4) =

{S1, S2, S3}, then the sequence {. . . , S4, S1, S4, S1, . . .} with Q0 = S1 would be a full

orbit with initial simplex S1, and furthermore we would say this is a period-2 orbit.

See Figure 4.5. We use the notation γn(S1) to denote the sequence of a full orbit with

initial simplex S1 so that γ0(S1) = S1.
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Figure 4.5: The forward orbit of S1 is {S4, S5, S6, S7} while the forward orbit of S4 is
{S1, S2, S3}. This implies the existence of the orbit {. . . , S4, S1, S4, S1, . . .} for F .

If we take a finite subsetN of D, then we can define the combinatorial maximal

invariant set in N under F by

Inv(N ,F) := {σ ∈ N | ∃γn(σ) ⊂ N},

that is, all σ ∈ N such that there exists a full orbit with initial simplex σ that is

contained in N . One can easily find the combinatorial maximal invariant set by

considering a graph where the 2-simplices of N are the vertices with directed edges

correspond to the forward image of F restricted to N . The strongly connected com-

ponents of the graph together with the connecting paths between these components

correspond to the combinatorial maximal invariant of N . These can easily be com-

puted in linear time by using standard depth-first search algorithms to locate the

strongly connected components of the graph [9]. For a given finite subset N of D we

say that N is a combinatorial isolating neighborhood if

{σ ∈ D | σ ∩ | Inv(N ,F)| 6= ∅} ⊂ N .
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Our goal is to take 2-simplices in D that exhibit periodic behavior and

try to isolate them. As we show later, an isolated combinatorial invariant

set for F corresponds to an isolating neighborhood for an invariant set of

f̂ . The following algorithm from Day [10] is used to obtain isolation with

input S being a subset of D that consists of periodic simplices under F .

Algorithm-Isolation

1. S := invariant set of D.

2. S ′ := empty set.

3. while (S ′ ⊂ S)

4. S ′ := S

5. N := all 2-simplices in ∆ that intersect |S ′|.

6. if (N 6⊂ D)

7. return “Did not isolate”

8. else

9. S := Inv(N ,F)

10. endwhile

11. return S and N

For example suppose we have a 2-simplex S1 that is 1-periodic for F as in Figure

4.6. In the first step of the algorithm we would take all of the simplices in D that

intersect S1 which would be all of the blue triangles. We then find the maximal

invariant set inside the blue triangles, and suppose the maximal invariant set is S1∪S2.

This set is not isolated, since there are simplices that intersect S2 that are not in the

blue triangles. We add the simplices that intersect S2 to the set of blue triangles

and then recompute the maximal invariant set of the blue triangles. If the maximal

51



�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��@

@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��@

@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��@

@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��@

@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

S1
S2

@
@@ �

��
@
@

@
@@

�
�
�
��

�
�
�
�
�
��

�
�
�
��@

@
@
@@

@
@
@
@
@
@@

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��@

@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

S1
S2

-

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��@

@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��@

@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��@

@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

@
@@ �

�
�
��

@
@

@
@@

�
�
�
��

�
�
�
�
�
��

�
�
�
�
�
��

@
@
@
@@

@
@
@
@
@
@@

@
@@

Figure 4.6: Left: S1 and S2 are the maximal invariant set but they are not isolated.
Right: S1 and S2 are now isolated

invariant set is S1 ∪ S2, then we are done, and the set of blue triangles is an isolating

neighborhood with maximal invariant set S1 ∪ S2. This is true of course only if the

blue triangles are part of D. If at any time one of the blue triangles is not in D, then

the algorithm returns “no isolation”.

At this point we try to find and isolate many periodic orbits for F , and then find

connecting orbits between those periodic orbits with the condition that the connecting

orbits can also be isolated. For example suppose that S1 is a fixed point for F , that

is S1 ⊂ F(S1), and that S2 and S3 are a period-2 orbit for F . Furthermore suppose

there is an S4 such that S4 ⊂ F(S3) and S1 ⊂ F(S4) and that there exists an S5 such

that S5 ⊂ F(S1) and S2 ⊂ F(S5). See Figure 4.7. We then let S = {S1, S2, S3, S4, S5}

and call the isolation algorithm on S. If we can isolate S, then we say we have isolated

recurrent dynamics for F . The reason for hooking together periodic orbits with low

periods with connecting orbits is so that now we have infinitely many periodic orbits

with arbitrarily large periods for F .

Before we discuss the next step, we need to talk about the notion of an index pair.

To motivate, consider the following example where g : R2 → R2 is a map given by
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Figure 4.7: We have the period two orbit between S2 and S3 with a connecting orbit
to S1 which maps to itself.

the matrix

g :=

 2 0

0 1/2

 .
Define P1 to be the set P1 := [−1, 1] × [−1, 1] and define P0 := ({−1} × [−1, 1]) ∪

({1} × [−1, 1]). Under the map g the image of P1 gets contracted in the y direction

by a factor of 1/2 and expanded in the x direction by 2. The maximal invariant set

in P1 is the fixed point q := (0, 0). From Figure 4.8 it is easily seen that the compact

sets P1 and P0 satisfy the following three properties:

(1) Inv(cl(P1, P0), g) ⊂ int(cl(P1 \ P0));

(2) g(P0) ∩ P1 ⊂ P0;

(3) cl(g(P1) \ P1) ∩ P1 ⊂ P0.

A pair (P1, P0) consisting of two compact sets P1 and P0 where P0 ⊂ P1 and

satisfy the above properties for a given map g is called an index pair for g. The

set P0 can be thought of as an “exit set” for P1. Later we will be computing relative

homology groups using index pairs (P1, P0) where P1 is the underlying space of some

finite simplicial complex P1 and P0 the underlying space of P′, a subcomplex of P1.
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Figure 4.8: P1 is the unit square with P0 being the red sides. Expansion in the
x-direction and contraction in y-direction with fixed point q.

Now we return to the discussion of the dynamics of the combinatorial map. After

isolating recurrent dynamics, we find index pairs for the map f̂ using the isolating

neighborhoods we computed from F . This will be the first point where the combina-

torial dynamics will imply something about the dynamics of f̂ . We use the following

algorithm from [10] to compute index pairs using a finite set N ⊂ D that is an

isolating neighborhood for F with maximal invariant set S.

Algorithm-Combinatorial Index Pair

1. S := Inv(N ,F);

2. Let the domain of F be restricted to N ;

3. C := N \ S;

4. P0 := F(S) ∩ C;

5. repeat

6. P ′0 := P0;

7. P0 := F(P0) ∩ C;

8. P0 := P0 ∪ P ′0;

9. until(P0 = P ′0);

10. P1 := S ∪ P0;

11. return(P1,P0,);

Theorem 4.1 ([17]). Given a combinatorial enclosure F of a continuous map f̂ :
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R2 → R2 with a finite subset N ⊂ D and S = Inv(F ,N ) given by the Isolation

algorithm, then the Combinatorial Index Pair algorithm returns finite subsets of ∆,

P1,P0, with which we define P1 := |P1|, P0 := |P0|, that have the following properties:

(1) |S| is an isolating neighborhood for g;

(2) (P1, P0) is an index pair for g which isolates Inv(|S|, f̂);

Proof. First, note that in each pass of the repeat loop we have that P0 ⊂ N , and

since N is a finite subset of D, eventually the repeat loop must stop.

We have P1 := S ∪ P0 ⊂ N . We take the directed graph with vertices corre-

sponding to 2-simplices in N and directed edges between them corresponding to the

images of map F . We form the subgraph with vertices corresponding to P1. From

here on we do not distinguish between the vertices of the graph and the 2-simplices

in N , as it should be clear from the context. The vertices of the set S form the

strongly connected components and the connections between the strongly connected

components of the directed graph on N and of the directed subgraph restricted to

P1. The construction of the set P0 in the algorithm implies that for each vertex of

p ∈ P0 there exists a vertex s ∈ S such that there is a directed path from s to p.

On the other hand, for each vertex in p ∈ P0 there can not exist a directed path

from p to a simplex s ∈ S. Otherwise p would be in a strongly connected component

or a connection between stongly connected components so that p ∈ S, which is a

contradiction since by construction P0 ∩ S = ∅.

To prove (1), suppose there exists an x ∈ Inv(|S|, f̂) such that x is not in the

interior of |S| which means x is on the boundary of |S| denoted by bd|S|. This means

that x lies on an outer edge of a 2-simplex in S so that x lies in a simplex σ ⊂ N

but σ /∈ S. Now since x ∈ Inv(|S|, f̂), there exists an x1 ∈ |S| such that f(x1) = x

and x2 ∈ |S| such that f̂(x) = x2. Let S1 ∈ S such that x ∈ S1 and let S2 ∈ S
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such that x2 ∈ S2. Since F is a combinatorial enclosure of f̂ , we have σ ∈ F(S1)

and S2 ∈ F(σ). This implies that there exists a directed path in the graph from S

through σ and back to S so that σ is in the strongly connected component of the

graph, which is a contradiction. Therefore x must be in the interior of |S| so that |S|

is an isolating neighborhood for f̂ .

To prove (2), we have prove all three properties in the index pair definition. First,

it is trivial to see that cl(P1 \ P0) = |S| and by (1) we have Inv(cl(P1 \ P0), f̂) ⊂

int(cl(P1 \ P0)). Second we need to prove that f̂(P0) ∩ P1 ⊂ P0. Let y ∈ f̂(P0) ∩ P1

and let x ∈ P0 such that f̂(x) = y also let σ ∈ P0 such that x ∈ |σ|. If y ∈ S1 for

some S1 ∈ S then there would exist a directed edge from σ to S1 in the subgraph but

we showed previously in (1) that this can not happen. So y ∈ |P1| \ |S| ⊂ |P0| ⊂ P0.

Finally we need to show that cl(f̂(P1)\P1)∩P1 ⊂ P0. Let y ∈ cl(f̂(P1)\P1)∩P1 and

suppose y /∈ P0. This implies that y is contained on the edge of a 2-simplex S1 for

some S1 ∈ S and is contained on the edge of a 2-simplex σ ∈ N \S with σ /∈ P0 such

that there exists a point z ∈ σ and a point x ∈ P1 with f̂(x) = z. Let τ ∈ P1 such

that x ∈ τ . This means that σ ∈ F(τ). If τ ∈ S then this would contradict σ /∈ P0

and if τ ∈ P0 then this would also contradict σ /∈ P0 since the algorithm would have

added σ to P0. Therefore we have that cl(f̂(P1) \ P1) ∩ P1 ⊂ P0 and we have proven

(2).

We apply the combinatorial index pair algorithm to get index pairs P0 and P1 for

the map f̂ . We label each of the disjoint sets of |P1| with the label Ni. We construct

a directed graph with the Ni as vertices and a directed edge from a Ni to a Nj exists

if there exists a 2-simplex in Ni \ P0 that has a forward image under F into Nj \ P0.

See Figure 4.9.

What we would like to do now is to show that the map f̂ contains all dynamics
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Figure 4.9: Left: The index pair consisting of 5 components. The red triangles
indicate the exit set. Right: The transitional graph corresponding to the index pair.

which correspond to the shift dynamics of the transition graph of the Ni. For example,

the transition graph above has an orbit (. . . , N3, N2, N3, . . . , ) that alternates between

the vertices N2 and N3 and we will want to find a point s ∈ N2 such that f̂(s) ∈

N3 and f̂ 2(s) ∈ N2 and so on. In fact we establish a stronger result by finding

a point s ∈ N2 such that f̂(s) ∈ N3 and f̂ 2(s) = s. We first take the image of

N2 under the map f̂ . If f̂(|N2|) is not contained in N3, then we check if F(N2) is

acyclic in the regular homology. If F(N2) is acyclic, then there exists a retraction

map rN3 that retracts |F(N2)| to N3 by keeping N3 fixed and retracting the other

points to the exit set of N3. If f̂(|N2|) is contained in N3, then we let rN3 be the

identity. We let f̂N2→N3 := rN3 ◦ f̂ |N2 . Now we repeat the same arguments to get

the continuous map f̂N3→N2 . We define the map f̂N2→N2 := f̂N2→N3 ◦ f̂N2→N3 so that

f̂N2→N2 : (|N2|, |N2 ∩P0|)→ (|N2|, |N2 ∩P0|) is a continuous map on index pairs. We

check that the map f̂N2→N2 has a minimal relative acyclic carrier, and then we compute

the relative homology map for f̂N2→N2 . From Figure 4.9 we see that dimension p = 1 is

the only dimension with nontrivial homology and we let [f̂N2→N2 ]∗ denote the matrix

of the homology map [f̂N2→N2 ]∗ : H1(N2, N2 ∩ P0)→ H1(N2, N2 ∩ P0). We apply the
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Lefshetz Fixed Point Theorem to the map f̂N2→N2 so that if the matrix [f̂N2→N2 ]∗ has

nonzero trace, then there exists an x ∈ |N2|\|P0| such that f̂(x) ∈ |N3| and f̂ 2(x) = x.

The point x does not have a smaller period since it must travel through the different

components. This means that the point x is a periodic point corresponding point to

the periodic sequence (. . . , N3, N2, N3, . . . , ) in the shift space.

We would like to verify that there is a corresponding point in

|P1| \ |P0| for every point in the shift space. There are some diffi-

culties with the verification process. For example, let (N2, N3)n de-

note the repeating symbol space n-times and take the shift space point

(. . . , N1, N2, N3, N2, N3, (N2, N3)n, N4, N5, N1, N2, N3, N2, N3, (N2, N3)n, . . .). For

the N3, N2, N3, (N2, N3)n part of the sequence we compose the map f̂N3→N3 n-times

and by the functorial properties we have that the matrix [f̂N3→N3 ]
n
∗ is the matrix of

the homology map for f̂nN3→N3
. To verify a point for the sequence we need to compose

homology matrices [f̂N5→N1 ]∗[f̂N4→N5 ]∗[f̂N3→N4 ]∗[f̂N3→N3 ]
n
∗ [f̂N2→N3 ]∗[f̂N1→N2 ]∗ and

apply the Lefschetz fixed point theorem. But n is arbitrary, which means there are

infinitely many symbols in the shift space that we need to verify, which of course

we cannot do, since we can only check finitely many conditions. We are rescued

from this difficulty if [f̂N3→N3 ]
k
∗ = [f̂N3→N3 ]∗ for some positive integer k. Now there

are only finitely many powers of the matrix which implies that the verification of

(. . . , N3, (N2, N3)j+k, N4, N5, N1, N2, N3, (N2, N3)j+k, . . .) will be the same as verifying

(. . . , N3, (N2, N3)j, N4, N5, N1, N2, N3, (N2, N3)j, . . .). Therefore if the matrix satisfies

this property then the verification process is finite. The matrix [f̂N3→N3 ]∗ consists

of entries from Z2, which means that either the matrix is nilpotent or it satisfies

[f̂N3→N3 ]
k
∗ = [f̂N3→N3 ]∗ for some k. If the matrix is nilpotent, then there exists a k

such that [f̂N3→N3 ]
k
∗ is the zero matrix which means for all n ≥ k the composition
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of the matrices is the zero matrix, which means the trace is zero, and therefore

we cannot verify the existence of a periodic point corresponding to that symbol

sequence. Suppose d is the number of entries of [f̂N3→N3 ]∗. If [f̂N3→N3 ]
2d

∗ is the zero

matrix, then [f̂N3→N3 ]∗ is nilpotent, otherwise if it is non-zero then there exists a

k < 2d such that [f̂N3→N3 ]
k
∗ = [f̂N3→N3 ]∗.

The following discussion of showing a semiconjugacy is from Day [11]. Let ΣT

denote the shift space for the transition matrix of the Ni. Define S to be the set

Inv(|P1|, f̂) which is compact. For x ∈ S let us denote xj = f̂ j(x). We know that

xj ∈ Ni for some i which we denote by Nij . We define a map h : S → ΣT as follows:

h(x) := (. . . , Ni−1 , Ni0 , Ni1 , . . .).

It is easy to see that h is continuous. Let S ′ := cl(h−1({periodic orbits of ΣT}). The

set S ′ is a compact subset of S. Since h is continuous and S ′ is compact, we have h(S ′)

is compact. The periodic orbits of ΣT are contained in h(S ′), and since the space ΣT

is equal to the closure of the periodic orbits we have h(S ′) = ΣT . Moreover, since

S ′ ⊂ S, we have that h maps S onto ΣT . For the restriction of f̂ to S, f̂ : S → S, and

for the shift map, σ : ΣT → ΣT , it easy to see that σ ◦ h = h ◦ f̂ . This implies that h

is a semiconjugacy from f̂ to σ. Since f̂ is semiconjugate to σ, then the dynamics of

σ is a lower bound for the dynamics of f̂ . In particular if the shift-map σ is chaotic,

then f̂ contains chaotic-behavior, and the entropy of f̂ is greater than or equal to the
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entropy of σ. In our example the matrix for the shift map σ is



0 1 0 0 0

0 0 1 0 0

0 1 0 1 0

0 0 0 0 1

1 0 0 0 1


.

This matrix implies that the shift-map is chaotic, and it has a largest positive eigen-

value of 1.4433 with log(1.4433) ≈ 0.159. So if we can verify that h is a semiconjugacy,

then we can conclude that the map f̂ has chaos and that the entropy is greater than

or equal to log(1.4433).
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5 Implementation

Given a time-series of data points dn that lie in some compact set M ⊂ R2, we

form a triangulation using a subset of the time-series data points dn. The triangula-

tion that we use is called the Delaunay Triangulation. The Delaunay triangulation

has the property that the open circumballs of the triangles contain no other vertices

in the triangulation, and it gives the convex hull of the vertices. We chose the Delau-

nay triangulation for these properties and also because of the fact there are efficient

algorithms for inserting and deleting points from the triangulation. For a description

of the Delaunay Triangulation and the insertion algorithm see [6]. For the deletion

algorithm see [13]. In what follows, we have conditions that we require on our trian-

gulation. We have an algorithm that involves adding and removing appropriate data

points to the triangulation until the conditions for the triangulation are met. The

final triangulation gives us a finite simplicial complex on which we define a piecewise

linear map f̂ and a combinatorial map F based upon the behavior of the time-series

data points. The methods of Chapter 4 are used to make inferences about the dy-

namics of f̂ . If the time-series comes from experimental data, then we conclude that

the dynamics present in f̂ approximate the dynamics of the physical system that

produced the experimental data. If the time-series comes from an iteration of a con-

tinuous map f : M →M or a projection of an iteration of a continuous map, then we

conclude that the dynamics present in f̂ approximate the dynamics of the continuous

map f if conditions on embedding hold as in Chapter 2.

We now discuss the implementation of our code. We define a data point
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to be a point from the time-series. If a data point is currently a vertex of the

triangulation, then it is refered to as a vertex; otherwise it is called a sample

point. We start with a rectangle consisting of four points A,B,C, and D, such

that the time-series data is contained in the interior of the rectangle. The four

points A,B,C,D are called the exterior points, and it is important to clarify

that the exterior points are not data points. We start with an initial triangulation

of the rectangle consisting of the two triangles ABC and CDA. Here we give a

list of the steps in the implementation of our code using this initial triangulation.

Implementation Steps

1. Build Interior Method

2. Interchange Method

3. Selection Method

4. Rangemaker Method

5. Index Pair Method

6. Compute Homology Map Method

5.1 Build Interior Method

This method has four arguments, n,m,k, and δ. The argument n denotes how many

total data points we have, m denotes how many data points are initially used as

vertices in the triangulation, k denotes a transfer rate to be explained later, and δ is

a positive real number. We take the n data points and put them on a list called

temp := {z1, z2, . . . , zn}
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For each data point zi, we add a bounded noise ri to get di := zi + ri where ri is

contained in the ball of radius δ centered at 0. We call this action a blurring of the

data points, and we call di a blurred data point. The reason for the blurring is

that the data points often come from a forward orbit on a transitive attractor which

typically has fractal dimension that is less than two. A triangulation from these points

would not cover the attractor with sufficient area. Therefore we blur randomly to get a

triangulation that covers the attractor and approximates an attracting neighborhood.

We put the blurred data points on a list called

allpoints := {d1, . . . , dn}.

From here on we refer to the blurred data points as data points. The first m data

points from allpoints are placed on a list called trimakers and the other data points

from allpoints are placed on a list called others. The data points on trimakers are

now inserted one at a time into the triangulation using a Delaunay Insert algorithm.

The data points that are on trimakers are now vertices in the triangulation, while

the data points on the others list are now sample points. We call a simplex in the

triangulation an exterior simplex, if one of its vertices is an exterior point. A

sample point is called interior if the vertices of the simplex it is contained in are

not exterior points. A vertex is called interior if every one of its simplices in its

star is not exterior. After the insertion of the data points of trimakers into the

triangulation, we perform an interior check of each sample point on the others list

and flag each sample point that is not interior. We do an interior check of each

vertex of trimakers and flag each vertex that is not interior. The first condition

that we want our triangulation to fullfill is to use m data points as vertices for the

triangulation such that the remaining sample points are contained in simplices that
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are not exterior. We achieve this through a series of operations that add non-interior

data points to the triangulation and remove interior vertices from the triangulation.

First we remove all interior sample points from the others list so that the others

list consists of non-interior sample points. We then take the first k sample points

from the others list and add them one at a time to the triangulation. If the others

list is smaller than k than we add all the points on the list. Next we remove k interior

vertices from the triangulation. Removing interior vertices from the triangulation

preserves sample points and vertices being interior. If there are less than k interior

vertices, then we remove all of them. The interior vertices that were removed now

become sample points and are removed from the trimakers list. The sample points

that were added to the triangulation are now vertices and are removed from the

others list and put on the trimakers list. Now we do an interior check of the

vertices and the sample points. The others list is updated to contain non-interior

sample points. Now we repeat the process of adding and deleting. After each instance

of adding and deleting, the others list consists of sample points that are non-interior

and the algorithm stops when the others list is empty. After stopping the algorithm,

it could very well be that the number of data points in the triangulation is larger than

m. This is due to the fact that at the instance where we remove k interior vertices,

there may not be any interior vertices to remove and we just go on to the next step

in the algorithm. In the end we construct a triangulation of at least m vertices such

that the remaining sample points are interior. The resulting triangulation has the

property that all sample points are interior. The algorithm for this step is listed here.

Build Interior Algorithm

1. Make list temp:= {z1, . . . , z2} consisting of time-series.

2. for i = 1 to i = m
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3. di := zi + ri

4. endfor

5. Make list allpoints:= {d1, . . . , dm}.

6. Make list trimakers:= {d1, . . . , dn}.

7. Make list others:= {dn+1, . . . , dm}.

8. Insert data points of trimakers into triangulation.

9. while others is nonempty

10. Do Internal check on allpoints.

11. Update others list to contain non-interior sample points.

12. Add k points from others to triangulation.

13. Put the k points on trimakers list and remove them from others.

14. Do internal check on allpoints.

15. Delete k internal vertices from trimakers.

16. endwhile

5.2 Interchange Method

Our goal is to approximate the dynamics contained in the time-series by using a

combinatorial multivalued map F . To get a good approximation, the sizes of triangles

in the domain of F should be small. In this method we refine our triangulation in

order to get a better approximation of the dynamics. The refinement is done through

a series of adding and deleting points from the triangulation. The idea of adding or

deleting points from the triangulation in order to get a better approximation for the

linear interpolant was done by Mees [1]. Mees used conditions for adding and deleting

based on error estimates of functions. In the following our conditions are based on

the geometry of the triangulation.
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For each sample point, we take each vertex of the triangle that contains the sample

point. If the vertex is interior, then we compute the distance of the sample point to the

vertex. We take the minimum of the these distances that were computed and we call

it the min-distance of the sample point. The the min-distances are computed for all

sample points and they are sorted from lowest to highest. The highest min-distance

is called the max-min-distance. By a series of adding and deleting appropriate

points, we make the max-min-distance decrease. The max-min-distance being small

implies that any triangle containing a sample point is small. The Interchange method

takes two parameters j and k which are positive integers. The Interchange method

has a for loop and the parameter j gives the number of instances of the loop. For

each instance of the loop the following procedure is repeated k-times. We take the

sample point with the lowest min-distance and the vertex corresponding to the min-

distance is deleted from the triangulation. The sample point corresponding to the

max-distance is then added to the triangulation. The min-distances are recomputed

for all sample points. If the max-min-distance increased, then we keep adding the

sample points with the highest min-distance to the triangulation until the max-min-

distance decreases. See Interchange Algorithm.

Interchange Algorithm

1. Compute min-distances for all sample points to interior vertices.

2. Order min-distances from largest to smallest.

3. R :=largest min-distance.

4. r :=smallest min-distance.

5. for i = 1 to i = j

6. d := R

7. for h = 1 to h = k
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8. Delete closest interior vertex to r.

9. Add the sample point corresponding to R.

10. Recompute min-distances.

11. Order them from largest to smallest.

12. Add the N sample points to triangulation corresponding to the N largest

min-distances.

13. Recompute min-distances.

14. endfor

15.endfor

21. return R.

5.3 Selection Method

In the selection method we now choose the simplices that make up the underlying

space on which we define the simplicial multivalued map F . We want the sizes of

the simplices in our complex to be relatively small. We want to avoid large simplices,

since the multivalued map defined on them would be a bad approximation. We

take the triangulation on the rectangle and perform a selection process. After the

interchange method is completed, the min-distances are recomputed. The Selection

Method has one parameter β which is a positive real number. We define d := (β ∗

max-min-distance). The simplices that we choose to keep are put on a list called

Mapmaker. We have two criterion for selecting a simplex:

(1) if the simplex contains a sample point, then we keep the simplex;

(2) if the sidelengths of the simplex are less than or equal to d, then we keep the

simplex.

After the selection process is over, the Mapmaker list is final and is not added to
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or deleted from for the rest of the implementation.

5.4 Rangemaker Method

We now build a simplicial multivalued map F . For each simplex that is on the

Mapmaker list we construct a forward image of that simplex that consists of simplices

from Mapmaker. For a given simplex σ in Mapmaker, we map each vertex forward by

the map f so that if we denote v1, v2, and v3 as the vertices of the simplex we get

w1 = f(v1), w2 = f(v2) and w3 = f(v3) where w1, w2, and w3 are points in R2. With

these values we solve the following linear equation

w = Av + b

for A and b where A is a 2× 2 matrix and b is a 1× 2 matrix. The matrices A and b

are saved for each simplex in Mapmaker. After solving for A and b we then define the

affine map on the simplex

f̂(x) = Ax+ b.

We go through all simplices in Mapmaker and see which simplices does f̂(σ) intersect.

The code we use is based on the algorithms from Moller [22]. All simplices in Mapmaker

that intersect f̂(σ) are put on a list called the forward list of σ. If there is no simplex

in Mapmaker that intersects f̂(σ), then the forward list of σ is left empty.

We want all simplices that have a nonempty forward list to satisfy the condition

that the image of the vertices under the affine map are contained in simplices in

Mapmaker. This condition is necessary in order to construct a simplicial acyclic carrier.

If a simplex that has a non-empty forward list does not satisfy the condition then

we put the simplex on a list called uncovered. Let σ be a simplex that is on the
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uncovered list. Suppose v is a vertex of σ such that f̂(v) is not contained in a

Mapmaker simplex. We compute the barycenters of all the simplices in the forward

list of σ and from these barycenters let q be the closest barycenter to f̂(v). The image

of v under f̂ is redefined to be q. The matrices A and b along with the forward list of

σ gets updated. This is done for each simplex on the uncovered list. We have now

constructed our simplicial multivalued map F . The domain D for the multivalued

map F consists of all mapmaker triangles S that have a nonempty forward and

such that F is a combinatorial enclosure for S. To verify that F is a combinatorial

enclosure for S is a simple check using our triangle intersection algorithms. We point

out that the check for a combinatorial enclosure is not rigorous due to round-off error.

Now that the simplicial multivalued map F has been constructed, we compute

F−1 for each simplex in Mapmaker. For each simplex σ in Mapmaker we create a list

of simplices called the backward list which contains all simplices in Mapmaker such

that σ is contained on its forward list.

For each vertex of a simplex that has a nonempty forward list, we take the image

of the vertex under the affine map of that simplex. We run through all simplices

in Mapmaker and check if the image of the vertex intersects each simplex. If a sim-

plex intersects the image of the vertex then we put that simplex on a list called

vertforward. The list vertforward is part of the data structure of the vertex. We

repeat the same steps for all edges of simplices with nonempty forward list. The

simplices that intersect the image of the edge are put on a list called edgeforward

which is part of the data structure of the edge.
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5.5 Index Pair Method

In the Index Pair method we find periodic orbits and connecting orbits under the map

F . We then use the Index Pair Algorithm from Section 4. The method has one argu-

ment n which is a positive integer. The argument gives the highest period in which we

search for a periodic orbit. Starting with period 1 and proceeding to period n, we add

periodic orbits to a list called the worklist by an algorithm which we now describe.

Periodic Orbit Finder Algorithm

1. k = 0;

2. for i = 1 to i = n;

3. for each simplex S in Mapmaker;

4. if S has least period i;

5. orbit:= periodic orbit through S of least period i;

6. temp:= orbit ∪ worklist;

7. call Isolation Algorithm on temp;

8. if temp is isolated;

9. Iso:= isolating neighborhood for temp;

10. m := number of connected components of Iso.

11. if k > m;

12. Add orbit to worklist;

13. k = m;

14. endif ;

15. endif ;

16. endif ;

17. endfor;
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18. endfor;

19. return worklist;

After finding the periodic orbits and puting them on the worklist we now try

to find connecting orbits between the periodic orbits. We now describe this process

in the following algorithm which takes the worklist outputed from the previous

algorithm.

Periodic Connector Algorithm

1. k = the number of connected components for isolating worklist;

1. for i = 1 to i = n;

2. temp1:= list of periodic orbits of least period i;

3. for each periodic orbit on temp1;

4. orbit1:= current periodic orbit from temp1;

4. for j = i+ 1 to j = n;

5. temp2:= list of periodic orbits of least period j;

6. for each periodic orbit on temp2;

7. orbit2:= current periodic orbit from temp2;

7. orbit:= connecting orbit from orbit1 to orbit2;

6. temp:= orbit ∪ worklist;

7. call Isolation Algorithm on temp;

8. if temp is isolated;

9. Iso:= isolating neighborhood for temp;

10. m := number of connected components of Iso.

11. if k > m;

12. Add orbit to worklist;

13. k = m;
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14. endif ;

15. endif ;

16. endfor;

17. endfor;

18. endfor;

19. endfor;

20. return worklist;

After finding and isolating our periodic points and the connections between them

we are now ready to construct our index pair P0 and P1. We call the Index Pair

Algorithm on the worklist that was outputed from the previous algorithm. After P0

and P1 are found we then give each connected component of P1 a component number

Ni.

5.6 Compute Homology Map Method

We start the last method in our implementation with two checks on homology in-

volving the index pair (P1, P0). The first thing we check is to verify that we generate

an acyclic simplicial carrier by using the vertforward, edgeforward, and forward

lists. By construction, if v is a vertex and e is an edge such that v ∈ e, then the

vertforward of v is contained in the edgeforward of e and also if s is a simplex such

that e ∈ s, then edgeforward of e is contained in the forward of s. For all vertices

v ∈ P1 \ P0, we have by construction that the vertforward list for v is acyclic. For

all edges e ∈ P1 \ P0 we do an acyclicity check on the edgeforward list of e and for

all edges s ∈ P1 \ P0 we do an acyclicity check on the forward list of s. If any of the

edgeforward or forward lists are non-acyclic then the implementation is stopped.

If all of the lists are acyclic then we have a minimal acyclic carrier Φf̂ where we
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define Φf̂ (v) to be the vertforward list of v, Φf̂ (e) to be the edgeforward list of e,

and Φf̂ (s) to be the forward list of s. Now we move on to the second check. For

each connected component Ni of (P1, P0), we take the union of all forward lists of

2-simplices in Ni and we do an acyclicity check on the union. If it is acyclic, then we

know that the retraction maps discussed in Chapter 4 exist.

After the acyclicity check and the verification of Φf̂ , we now build a chain map

carried by Φf̂ . For vertices, we choose any vertex on the vertforward list to be the

image under the chain map of a vertex. For an edge e with vertices v1 and v2, denote

c1 to be the vertex that is the image of v1 and c2 the vertex that is the image of v2.

We construct the matrix for the boundary map ∂ : C1 → C0 restricted to the image

of e under the acyclic carrier and then we do a linear solve for an edge sequence such

that the image of the boundary map on the sequence gives c1 +c2. The edge sequence

that is the solution will be the image of e under the chain map for edges. We repeat

the same procedure for simplices to get the chain map for simplices. Note that by

construction the chain maps are carried by the acyclic carrier.

We compute the generators of the relative homology for the index pair. For a fixed

generator, we map the generator forward by using the chain map. It is determined

which linear combination of the generators is homologous to the forward map of the

generator by a linear solve. We then say the fixed generator maps to this linear

combination in the homology map. We do this for all the generators. The matrices of

the map of homology are then constructed and outputed along with the directed graph

representing the map between the generators and the directed graph representing the

map between the components.
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6 Convergence Theorems

In this section we state and prove some of the convergence theorems which characterize

how well our algorithms approximate the dynamics of a continuous map. If the time-

series data is generated from a continuous map f , then we can use the algorithms in

Section 4 and Section 5 on the piecewise linear map f̂ to find a lower bound for the

dynamics of f̂ . We want to infer that this is also a lower bound for the dynamics

of f by showing some convergence of f̂ to f . Also we would like to show if f has a

transitive attractor, then the region triangulated from the Mapmaker list converges to

the attractor.

The following proposition is a fundamental proposition in [25], so we exclude the

proof.

Proposition 6.1. A transitive attractor is a compact invariant set.

We need the following lemma when dealing with continuous maps with transitive

attractors.

Lemma 6.2. Let Λ be a transitive attractor for a continuous map f : M → M and

let ε > 0. Then there exists a point x0 ∈ Λ and a natural number n such that the set of

iterates {f(x0), f 1(x0), . . . , fn(x0)} forms an ε-cover of Λ. Futhermore, there exists a

natural number k with k ≥ n such that for each j ≤ n there exists an element f i(x0)

of
{
f(x0), f 1(x0), . . . , fk(x0)

}
such that f i(x0) ∈ B(f j(x0), ε) and f i(x0) 6= f j(x0).

Proof. Since Λ is compact, there exists a finite set of points {y1, . . . , yk} contained

in Λ that form an ε/2-covering of Λ. Since f |Λ is transitive, there exists an x0 ∈ Λ

74



that has a dense forward orbit. Therefore for each yi there is a natural number ni

such that d(fni(x0), yi) < ε/2. Let n0 be the maximum over the ni. By the triangle

inequality the set {f(x0), f 1(x0), . . . , fn0(x0)} form, an ε-cover of Λ.

Consider j ≤ n and the ball B(f j(x0), ε). There exists a natural number k(j)

such that fk(j)(x0) ∈ B(f j(x0), ε) and fk(j)(x0) 6= f j(x0). Let k = max1≤j≤n{k(j)}

and the lemma is proved.

Corollary 6.3. If a time-series of data points is generated by an orbit on a transitive

attractor Λ with bounded noise, then there is natural number n such that the set

{z1, z2, . . . , zn} forms an ε-cover of Λ. Futhermore, there exists a natural number k

with k ≥ n such that for each j ≤ n there exists an element zi of {z1, z2, . . . , zk} such

that zi ∈ B(zj, ε) and zi 6= zj.

At this point we want to analyze the Interchange Algorithm introduced in

Chapter 4. Here we introduce the Optimal Interchange Algorithm that takes an

argument γ > 0 that stops the while loop.

Optimal Interchange Algorithm

1. For each sample point compute min-distance to interior vertices.

2. Order min-distances from largest to smallest.

3. R :=largest min-distance.

4. r :=smallest min-distance.

5. while R > r and R > γ

6. d := R

7. Delete closest interior vertex to a sample point with min-distance r.

8. Add a sample point with min-distance R.

9. Recompute min-distances.
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10. Order them from largest to smallest.

11. d1 :=largest.

12. while d1 ≥ d

13. Add sample point corresponding to d1.

14. Recompute min-distances.

15. d1 :=largest

16. endwhile

17. R = d1

18. r :=smallest.

19. endwhile

20. return R.

The difference between the Interchange algorithm and the Optimal Inter-

change algorithm is that the Optimal Interchange computes the min-distance

using all of the vertices in the triangulation and after one instance of adding and

deleting, sample points are added until the max-min-distance decreases. The Opti-

mal Interchange algorithm adds the least amount of vertices to the triangulation

to make the max-min-distance decrease. The problem with using the Optimal In-

terchange algorithm in practice is that it is difficult to design a local efficient check

to tell which vertices do not have a change in their min-distances after an addition or

deletion, which means that all min-distances must be recomputed after an addition or

deletion for all vertices. Thus computations using the Optimal Interchange have

runtimes that are extremely long. This led us to develop the Interchange algorithm

which approximates the actions of the Optimal Interchange with reasonable run-

times. The problem with Interchange is that we cannot prove that it monotonically

decreases, which is a necessary assumption for the following theorems. In the com-
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putations using Interchange we have observed that it decreases monotonically in

practice as long as enough new vertices are added. The following theorems are stated

using the Optimal Interchange.

We now state some theorems on the approximation of the triangulation to the

attractor and the approximation of f to f̂ .

Lemma 6.4. For a given ε > 0, there exists a δ > 0 such that if the Optimal

Interchange algorithm returns a max-min-distance < δ, then |f̂(x) − f(x)| < ε

for all x ∈ D.

Proof. Since the domain of f and f̂ is compact, f and f̂ are uniformly continuous

so that there exists a γ > 0 such that if |x1 − x2| < γ, then |f(x1) − f(x2)| < ε and

|f̂(x1)− f̂(x2)| < ε. Let δ < γ/2. By the triangle inequality, the triangles selected to

be part of the domain have diameter less than γ. Take any x in the domain |D|. Then

x ∈ S for some 2-simplex S ∈ D. Take a vertex x1 of S. We have that |x− x1| < γ

and therefore |f̂(x)− f̂(x1)| < ε. Since f̂(x1) = f(x1) we are done.

Theorem 6.5. Let N be a trapping region and A a transitive attractor with A ⊂ N .

Let ε > 0 and x0 ∈ N . There exists k such that for n > k we have that d(xn, A) < ε/2.

Furthermore if blurring factor is smaller than ε/2, then for n > k the blurred data

points satisfy d(zn, A) < ε.

Proof. Since N is a trapping region for A, ω(x0) ⊂ A. Therefore there exists a k such

that for n > k, xn ∈ Bε/2(A) and if the blurring factor is less than ε/2 we have that

zn ∈ Bε(A).

Theorem 6.6. Let N be a trapping region with A = Inv(N) a transitive attractor.

Let ε > 0 and x0 ∈ N . Suppose there exists a point q ∈ ω(x0) ⊂ A such that q has
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a dense forward orbit in A. Let xk be such that for n ≥ k we have d(xn, A) < ε/4.

Then there exists j such that for all r > j we have the Hausdorf distance between A

and the the set {xk, xk+1 . . . , xr} is less than ε/2. Furthermore, the Hausdorf distance

between A and the blurred data is {zk, zk+1 . . . , zr} is less than ε and the triangulation

∆ has a Hausdorf distance with A less than 3ε.

Proof. By properties of the ω-limit set, since ω(q) = A we have that ω(x0) = A.

Since A is compact, there exists a finite subset {y1, . . . , ym} ⊂ A such that A is

contained in an ε/4 covering of {y1, . . . , ym}. For each yi there exists ni such that

d(xni
, yi) < ε/4. Let j := max{ni}. Therefore the set {y1, . . . , ym} is contained in an

ε/4 covering of {xk, xk+1 . . . , xr}, which implies that A is contained in an ε/2 covering

of {xk, xk+1 . . . , xr}. Since the blurring factor is less than ε/2, we have A is contained

in an ε covering of {zk, zk+1 . . . , zr}.

Since the {y1, . . . , ym} is contained in an ε/4 covering of {xn1 , . . . , xnm},

{y1, . . . , ym} is covered in a 3ε/4 covering of {zn1 , . . . , znm}. Therefore the

{zk, zk+1 . . . , zr} are contained in a 2ε covering of {zn1 , . . . , znm}. This implies that

the max-min-distance returned by Optimal Interchange is less than or equal to

2ε. If x ∈ |∆|, then x is in some triangle in ∆ and x has a distance with a vertex z(x)

that is less than 2ε. However d(z(x), A) < ε which implies that d(x,A) < 3ε.

The previous theorems show that using the Optimal Interchange algorithm

allows us to reconstruct the phase space by triangulating as close to the attractor

as we like. Now we consider whether we can capture the dynamics on the attractor.

Suppose that our triangulation covers the attractor of f . We know that if F is a

combinatorial enclosure of f , then a periodic orbit for f induces a periodic orbit for

F . The F that we construct from our algorithms is derived from f̂ . If the linear

interpolant f̂ approximates f sufficiently, then we expect F to enclose the dynamics
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of f . The approximation of f by its linear interpolant f̂ is a well-studied problem.

The following theorem from Bramble and Zlamal [7] gives an estimate on the error

between f and f̂ on each triangle.

Theorem 6.7 ([7]). Let f ∈ H2(T ) where T is a given 2-simplex. Let f̂ be the linear

interpolant of f on T . Then we have

||f − f̂ ||L2 ≤ Ch2||f ||H2

where h is the maximum length of the triangle T and C is a constant that does not

depend on function f but does depend on the angles of T so that C → ∞ as the

minimal angle of T approaches 0. Also we have

||f − f̂ ||C0 ≤ Ch||f ||H2

where the constant C depends on f and a lower bound of the angles of T .

For a given triangle T , the image of T under f̂ is a triangle. We can expand the

image of T by taking the ball of radius δ > 0 around f̂(T ) denoted by Bδ(T ). We

can construct the combinatorial map Fexp using the expanded image of f̂ and then

check if Fexp is a combinatorial enclosure of the expanded f̂ . If the error between

f̂(T ) and f(T ) is sufficiently small, then f(T ) is contained in the expanded image of

f̂(T ) which implies that Fexp is a combinatorial enclosure of f . Therefore periodic

orbits of f induce periodic orbits on Fexp. This leads to the following theorem.

Theorem 6.8. Let h be the maximal sidelength of all triangles in Mapmaker. There

exists a δ > 0 such that if we expand the image of f̂ by δ and Fexp is constructed from

the expanded image and is a combinatorial enclosure of the expanded image, then Fexp

is (within round-off error) a combinatorial enclosure of f .
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Proof. From Theorem 6.7 we set δ = C||f ||H2 and δ = Ĉh. This implies for any tri-

angle T we have that f(T ) is contained in the expanded image of f̂(T ), and therefore

Fexp is a combinatorial enclosure of f .

Suppose we are able to isolate a periodic orbit for Fexp that corresponds to a

periodic orbit of f . Then we want to show that the homology map induced by f

is the same as the homology map induced by f̂ . Suppose f̂ generates a minimal

simplicial acyclic carrier Φf̂ , and also suppose that f generates a minimal simplicial

acyclic carrier Φf . We generate a another carrier Φ as follows. For a vertex v we

take f̂(v) and expand it by the Ĉh in Theorem 6.8, and we define Φ(v) to be all

2-simplices that intersect the expansion of f̂(v). We repeat the same steps for edges

and 2-simplices, and then we check if Φ is acyclic. It is easy to see that Φ carries

f and f̂ so that it carries Φf̂ and Φf . Thus if Φ is acyclic, then the homology map

induced by f̂ and f are the same. In practice, we compute an outer approximation F

of f̂ and the minimal carrier Φf̂ , which we check is acyclic. Algorithmically, we could

compute Fexp, which is an outer approximation for f , and the carrier Φ, for which

acyclicity could also be checked. However, we cannot compute Φf , and currently

we have no algorithm to check that this minimal acyclic carrier for f exists. If the

construction of the triangulation could be performed in a more structured manner,

then one might be able to obtain bounds on the difference between F and Fexp which

could establish the existence of an acyclic carrier for f .

Finally, we do not implement the expansion of f̂ to construct Fexp and the carrier Φ

for two reasons. First, the expansion of f̂(T ) could make it difficult to obtain isolation

of the periodic orbits. Second, by Theorem 6.7 the L2 error decreases quadratically

in terms of the maximum sidelength, and hence we expect that the expansion of f̂

may not be necessary.
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7 Computations

In this chapter we give the results of computations with time-series data coming

from an iteration of a map. The first map that we use is the Henon Map

f(x, y) := (1− 1.4x2 + y, 0.3x).

The Henon map has a transitive attractor contained in the rectangular region

[−1.6, 1.6] × [−0.6, 0.6] in R2. The time series is constructed first by taking the

forward orbit of the point (0, 0), throwing away an arbitrary number of the iterates,

and then blurring the remaining points. In this case a time series is constructed by

throwing away the first 1, 000 points and keeping the next 100, 000. The interchange

method finished with a max-min distance value of 0.00220935, which resulted in a

simplicial complex consisting of 95, 025 triangles which is plotted in Figure 7.10. The

combinatorial map F is searched for periodic orbits up to period-6, and one orbit of

period-1, one orbit of period-2, one orbit of period-4, and two orbits of period-6 are

isolated. Furthermore we are able to isolate some connecting orbits between these pe-

riodic orbits. An index pair is computed which contained 64 components. The Figure

7.10 shows the 64 components plotted within the Mapmaker triangles and Figure 7.11

shows the index pair plotted without the Mapmaker triangles. Each component has

an exit set so there are no 0-generators. The index pairs do not have any 2-generators

so we only have to compute homology maps for dimension 1. Figure 7.11 shows a

close up of some components of the index pair with the red triangles corresponding
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to the exit set. The graph for the homology map and the transition graph are shown

in Figure 7.12.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 7.10: Left: The Mapmaker triangulation for the Henon computation consisting
of 100, 000 data points with 95, 025 trinangles. Right: The components of (P1, P0)
within the Mapmaker triangles.

We now verify the dynamics present in a subgraph of the transition graph. See

Figure 7.13. This subgraph has a fixed-point, a period-2 orbit, a period-4 orbit,

and a period-6 orbit along with certain connections between them. There are 33

components for this subgraph. We label the vertices of this subgraph as follows. We

start with the period-6 orbit, we label N1 to be the vertex in the period-6 orbit that

has the edge coming out of the period-6 orbit. We label the rest of the period-6 orbit

N2, N3, N4, N5, and N6 by using the directed edges so that N1 goes to N2 and N2 to

N3 and so forth. We label N7 to be the vertex not in the period-6 orbit such that

N1 has a directed edge to that vertex. There are 6 vertices in the connection with

the period-6 orbit and the fixed point. We label the connecting vertices in increasing

order by the directed edges so the vertex corresponding to the fixed vertex has label

N13. We repeat this for the rest of the graph, increasing the label number according

to the direction of the graph.
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Figure 7.11: Left: The index pair (P1, P0) which consists of periodic orbits of length
1, 2, 4 and 6 and connections between them. Right: A close up of the index pair
components red denotes the exit set.

From the discussion at the end of Chapter 4, we need to verify all periodic orbits

for the transition graph to get a semiconjugacy. Once we have verified all the periodic

orbits, then we calculate the entropy of the transition matrix. In what follows, we

use the notation [Ni → Ni] to mean the H1 matrix for [f̂Ni
→ f̂Ni

]∗. We start with

verification of the fixed-point. The homology matrix for [N13 → N13] is

[N13 → N13] :=



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0



.
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Figure 7.12: Top: The transition graph for the 64 components of the index pair. The
period-1 is colored blue, period-2 is colored orange, period-4 is colored gray, one of
the period-6 is colored red, and the other period-6 is colored pink. Bottom: the graph
representing the map on 1-homology. Each square is labeled first with its component
number and generator number. The colors come from the designation in Figure 7.12.
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Figure 7.13: The subgraph derived from the graph in 7.12. The colored periodic
orbits correspond to the ones in 7.12.

The trace of [N13 → N13] is 1 which implies there exists a fixed-point for f̂ . Taking

the powers of [N13 → N13] we find that

[N13 → N13]n :=



0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


for n ≥ 2 so that when verifying periodic orbits that travel through N13 multiple

times n, we use [N13 → N13]n in the composition of matrices corresponding to the

periodic orbit.

For the period-2 orbit, the components are N22 and N23, and the homology matrix
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of [N22 → N22] := [N23 → N22] ∗ [N22 → N23] is

[N22 → N22] :=


0 0 0

0 1 0

0 0 0

 .

The trace of [N22 → N22] is 1 which implies the existence of a period 2 orbit and we

also have

[N22 → N22]n :=


0 0 0

0 1 0

0 0 0

 .
for n ≥ 1.

The period-4 orbit has components N29 → N30 → N31 → N32 → N29 and the

homology matrix [N29 → N29] := [N32 → N29] ∗ [N31 → N29] ∗ [N30 → N31] ∗ [N29 →

N30] is

[N29 → N29] :=



0 0 0 1 1

0 0 0 1 1

0 0 0 1 1

0 0 0 0 0

0 0 0 1 1


.

The trace of [N29 → N29] is 1 which implies the existence of a period-4 orbit, and also

[N29 → N29]n :=



0 0 0 1 1

0 0 0 1 1

0 0 0 1 1

0 0 0 0 0

0 0 0 1 1


.
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for all n ≥ 1. The homology matrix for the period-6 is [N5 → N5] := [N4 →

N5] ∗ [N3 → N4] ∗ [N2 → N3] ∗ [N1 → N2] ∗ [N6 → N1] ∗ [N6 → N5] is

[N5 → N5] :=



0 0 0 0 0 0

0 0 0 0 1 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 1


.

The trace of [N5 → N5] is 1 which implies the existence of a period-6 orbit and

[N5 → N5]n :=



0 0 0 0 0 0

0 0 0 0 1 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 1


.

for all n ≥ 1.

Now we verify the rest of the periodic orbits. These periodic orbits travel through

all the components. By using the fact that the above matrices have powers that

repeat, we show that there 24 matrices to check. We can start with an arbitrary

component, so we start with N1 and list all possible paths from N1 back to itself. We

take the path from N1 to N13 which we denote by (N1 → N13). From N13 to N22

there are three possibilities. One can choose (N13 → N22), or one can go through

the fixed point once and then to N22 which we denote by (N13 → N13)(N13 → N22)
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or finally, one can go through the fixed point any number of times greater than or

equal to 2 and then on to N22 denoted by (N13 → N13)n(N13 → N22) where n ≥ 2.

The power of the matrix [N13 → N13]n is the same for n ≥ 2 and this is why we

consider the path (N13 → N13)n(N13 → N22) to be the same for all n ≥ 2. Next we

have two choices within the period 2 orbit. We have the path (N22 → N23) or we

have (N22 → N22)(N22 → N23) where (N22 → N22) = (N22 → N23)(N23 → N22) is

the path going through the period 2 orbit. Since the powers of [N22 → N22]n are the

same for all n then we only have to consider (N22 → N22)(N22 → N23). We conclude

by writing the rest of the possible paths. We have the path (N23 → N29) followed

by two choices within the period 4 orbit (N29 → N31) and (N29 → N29)(N29 → N31).

Next we have the path (N31 → N5) followed by two choices within the period 6 orbit,

(N5 → N1) and (N5 → N5)(N5 → N1). Counting all of the possible paths, we have

24 paths starting at N1 and ending at N1 that travel through all of the periodic

orbits. Suppose we choose the path (N1 → N13)(N13 → N13)2(N13 → N22)(N22 →

N22)(N22 → N23)(N23 → N29)(N29 → N31)(N31 → N5)(N5 → N5)(N5 → N1), then

taking the matrix multiplication [N5 → N1] · [N5 → N5] · [N31 → N5] · [N29 →

N31] · [N23 → N29] · [N22 → N23] · [N22 → N22] · [N13 → N22] · [N13 → N13] · [N1 → N13]

and we get the following matrix:


0 1 0

0 1 0

0 1 0

 .

The trace of this matrix is 1, which implies the existence of a periodic point for the

chosen sequence path. All 24 possible matrices were computed, and all had their trace

equal to 1. This implies that all periodic orbits that are present in the subgraph have
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been verified. This includes the period-1,the period-2,the period-4, two period-6, a

period-33 and all higher periodic orbits in the subgraph. The entropy of the transition

graph was computed with a value of 0.156 so that we can conclude that the map f̂

has an approximate lower bound for entropy of 0.156.

Now we give computations for the nonlinear density-dependent Leslie model of

poulation dynamics,

f(x, y) := ((θ1x+ θ2y)e−0.1(x+y), px).

This model was studied extensively in [32, 33] and [4]. We investigate this map at

two sets of parameter values. In the first set of parameter values we let θ1 = θ2 := 27

and p := 0.7. The Leslie map for this set has a transitive attractor consisting of

three disconnected components in the region [0, 100] × [0, 70]. The time series is

constructed by taking the forward orbit of the point (0.73, 52.3). The first 1, 000 points

are discarded and the next 100, 000 are used for the time series. The interchange

method finished with a max-min distance value of 0.0349177, which resulted in a

simplicial complex consisting of 95, 025 triangles which is plotted in Figure 7.14.

The combinatorial map searches for periodic orbits up to period-12, and one orbit of

period-3, one orbit of period-6, and one period-12 are isolated along with a connecting

orbit from the period-3 to the period-12. An index pair is computed which contains 27

components. Figure 7.14 also shows the 27 components plotted within the Mapmaker

triangles. The exit set has the same properties as in the Henon computations in that

we only need to compute homology for dimension 1. The graph for the homology

map and the transition graph are shown in Figure 7.15. There are only three periodic

orbits for the transition graph so we do not have chaos from the graph. For the second

set of parameter values we let θ1 := 61, θ2 := 12.2 and p := 0.2. The Leslie map for
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Figure 7.14: Left: The Mapmaker triangulation for the first Leslie computation con-
sisting of 100, 000 data points with 95, 025 triangles. Right: The components of
(P1, P0) within the Mapmaker triangles.

this set has a transitive attractor consisting of one connected component in the region

[0, 100]× [0, 70]. We again use the starting point (0.73, 52.3) and also discard the first

1, 000 points and use the next 110, 000 the time series. The Mapmaker triangulation

consists of 132, 269 triangles and the index pairs consisting of 38 components is shown

in Figure 7.16. We isolate a period-1, period-2, and a period-4 orbit along with

connecting orbits between the period-1 and the period-2 orbit. The transition graph

and the homology map are shown in Figure 7.17. The homology map implies the

existence of the period-1 and the period-2 orbit. For the subgraph consisting of the

period-1 and the period-2 along with the connections between them, the homology

map could not verify all of the periodic orbits in the subgraph and therefore we can

not generate a semiconjugacy.
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Figure 7.15: Top: The transition graph for the 27 components of the index pair. The
period-3 is colored blue, period-6 is colored pink, and the period-12 is colored gray.
Bottom: the graph representing the map on 1-homology. Each square is labeled first
with its component number and generator number.
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Figure 7.16: The Mapmaker triangulation for the second Leslie computation consisting
of 110, 000 data points with 132, 269 triangles.
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Figure 7.17: Top: The transition graph for the 38 components of the index pair. The
period-1 is colored blue, period-2 is red, and period-4 is colored pink. Bottom: the
graph representing the map on 1-homology.
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8 Conclusions and Future Directions

We have developed algorithms and code to analyze dynamics via phase-space re-

construction and to measure chaos in time series data in 2-dimensions using simplicial

homology along with the Lefschetz Fixed Point Theorem. In Chapter 7 we showed

computations using the Henon map and the Leslie map. In those computations we

are able to locate periodic orbits of low order and high order that were near periodic

orbits of the actual Henon map. Also, our computations did not pick up a period-3

orbit or a period-5 orbit which are proven not to exist for the actual Henon map.

We were able to compute positive entropies and generate transitional graphs from

the semiconjugacies with the shift space. These transitional graphs contained chaos,

which allowed us to infer the existence of chaos for f̂ up to round-off error. These

results give us confidence that the methods we have used approximate the dynamics

very well. We have shown that if a transitive attractor is present, then the Hausdorff

distance between the triangulation and the attractor can be made as small as we want

by taking sufficiently many time series points. We do not at the moment have a proof

that says our triangulation covers the attractor. However we blur the data points

randomly in an attempt to cover the attractor in practice. An open question for

further study is: does there exist a determined blurring such that the triangulation

can be proven to cover the attractor?

Presently, the code can do a time delay reconstruction where the embedding di-

mension is 2. Suppose we are given a finite sequence of a forward orbit for a dynamical

system in Rn {x1, x2, . . . , xm}. If there is a measurement function φ : Rn → R,

then we can generate the time-series data {φ(x1), φ(x2), . . . , φ(xm)}. This time-

series data can be embedded into R2 by a time-delay reconstruction which gives

the data set {(φ(x1), φ(x2)), (φ(x2), φ(x3)), . . . , (φ(xm−1), φ(xm)))}. We treat this
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data as a forward orbit of some unknown continuous map f : R2 → R2, that is

f((φ(x1), φ(x2)) = (φ(x2), φ(x3)), f((φ(x2), φ(x3)) = (φ(x3), φ(x4)), and in general

f((φ(xk−1), φ(xk)) = (φ(xk), φ(xk+1)). We can then implement our code on this data

set as was explained in Chapters 4 and 5 and generate a piecewise linear map f̂ in

which the dynamics of f̂ approximate a lower bound on the dynamics of f . If the orig-

inal data points from Rn come from a chaotic attractor that lies on a 2-dimensional

manifold embedded in Rn, then we expect to verify the chaos on the time-delayed

data.

The future direction of our work has four stages. First, we want to extend the

code and homology theory to dimensions 3 and 4. We believe that this is possible for

3 and 4, but higher dimensions would probably make the triangulation computations

as well as simplicial homology too costly. This would require some new algorithms to

compute homology in order to make the run times reasonable. Second, we want to

extend the code to handle projections of time-series data into 2-dimensions where we

can use our techniques. The difficulty lies in determining a systematic way of choosing

a projection to use. Third, we want to take measurements on continuous maps and

do a delay reconstruction to embed the time-series and then use our techniques to

approximate dynamics. We would first embed in 2 dimensions, then in 3 dimensions

and so forth. We compare the results between consecutive dimensions and determine

if we have picked up more dynamics as the embedding dimension increases. Finally,

we want to use our code on time-series generated from experimental data. This

requires the first three stages being completed in order for them to be utilized and

requires a way to approximate f̂ or f at the vertices of the triangulation. This is our

ultimate goal in that we want to approximate dynamics on a physical system using

experimental data.
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