

A VETHOD FOR PREDICTIIG THE TURAHMG RATE OF A SUBMERSIBLE

BY
DAVID WILLIAMS

JULY 1976

A METHOD FOR PREDICTING THE TURNING RATE

OF A
SUBMERSIBLE

BY:
David Williams

A B S T R A C T

This paper examines the affects of various turningthruster locations on the turning rate of the JOHNSON-SEA-LINK III Observation Submersible. A mathematical model was developed to predict the overall drag coefficient of the submersible while it was rotating with a constant angular velocity. This valve was experimentally checked by tests on a $1 / 12$ scale model of the submersible, which was rotated in a tank of water at the corresponding Reynolds number.

The mathematical model predicted an overall drag coefficient of 0.30 and the experiments produced a $C_{D}=0.5$. The Difference is attributed to interference drag of the components and inaccuracies in the experiment and mathematical model. The results were plotted on a graph of turning rate versus thruster location on the submersible.

I NTRODUCTION

The JOHNSON-SEA-LINK III submersible is to be an observation submersible with increased visibility and maneuverability at the expense of the diver lock-out compartment. This submersible will be an improvement in the design of $\mathrm{J}-\mathrm{S}-\mathrm{L}$ I $\mathbb{G} I I$ in its location of thrusters and other external equipment. It is desirable to compact the thrusters into the "hull" of the submersible so that visibility and safety of operation will be increased. A1so, this submersible will be more streamlined than the previous two. Although it is primarily a low speed submersible (1-2 knots with respect to the bottom), it should be fast enough through the water to overcome the various currents encountered. Thus, greater streamlining results in savings in power required.

For these reasons, it was decided to examine various turning thruster locations. The obvious place to put a turning thruster would be on the outermost end of the submersible where its turning moment would be the greatest. However, this would block the downward view from the observation spheres and would not help to make a streamlined body. If the turning thruster was moved inboard, the submersible would turn slower because of the smaller turning moment, but if its turning rate was comparable with JSL I \& II, then it would be considered a reasonable location. The problem then became to determine the effect on turning, if these thrusters were moved inboard.

$$
\mathrm{P} R O C E D U R E
$$

First, measurements were taken of the turning rate of the JSL II, in the channel at Link Port. The JSL II was submerged and the turning rate was measured with the use of the onboard compass and various thruster combinations. The average turning rate was found to be 8 degrees per second, with two thrusters operating at opposite ends of the submersible. This turning rate was used as a criterium for the JSL III.

The next action undertaken was to determine an overall drag coefficient for the JSL III that would allow turning rates for different thruster locations to be calculated. A simple mathematical model was formulated to get an order-of-magnitude estimate of the drag coefficient. If this theoretical valve was reasonably close to one determined by experiment, then one could be confident in the predicted turning rates.

Finally, an experiment was devised to measure the drag coefficient of a model of the JSL III. A $1 / 12$ scale model was rotated in a tank with a system of pulleys and weights. By timing the fall of the weights over a known distance, the drag coefficient could be calculated.
M A T H E M A T I C A L A N A L Y S I S

Very little was found in the literature on predicting the turning rates of submersibles, so the mathematical model presented here is a very simple analysis, intended only to give a rough estimate of the overall drag coefficient for turning. It was assumed that the JSL III would be geometrically symmetric
about its vertical centerline and that two thrusters with 100 pounds force each would act at right angles to the longitudinal centerline. It was also assumed that the submersible had very quick acceleration to a constant angular velocity and that the linear velocity varied from the centerline to the end of the submersible as $V_{\text {Linear }}=W X . \quad(W=$ turning rate rad/sec). This was not the real case, but it was sufficiently accurate for this analysis.

When a submersible is turning at a constant rate, i.e., no angular acceleration, the turning moment of the thrusters must equal the drag moment of the hull. The total turning moment of the two thrusters was assumed to be 200 X where X is the distance from the centerline of rotation. Here, it was also assumed that the thrust was a constant 100 pounds per thruster, which again was not the real case, since the thrust would vary with the speed of the thruster moving through the water.

In order to determine the drag moment caused by the shape of the submersible, a side view of the basic shape was divided in 4 components. These components were 2 spheres, one buoyancy tank and one battery compartment. The draf force at any location was calculated as:

$$
\begin{aligned}
& F_{D}=C_{D} P I_{Z} A V^{2}, \text { where } \\
& V=V_{\text {Linear }}-W X \\
& C_{D}=\text { Drag Coefficient of particular component } \\
& P=\text { Density of seawater } \\
& A=\text { Area of section }
\end{aligned}
$$

This equation was used to determine the force on an infinitesimal area of one of the components. The force was then
integrated over the entire length of the component to get a total drag force for the component. The integration was performed by the computer at Harbor Branch. (This program is detailed in the Appendix). The drag force for each component was summed and a total drag coefficient was determined from the formula:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{DT}}=\frac{\mathrm{F}_{\text {tot }}}{P / 2} A_{\text {tot }} \mathrm{T}^{2} \\
& \mathrm{~F}_{\text {tot }}=\text { sum of drag of four components } \\
& A_{\text {tot }}=\text { total frontal area of JSL III } \\
& \mathrm{V}^{2}=\mathrm{V}_{\text {Linear }} \text { at } \mathrm{X}=0.7 \mathrm{R} \\
& \mathrm{R} \quad=\text { Distance from } \& \text { to end of JSL III } \\
& \text { In this manner, a valve of } 0.3 \text { was found for the to- }
\end{aligned}
$$ tail drag coefficient.

EXPERIMENTAL

$$
\mathrm{NOTATTON}
$$

$\frac{\Delta x}{\Delta T}$ - velocity of weight pulling model

T uncorrected -	weight
	moment 0.235°. This is the
	$0.235^{\circ}=$ sleeve radius

W - angular velocity of system and model
$R e_{D}$ - Reynolds number of the model $D=6.3 /{ }_{12}$ which is diameter of model
$V=(0.7 \times 8.5 \times W) / 12$ 8.5 ft . is the maximum turning radius of the submersible. It was decided to take 0.7 of this radius when computing the linear velocity acting on the model. This is common in propeller design.

T system - Frictional drag of the system is represented
as a moment acting against the moment applied to the system (Tuncorrected). This valve is obtained from the graph of system drag -vs- velocity. It was determined that the system drag depended on the velocity of the weight. T system = system drag X0.235.
$T_{\text {Drag }}$ - The drag force of the model is represented by a moment, which is the difference between Tuncorrected and T-system.
F_{D} - The drag force is the moment due to drag, divided by the lever arm. In order to determine the lever arm, force diagrams were drawn for the model and its components that were being tested. The distances from the centerline to the centroids of the force diagrams were the lever arms.
C_{D} - Overall drag coefficient for the model or portion of the model being tested. $\mathrm{C}_{\mathrm{D}}=$ $\mathrm{T}_{\text {Drag/ (1ever arm) }} \mathrm{P}_{2} \mathrm{~A}_{\text {tota1 }} \mathrm{V}^{2}$

TESTING PROCEDURE

The $1 / 12$ scale model was placed in the tank and weights
ranging from 1.61 lbs to 8.01 lbs were then attached to the string. The weights were raised to a height of 11.5 ft . above the floor. Marks were placed on the wall next to the weight in two foot intervals for measuring the distance of the filling weight.

The water in the tank was allowed to come to rest, then the weight was released. It was allowed to fall four feet before timing was started. This left 7.5 feet for the weight to fall at constant velocity. Acceleration measurements were made and it was determined that the model reached constant angular velocity within the first two feet of fall.

The full model was tested 37 times with seven different combinations of weights. The weight, time and distance of each test were recorded. Next, the spheres were removed and the procedure was repeated. After removing the spheres, the batteries were removed so that the buoyancy tank and frame were tested. Finally, the spheres were tested in combination with the frame. The breakdown of the model in this manner allowed for the interference drag of the various components to be calculated.

$$
\begin{aligned}
& \text { DETERMINATON OF } \\
& \text { DRAG COEFFICIENT }
\end{aligned}
$$

As previously stated, the moment due to the drag force was calculated from the difference of the system moment and the applied moment. The drag moment was divided by its lever arm to determine the drag force. This force was used in calculating the drag coefficients. When the drag coefficients of the various components of the model were calculated, a different lever arm had to be found from the force diagram.

Except for different velocities, the term $\mathcal{P}_{2} \mathrm{AV}^{2}$ was kept constant. A constant valve of $0.653 \mathrm{ft}^{2}$ was used for the area. In this way, the drag forces on the full model and its
components would be represented by the coefficients. This would allow the coefficients to be added and subtracted directly. For example:
C_{D} of the frame is 0.105 at $\operatorname{Re}=2 \times 10^{5}$
C_{D} of the buoyancy tank $\&$ frame is 0.25
C_{D} of the buoynacy tank is 0.125
Therefore, the interference drag coefficient is $0.25-(0.125+0.105)=0.02$. Once the overall drag coefficient of the full model was determined, it was possible to calculate a turning rate for any given thruster location. It was assumed in the calculations that two thrusters are acting at a distance (x) from the centerline with 100 pounds of thrust each. The drag moment must equal the thruster moment when the submersible is in constant angular velocity. From this relationship, the turning rate is calculated as a function of thruster location from the center line.

Thruster moment $=200 \mathrm{X}$

$$
\begin{aligned}
& \text { Drag moment }=F_{D} \times \text { lever arm } \\
& =C_{D} P / A_{2} \text { L.A. } \\
& C_{D}=0.53 \text { by experiment }\left(\operatorname{Re}=2.0 \times 10^{5}\right) \\
& P / 2=0.995 \\
& V=0.8 \times 8.5 \times W \\
& \text { L.A. }=5.9
\end{aligned}
$$

It can be shown with simple algebra that $W=\left(\frac{x}{51.8}\right)^{\frac{1}{2}}$

$x=2 \mathrm{ft}$	$W=11.3$ degrees per second
$x=3 \mathrm{ft}$	$W=13.8$ degrees per second
$x=4 \mathrm{ft}$	$W=15.9$ degrees per second
$x=5 \mathrm{ft}$	$W=17.8$ degrees per second

CONCLUSIONS

The results from this experiment compare favorably with data taken from J-S-L II. The turning rate of J-S-L II, with two thrusters acting, was found to be approximately 8 degrees per second. These measurements were taken in the Link Port Channel where wave and bottom effects would tend to slow the submersibles turning rate. Also, the present design of J-S-L III is smaller and more "streamlined" with respect to rotation than is J-S-L II. Taking these factors into consideration, the turning rates predicted by this experiment should give a good indication of what could be expected of the prototype.

The overall drag coefficient predicted by the experiment was on the order of 0.5 , while the mathematical model predicted 0.3 . The discrepancy can be attributed to the interference drag and errors in the experimental set $u p$ and mathematical model. However, the lower valve of drag coefficient was used to determine the curve of turning rate -vs-thruster location.

$$
\begin{aligned}
& \text { Distribution for } \\
& \text { Scale Model } \\
& \begin{aligned}
J S L-I I I
\end{aligned} \\
& \begin{aligned}
\omega & =17 \mathrm{rpA} \\
& =1.78 \mathrm{rad} / \mathrm{sec}
\end{aligned}
\end{aligned}
$$

$$
\frac{4}{4} \rightarrow
$$

$$
\therefore \quad \geq 1 \pm \infty^{\prime} \infty 1 \geqslant 1 \text { ! }
$$

$4 N_{1}^{N}$
4
4
4
4

$\begin{array}{llllll} \\ & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1\end{array}$
grelee x ro oiviens.

A P P E N D I X

C_{0}
0.141
0.141
0.134
0.127
0.127
0.134
0.133
0.127
0.122
0.127
0.122
0.126
0.275
0.275
0.270
0.270
0.270
0.272
0.276
0.276
0.283
0289
0.289
0.233
0.274
0.286
0.280
0.280

sega label fortran statement
PRUGRAY: YAINPG $97 / 25 / 75$ PAGE $3 J 1$

232
 PAGE

(-2

