

A METHOD FOR PREDICTING THE TURNING RATE OF A SUBMERSIBLE

BY

DAVID WILLIAMS

HBOI TR #14

JULY 1976

A METHOD FOR PREDICTING THE TURNING RATE

OF A

SUBMERSIBLE

BY:

David Williams

ABSTRACT

This paper examines the affects of various turningthruster locations on the turning rate of the JOHNSON-SEA-LINK III Observation Submersible. A mathematical model was developed to predict the overall drag coefficient of the submersible while it was rotating with a constant angular velocity. This valve was experimentally checked by tests on a 1/12 scale model of the submersible, which was rotated in a tank of water at the corresponding Reynolds number.

The mathematical model predicted an overall drag coefficient of 0.30 and the experiments produced a $C_D=0.5$. The Difference is attributed to interference drag of the components and inaccuracies in the experiment and mathematical model. The results were plotted on a graph of turning rate versus thruster location on the submersible.

INTRODUCTION

The JOHNSON-SEA-LINK III submersible is to be an observation submersible with increased visibility and maneuverability at the expense of the diver lock-out compartment. This submersible will be an improvement in the design of J-S-L I & II in its location of thrusters and other external equipment. It is desirable to compact the thrusters into the "hull" of the submersible so that visibility and safety of operation will be increased. Also, this submersible will be more streamlined than the previous two. Although it is primarily a low speed submersible (1-2 knots with respect to the bottom), it should be fast enough through the water to overcome the various currents encountered. Thus, greater streamlining results in savings in power required.

For these reasons, it was decided to examine various turning thruster locations. The obvious place to put a turning thruster would be on the outermost end of the submersible where its turning moment would be the greatest. However, this would block the downward view from the observation spheres and would not help to make a streamlined body. If the turning thruster was moved inboard, the submersible would turn slower because of the smaller turning moment, but if its turning rate was comparable with JSL I & II, then it would be considered a reasonable location. The problem then became to determine the effect on turning, if these thrusters were moved inboard.

PROCEDURE

First, measurements were taken of the turning rate of the JSL II, in the channel at Link Port. The JSL II was submerged and the turning rate was measured with the use of the onboard compass and various thruster combinations. The average turning rate was found to be 8 degrees per second, with two thrusters operating at opposite ends of the submersible. This turning rate was used as a criterium for the JSL III.

The next action undertaken was to determine an overall drag coefficient for the JSL III that would allow turning rates for different thruster locations to be calculated. A simple mathematical model was formulated to get an order-of-magnitude estimate of the drag coefficient. If this theoretical valve was reasonably close to one determined by experiment, then one could be confident in the predicted turning rates.

Finally, an experiment was devised to measure the drag coefficient of a model of the JSL III. A 1/12 scale model was rotated in a tank with a system of pulleys and weights. By timing the fall of the weights over a known distance, the drag coefficient could be calculated.

MATHEMATICAL ANALYSIS

Very little was found in the literature on predicting the turning rates of submersibles, so the mathematical model presented here is a very simple analysis, intended only to give a rough estimate of the overall drag coefficient for turning. It was assumed that the JSL III would be geometrically symmetric

-1-

about its vertical centerline and that two thrusters with 100 pounds force each would act at right angles to the longitudinal centerline. It was also assumed that the submersible had very quick acceleration to a constant angular velocity and that the linear velocity varied from the centerline to the end of the submersible as $V_{\text{Linear}} = WX$. (W = turning rate rad/sec). This was not the real case, but it was sufficiently accurate for this analysis.

When a submersible is turning at a constant rate, i.e., no angular acceleration, the turning moment of the thrusters must equal the drag moment of the hull. The total turning moment of the two thrusters was assumed to be 200X where X is the distance from the centerline of rotation. Here, it was also assumed that the thrust was a constant 100 pounds per thruster, which again was not the real case, since the thrust would vary with the speed of the thruster moving through the water.

In order to determine the drag moment caused by the shape of the submersible, a side view of the basic shape was divided in 4 components. These components were 2 spheres, one buoyancy tank and one battery compartment. The draf force at any location was calculated as:

> $F_D = C_D \rho / Z AV^2$, where $V = V_{Linear} - WX$ $C_D = Drag$ Coefficient of particular component $\rho = Density$ of seawater A = Area of section

This equation was used to determine the force on an infinitesimal area of one of the components. The force was then

-2-

integrated over the entire length of the component to get a total drag force for the component. The integration was performed by the computer at Harbor Branch. (This program is detailed in the Appendix). The drag force for each component was summed and a total drag coefficient was determined from the formula:

$$C_{DT} = \frac{F_{tot}}{P/2} A_{tot} T^2$$

 F_{tot} = sum of drag of four components A_{tot} = total frontal area of JSL III V^2 = $V_{Linears}$ at X = 0.7 R R = Distance from $\not L$ to end of JSL III

In this manner, a value of 0.3 was found for the total drag coefficient.

EXPERIMENTAL

ΝΟΤΑΤΙΟΝ

 $\frac{2}{\Delta} \frac{X}{T}$ - velocity of weight pulling model

Tuncorrected - weight x 0.235'. This is the moment applied to the system. 0.235' = sleeve radius

W - angular velocity of system and model

 Re_D - Reynolds number of the model D = 6.3/12 which is diameter of model $V = (0.7 \times 8.5 \times W)/12$ 8.5 ft. is the maximum turning radius of the submersible. It was decided to take 0.7 of this radius when computing the linear velocity acting on the model. This is common in propeller design.

T system - Frictional drag of the system is represented

as a moment acting against the moment applied to the system (Tuncorrected). This value is obtained from the graph of system drag -vs- velocity. It was determined that the system drag depended on the velocity of the weight. T system = system drag X0.235.

- T_{Drag} The drag force of the model is represented by a moment, which is the difference between Tuncorrected and T-system.
- F_D The drag force is the moment due to drag, divided by the lever arm. In order to determine the lever arm, force diagrams were drawn for the model and its components that were being tested. The distances from the centerline to the centroids of the force diagrams were the lever arms.
- C_D Overall drag coefficient for the model or portion of the model being tested. $C_D = \frac{T_{Drag}}{(1 \text{ ever arm})} \frac{P}{2^A \text{total}} V^2$

TESTING PROCEDURE

The 1/12 scale model was placed in the tank and weights ranging from 1.61 lbs to 8.01 lbs were then attached to the string. The weights were raised to a height of 11.5 ft. above the floor. Marks were placed on the wall next to the weight in two foot intervals for measuring the distance of the filling weight.

- 4 -

The water in the tank was allowed to come to rest, then the weight was released. It was allowed to fall four feet before timing was started. This left 7.5 feet for the weight to fall at constant velocity. Acceleration measurements were made and it was determined that the model reached constant angular velocity within the first two feet of fall.

The full model was tested 37 times with seven different combinations of weights. The weight, time and distance of each test were recorded. Next, the spheres were removed and the procedure was repeated. After removing the spheres, the batteries were removed so that the buoyancy tank and frame were tested. Finally, the spheres were tested in combination with the frame. The breakdown of the model in this manner allowed for the interference drag of the various components to be calculated.

> DETERMINATION OF DRAG COEFFICIENT

As previously stated, the moment due to the drag force was calculated from the difference of the system moment and the applied moment. The drag moment was divided by its lever arm to determine the drag force. This force was used in calculating the drag coefficients. When the drag coefficients of the various components of the model were calculated, a different lever arm had to be found from the force diagram.

Except for different velocities, the term $f_{1/2}^{AV^2}$ was kept constant. A constant value of 0.653 ft² was used for the area. In this way, the drag forces on the full model and its

- 5 -

components would be represented by the coefficients. This would allow the coefficients to be added and subtracted directly. For example:

 C_D of the frame is 0.105 at Re = 2 x 10⁵

 $C_{\rm D}$ of the buoyancy tank & frame is 0.25

 $C_{\rm p}$ of the buoynacy tank is 0.125

Therefore, the interference drag coefficient is 0.25 - (0.125 + 0.105) = 0.02. Once the overall drag coefficient of the full model was determined, it was possible to calculate a turning rate for any given thruster location. It was assumed in the calculations that two thrusters are acting at a distance (x) from the centerline with 100 pounds of thrust each. The drag moment must equal the thruster moment when the submersible is in constant angular velocity. From this relationship, the turning rate is calculated as a function of thruster location from the center line.

> Thruster moment = 200XDrag moment = $F_D \times 1 \text{ ever arm}$ = $C_{D_{1}} AV^2 L.A.$ $C_{\rm D}$ = 0.53 by experiment (Re = 2.0 x 10⁵) $P_{1_2} = 0.995$ $V = 0.8 \times 8.5 \times W$ L.A. = 5.9It can be shown with simple algebra that $W = (\frac{x}{51.8})^{\frac{1}{2}}$ x = 2 ftW = 11.3 degrees per second W = 13.8 degrees per second x = 3 ftW = 15.9 degrees per second x = 4 ftW = 17.8 degrees per second x = 5 ft

> > -6-

CONCLUSIONS

The results from this experiment compare favorably with data taken from J-S-L II. The turning rate of J-S-L II, with two thrusters acting, was found to be approximately 8 degrees per second. These measurements were taken in the Link Port Channel where wave and bottom effects would tend to slow the submersibles turning rate. Also, the present design of J-S-L III is smaller and more "streamlined" with respect to rotation than is J-S-L II. Taking these factors into consideration, the turning rates predicted by this experiment should give a good indication of what could be expected of the prototype.

The overall drag coefficient predicted by the experiment was on the order of 0.5, while the mathematical model predicted 0.3. The discrepancy can be attributed to the interference drag and errors in the experimental set up and mathematical model. However, the lower valve of drag coefficient was used to determine the curve of turning rate -vs-thruster location.

O...... sec Force Distribution for 2 = 17 FPM (rz) 1/2 Scale Hodel 752 - 727 From C 3 2 Distance 0 C 8 N-16 Q ٩ 2 \mathbb{N} 00 2 8.5 .03 60, B ,02 10. Drya Force (165)

0) 3 for = 1.78 rac E Scale Model え NJ77 = CD Distribution 752 - 77 3 Frox N Distance 12 FORCE 0 00 0 0 2 00 5.5 pq. .03 20' 10. Dan C (591) POrce

I GYCLEN X TO DIVISIONS

Turning Rate (9/5) THRUSTER LOCATION From &

A P P E N D I X

Acde !	Full rodel					00	.0		10		3.0											No Mar car				
G . There w.	0.491	0525	0.518	855-0	5.655	0.652	0.59.7	0.568	c. 7.21.	C. 652	0.121	L.5.59	0.559	2.644	0.551	0.551	c. 551	C. : 133	2.551	0.557	c. 597	J. 517 .	C.569	. c.590	0.577	0.562
Jun 3 13	0.359 (.736)	11			11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	"	AVG	(-322.0) 222.0	11	**	"		Ale	C. 210 (0.626) Q.551	11				AVA	165.0 (0151) - VEJ.0	and the second s		······································		AV6.
- Terrer	0.068					ALL ALL		-	0.045	2			Z		0.068	:					0.011	·····	·			
Re livinest	7.59 - 1.207 -	7.34 ~~	7.39	7.12 "			. 6.85 "	1 SU	6.26 5104	. 6.56 r		7.11 H	2.11	- 196	4.65 × 101	le. 66 "		[1.6.9			9.14 × 107			9.20		
(menter) - () (10 1/20) -	3.068	2.966	>.957	2.527	2 459	2.65.9	2.7.83	1413	2,531	2.650	2.521	3112	2.875	1410	2.692	2622	2.692	2.616	2.692		3.697		3.787	-3,112	3,761	
(meneral)	0.47.7.		. 11	11			1		0.427		11		1		0.278	1			11		0.705					
- (: A : -)	75 I	C, 68.6		C 1076	2 625	0.615	C. 654	1		0.625	25.5 0	0.675	0.675	11.11 0.635	0.635	0.635	0 635	0.617	0.635		0.872	0. 887	0.693	5.817	A. 187	
Run	!	1	c)	14			51	1.19	61			22	2 4		101-1-X	36	26	27	-00					5 2	1 .	

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(T_). G. Node
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.557
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01540
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.572
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.562
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.511
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.092
1.667 7.694 1.76	0.545
2.124 1.325 9.257 2.27 1.56 0.056 1.7.01 (513) 2.124 1.323 7.32 1.66 1.7.01 (513) 2.124 1. 2.29 1. 1.227 1.6 2.113 1. 2.29 1. 1.110 1. (513) 2.124 1. 2.29 1. 1.110 1. (513)	C. 412
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1050
2.134 1.385 2.251 2.27 1.65 0.0562 1.7.01 (5.1.3) 2.124 1. 7.251 2.27 1. 1. 1. 1. 2.124 1 7.251 2.27 1. 1. 1. 1. 2.124 1 7.251 2.27 1. 1. 1. 1. 2.124 1 7.251 2.27 1. 1. 1. 1. 2.124 1 7.251 2.27 1. 1. 1. 1. 2.124 1 7.251 2.27 1. 1. 1. 1. 2.124 1 7.251 2.32 1. 1. 1. 1. 2.124 1 2.23 1. 1. 1. 1. 1. 2.124 1 2.23 1. 1. 1. 1. 1. 2.124 1 2.23 1. 1. 1. 1. 1. 2.124 1 2.23 1. 1. 1. 1. 1.	
2.124 7.351 2.29 " " " " " " " " " " " " " " " " " " "	0. 473
2,204 1 - 1357 2,32 1	0.423
2.113	0.411
2.124	F 21.1 2
	e. 423
	ON76

Meder C	3 spheres							2			- 2								-		•	، :	•			
Total (E) it	1. 4.16 (4.23) 0. 35 3 1. 1. 0. 414			11 11 0.415	1	1.005 (2.14) 0.393	11 11 C. 411	11 . 11 . 5. 4 6 2	", ", ", ", ", ", ", ", ", ", ", ", ", "	11	PV6 0.409	1	<u> </u>	4	<u> </u>	1 11 0.435	<u> </u>	AV6 0.420	C. 307. (94) 0.407		0.438		1	AV6 0.429		
Tsystem	" 2 <i>80</i> "0.		11	11		0.078			11	ti		0.013	11	-		17	-1-		- OZI	5 					•	
	Z, 11 ×10	2,05 11	2,03 "	2,05 11		1.27 × 10.5	1.74	1. 25 "-	1, 74	11.76 "		1.39 × 105.	1.39 "	1.35 "	1.35	1. 7.4 "	1. 36 "		C. 96 × 105	c. <u>94</u> _11	0.92 "	0.94 11	0.93			
(1) ((males)	4.511	2' 10	5.2 [18	81289		7.170	7-013	7,024	7,013	6.564		5,600	5.600	5,455	21455	5,409	5,5'0 2			3.729	3.753	2.779	2.753			
T (16-54)	1. 408			11		1.052	11	11		1		0.705	=	÷					6.378		11 1		11			
1 × (4/2cc)	2.002 1.1.12	1.9.24	1.9.23	2101		1.625	1, 648	1.667	3191			-1.316	1.316	1.252	1.232	1.271	1,293		0,915	0.828	0.532	0.832	ر، عن کر <u>الم</u>			
Run	بر محمد بر محمد مراجع	55	-26	2.2		5%	59	6.2	[2]	53		63	17	5			65.					27	27		, ;	

•

Kun	ar (140)	7(4-4)	es (mpec)	Concerta	. Tsyclen .	Gang	Dang (E) (S	0	Nedel
23	2.000	1.422	9.511.	2.11 410	230.0	1.416	1.416 (45) 0.373	5.373	3 spheres
54	1,745		2.259	2.05 "				0.414	
55	1.9.24	-	5.400	1 2.05 4	4	4	-	0.944	
5.6	4923		2123	2,03 "	11		11-11-	0.475	-
11	1.945	11	65213	2.05 "		"	1	0.415	
	and the second se			_			446	014.0	
54	1.625	1, 653	7.170	1.27 × 10.5	0.075	1.005 (2.M)		0.393.	
59	1,642	2	7.013	1.74 ".	11		11	110.3	
6.2	1.4.6.7		7.094	1.25 "	4			0.402	N
61	1.648	7	7, 613		"		-	0411	k
2.5	1.613	4	6.544	1.70 "			+	621.0	0
							146	10.407	
63	1.316	0,705	5,600	1. 39 × 105.	0.023	0.632 (192)	(192)	204.02	
6.4	1.71.10	8	5.600	1.39 "			11-11	201405	
53	1, 252		51455	1.35 "	the second se	*	4	0.427	
66-	1.132	4	354.5	1.35 "	11			0.427	
67	1.27)	4	- 605-5	1.34 "	11		11	0.435	
65	1.295		5.552	1. 26 11	4	14	-	0.420	
		the second second	a see more a second as a	+	and the second second second		AV6	AY6 0.420	evening to a
63	0.915	0.378	3, 574	6.94 × 105	0.0Z1	Co. 307. (96)		0.407	- sulfice -
- 94	0.885		3.729	0.94 11		111 mar	0.02	c. 432	
21	0.552	a server of succession		C. 97 "	4	ALL IL	-	0.432	
72.	0.555		2,779			- T		0.432	
2	6.232		1.763	0.93 11 .	4	4		2.438	in the second se

-

Ĩ.

-

ş i ł

47 1

ł

Ì

- -

10	0.111								
1									
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	W6 0.124 .	Y							
· · · · ·	Q.127				-2.26-1-	9.120		2.143	1:4
0	0 123	10		· · · · · · · · · · · · · · · · · · ·	2.29 "	9.251		2.124	
8	0.120			······································	2,32	- 9.387	11	2,206.	211
	627.0			·····	2.29 "				
Buoyarica	0.124	(1.64)	0.296	0.082	2.29 ×105	9.251	0.378.	2,174	110
	N# 0.104								
	501.0	1			1.70	1.864		1.613	1129
	260.0			11	1.75	7.094		1.66.7	100
	0,105		11	2	1, 70 "	6.864	"	1,613	107
	0,105.	1	11	11	1.70 "	(2.864		1.613	106-
	-7.01+0	(22.0)	0.300	0.078	1.68 × 105	6.291	0.378	1, 596	105
	1401.0 24	N							
× · · · · · · · · · · · · · · · · · · ·	0.107	1		11	2.43 "	9.821		- 2.30%	104
27	0.107	**		u u	243 "	128.6		2.322	103
	0, 103.	1		5		0.974		2.244	10%
0	101:0	1	"	11	2,43 "	9.821		2,308	101
68	0.077	(1.60)	0.623	0.082	2.55 × 105	10.29.1	0.705	2.419	15.0
	Ar6 [0.103]	Arc							
F	2600	11	11	11	3.27 .1	13.025	11	3.061	39
	560.0			. 11	3,22	12.025	1,	2.061	20
	6600	1,	**		3.16 "	12.766		3.000	92
	0.099	4			3.16 "	12,766	**	3.000	960
France	0.125	(2.51)	086.0	-0103-	2.81 ADS	11.366	1,223	2.671	25-
Model	G	[[o].	-Turs	Tsystem		· w (raffec)	(13:11)	AX NC	Run

3.659. 3.659 3.250 3.250 3.28%	7(16-4)	() (rad/sec)	Rep !	Tsystem	Torag-	(E).	ي.	Hoder
. 250	1.653	15,570	3.85 ×105	62/0	0.954	(2.30)	141.0	en proport
. 25.0	1	15.570	3.85 "				161.0	•
.246	1	15.957	2.95	1,			0.139	
		16.36.6	4,05 "	11		11	0.127	8
3.846		16.366	4.05 1	п		U	1210	1.0
		•				AVG	-	8
3.000	0.705	12.766	3.16×105	0.101	0.604	(335)		4.
3.061		12,025	3,22	:		.,	0.127	17
3.125	11	13.298	. 3.29 "	1	1:	1	a.122	
3.661		12.025	3.22 "	•			-0.127	
34125		13,298	3,29 11		11	2	221-0	
						11	410 C. 166 -	
1.25	0.705	5.319	1.32×10-	72.0.0	0.634	(121)-	0.275	Spheres 4. Fran
1.25	1.	. 5,319	1.22 "	"		11	0.275	
1.26	:	51360	1.33 .1				0.770	
1.26	:	5.300	1.33 "	"			0,270	
1.26	1	5: 360	1.33		:		0.270	I
						Y	16. 0.272	
0.872	0.378	3,7/1	9.20×104	0,068	-01.310.	(0159)	0.276	
0.872	"	3,711	9.20 "				0276	52
0,862	h	L. 3. 668	- 21.0 "		· · · · · · · · ·		0.283	0
- 0.852	4	3.625	9.00	-       			6820	
0.862	н	3,625	7.00 "		"		0.289	~7
						4	AV6 0.23 3	
1.579	1.083	6.719	1.66 × 105	0. 075	1.0.08	(1.9.2)	0.274	
1.546	11	6.5A	1.63 "				0.286	
1.562		6.697	1.64			,	0.280	<b>-</b>

SED# LABEL FORTRAN STATEMENT

PRUGRAM: MAINPG 07/26/76 PAGE 001

D0 25 9=1,KAR REAU (2:10) N.M1.M2.V REAU (2:10) N.M1.M2.V 10 FURMAT (14, 10F5.2) 22 a=20.0 22 a=22.0 DX=01/A DX=01/A DX2=02/A DX2=02/A DX2=02/A DX2=02/A DX2=02/A P(1)=0 AREAT=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0 FURC2=0	
10     FURNAT (14, 10F5.2)       22     A=20.0       22     A=20.0       22     A=20.0       23     DX2=42/A       24     DX2=42/A       25     A2420       27     DX2=42/A       27     DX2=42/A       28     S.5/A       28     S.5/A       28     DX2=42/A       28     DX11=0       28     FURC2=0       7111=1     T=2.4       14     L=1-1       14     X(11)=X(L)+DX       15     FURC2=0       711=1     T=2.4       15     FURC1=FURC1+AREAL       16     L=1-1       17     FURC2=COX************************************	
22 8=2.20 22 8=2.20 0x2=82/3 0x2=82/3 0x2=82/3 0x2=82/3 0x2=82/3 0x2=82/3 0x2=82/3 0x2=82/3 0x15 10 14 101351 15 F04CE 15 F04CE 15 F04CE 15 F04CE 15 F04CE 15 F04CE 15 F04CE 15 F04CE 15 F04CE 15 F04CE 13 F0735F 14 101351 14 101351 15 101351 10 101551 10 101551 10 101551 10 101551 10 101551 10 10051 10 10051 10 10051 10 10051 10 10051 10 10051 10 10051 10 10051 10 100	
DX8=12/2       DX8=5/2       DX8=5/2       DX8=2/2       DX8=2/2       PX11=0       PX11=0       PX11=0       PX11=0       PX11=0       PX11=0       PX12=0       PX11=1       PX1=1       PX1=1	1 M (1 M
0x2=x2       0x2=x2       0x1=5.5       xx8=4.2=0       xx1=1       1x	
DR=5.5/ AREATED       TAREATED       Y(1)       AREAZED       FURCZED	
AREATO       FURCIED	
15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     16     15     16     16     16     16     16     16     16     16     16     16     16     16     17     16     17     16     17     16     17     16     17     16     17     16     17     16     17     16     17     16     16     17     16     17     16     16     17     16     17     16     17     17     17     16     17     17     17     17     17     17     16     16     17     17     17     17     17     17     17     17     17     17     17     17     17     17     17     17     17     17     17     17     17     17     17     17     <	
AKEAGE           FURCTEO           FURCTE           FURCTE <t< td=""><td></td></t<>	
14     L=1-1       14     L=1-1       14     X(1)=X(1)=X(1)=X(1)=X(1)=X(1)=X(1)=X(1)=	
FURC3=0 14 X(1)=X( 14 X(1)=X( 15 FURC1= 15 FURC1= 15 FURC1= 15 FURC1= 15 FURC2= 15 FURC2= 17 FURC2= 17 FURC2= 17 FURC2= 17 FURC2= 18 K(1)=X HELU1= 18 K(1)=X HELU1= 18 FURC3=FC C FT01=FC	
14     1.1     1.4     1.1     1.4       14     1.1     1.4     1.1     1.4       15     15     16     1.4     1.4       16     15     1.5     1.4     1.4       17     1.5     1.5     1.5     1.5       16     1.5     1.6     1.1     1.4       17     1.6     1.1     1.4     1.1       18     1.6     1.1     1.4     1.1       19     1.1     1.4     1.1     1.4       11     1.6     1.1     1.4     1.1       11     1.7     1.1     1.1     1.4       11     1.6     1.1     1.1     1.4       11     1.7     1.1     1.1     1.4       11     1.6     1.7     1.1     1.4       11     1.7     1.1     1.4     1.4       11     1.7     1.4     1.4     1.4       11     1.6     1.7     1.4     1.4       11     1.7     1.4     1.4     1.4       11     1.7     1.4     1.4     1.4       11     1.7     1.4     1.4     1.4       11     1.7     1.4     1.	
14 X(1)=X( E 242 50= 242 50= 15 504 15 1 16 701 15 1 16 7(1)=Y( 16 7(1)=Y( 17 704 15 2 17 704 15 2 17 704 15 2 17 704 15 2 18 701 2 18 704 2 19 701 2 10 21 8 10 20 8 1	
14 X(1) = X( 15 F0KC1 = VELSO= 15 F0KC1 = F0KC = 15 F0KC1 = 15 F0KC = 15 F0KC = 15 F0KC = 17 F0KC = 17 F0KC = 17 F0KC = 18 K11 = 21 F0KC = 21	
15 F0RC1= VELSO= VELSO= 15 F0RC1= F0RC1= 15 F0RC1= 16 Y(1)=Y( 16 Y(1)=Y( 16 Y(1)=Y( 16 Y(1)=Y( 16 Y(1)=Y( 17 F0RC2= 17 F0RC2= 17 F0RC2= 17 F0RC2= 10 13 1 18 Y(1)=3 VELSO2= 18 Y(1)=4 HE10H1 HE10H1 F5PRE= VELSO2=F C F10C2=F C F10C2	
LIS FORCISCE VELSOS VELSOS LIS FORCISCE C 15 FORCISCE C 10 12 11 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 LE1-1 L	
VELSO= 15 FORCI= 15 FORCE= 16 FORCE= 16 FORCE= 16 V(1)=V( VELSO2= VELSO2= 17 FURC2= 17 FURC2= 17 FURC2= 17 FURC2= 17 FURC2= 18 (1)= 18 (1)= 1	
15 FORCIE 15 FORCIE 16 V(1)=Y( 16 V(1)=Y( 16 V(1)=Y( 16 V(1)=Y( 17 FURC2= 17 FURC2= 17 FURC2= 17 FURC2= 18 FURC	
C 13 FORCE 16 V(1) = Y 0017 13 2 = Y(1) = Y VELS02= VELS02= 17 FURC2= 17 FURC2= 18 FURC2= 18 FURC2= 19 TIPE 18 FURC3= 19 TIPE C FT01=FC C FT01=FC	
16         116         1           16         14         11         17           16         17         17         17           284017         17         284017         13           17         584017         14         16           17         584017         13         16           18         17         14         16           19         18         17         17           18         18         11         3           18         11         3         16           18         11         3         17           18         11         3         17           19         14         17         17           18         10         18         16           19         16         18         16           19         16         16         17           18         10         18         16           18         10         18         16           18         16         16         16           19         16         18         16           18         16         16	
16 Y(1) =Y( 2017) =Y( 2017) =Y( 2017) =Y( 2181502= 218125= 218(1) =3 218(1)	
16 Y(1)=Y( 25 Y(1)=Y( 75 FUS 02= 25 FUS 02= 27 FUS 02= 27 FUS 02= 21 FUS 02= 21 FUS 02= 21 FUS 0= 21 FUS 0= 21 FUS 0= 75	
C C C C C C C C C C C C C C C C C C C	
Z = Y (1) + Z = Y (1) + Z = Y (1) + Z = Z = Z = Z = Z = Z = Z = Z = Z = Z	
C 17 FUEREZE 17 FUEREZE C 29 FUERE K=1 1 K=1 1	
17 FURCZE 17 FURCZE 18 FURCZE 18 FURCZE 18 FURCZE 18 FURCZE 18 FURCZE 18 FURCZE 18 FURCZE 18 FURCZE 18 FURCZE 19 FURCZE 10 FURCZE	
C C SPHERE 21 K(1) = 3 21 K(1) = 3 21 K(1) = 3 21 K(1) = 3 21 K(1) = 4 21 K(1)	
21 8(1) 4 8(1) 1 8(1) 1 90 1 8 1 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94884 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 94844 948444 948444 948444 948444 948444 948444 948444 948444 948444 9484444 948444 948444 948444 948444 9484444 948444 948444 948444 948444 9484444 948444 9484444 94844444 9484444 9484444444 94844444444	
21 8(1) = 3 8(1) = 3 8(1) = 3 8(1) = 3 8(1) = 3 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 94864 9486464 9486464 9486464 9486464 9486464 9486464 9486464 948646464 9486464646464646464646464646464646464646	
21 8(1) = 3 04 13 - 1 14 10 - - 1	
C 18 101 181 101 184 101 184	
XX(1) =X XX(1) =X XEL041 VEL53=F VEL53=F C F131=FC F131=FC	
741041 74824 758484 758484 758484 758484 758484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759484 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 759487 75947 75977 75977 75977 759777 759777 75977777777	
VelSore estiled VelSore estiled FSPAFE + 0-JAKEA+ELSCO FSPAFE + 0-JAKEA+ELSCO C FDACE AND XDNEAT CALCI C FDACE AND XDNEAT CALCI FT3T=FCAC1 + FDAC2+ FU MT0T=FT3T=FCAC1 + FDAC2+ FU	
FSPRE 40JAKEA0VELSG00 FSPRE 40JAKEA0VELSG00 C FDACC AND XDNEAT CALCI FT3T=FCAC1 + FDAC2+ FU	
C FDKC2=FUKC3=FUKC3+FDFHE C FDKCc AND KDKEAT CALCI FT3T=FCAC1 + FDAC2+ FU MI01*FT07#653375	
	and days into a stand of the stand days and the standard and the standard days of the standard standard standard days and the standard s
50°04 A=A 40'00	

.00

0051 ANTICLE ADMILE ADM	0.04	23 B=V/8.5	
	0051 0051	ANCVEL-ATANISI Angvel- Angvel057.2958 CDTUT* FTUT/(0.995046.4200.7070V=02)	
	053	<pre>kkite 'ts.241 ktut. Ftut. FDAC1. FDRC2. FDRC5. 4 24 FURNAT(_x%,14HDRAG MUMENT = .F10.4,74 FT-L0 ./.1 x.4.2HLB./.22H BUUYANCY TANK DRAS = .F10.4.3H L3</pre>	445VEC. CUTUT 134 DRAG FDAGE
	054	<pre>X = _FIO.4,/15H SPHERE DRAG = _FIO.4,2HEB./,2UH X _FIO.4,16H DEGREES PER SEC./.26H TJTAL DRAG CD 25 CUNTINUE</pre>	A ENSUEAR VELJCITY = Defficient V .F10.41
	056	END	
-			
			(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)







