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Dynamical Minimalism: Why Less is More in Psychology

Andrzej Nowak
Department of Psychology, University of Warsaw

Graduate School for Social Psychology, Warsaw and Florida Atlantic University

The principle of parsimony, embraced in all areas of science, states that simple expla-
nations are preferable to complex explanations in theory construction. Parsimony,
however, can necessitate a trade-off with depth and richness in understanding. The
approach of dynamical minimalism avoids this trade-off. The goal of this approach is
to identify the simplest mechanisms and fewest variables capable of producing the
phenomenon in question. A dynamical model in which change is produced by simple
rules repetitively interacting with each other can exhibit unexpected and complex
properties. It is thus possible to explain complex psychological and social phenomena
with very simple models if these models are dynamic. In dynamical minimalist theo-
ries, then, the principle of parsimony can be followed without sacrificing depth in un-
derstanding. Computer simulations have proven especially useful for investigating
the emergent properties of simple models.

Each person represents the intersection of numer-
ous influences from other people. For me this is more
than recognition of a truism. It is a way that allows me
to trace the roots of my approach to theory building in
social psychology. It also provides the essence of my
theoretical thinking about social psychological phe-
nomena. My approach to building theory in social sci-
ences has evolved as a result of my interactions with a
number of individuals, each of whom has shaped my
thinking about a theory in a different way. And the the-
ories that have resulted from these influences have at
their core the assumption that human behavior is a
highly dynamic affair, evolving in accordance with the
interaction of multiple influences—including the in-
fluences of other people. But although an appreciation
for complexity is at the heart of my approach, the ori-
entation that has evolved over the years can be defined
as minimalist, in that I look for the simplest set of as-
sumptions and the fewest variables to account for hu-
man behavior. Complexity and minimalism may seem
contradictory, but I have learned that these ideas are in
fact quite complementary and define what can be
termed the approach of dynamical minimalism.

The Evolution of a Scientific Attitude

My first exposure to social science theorizing oc-
curred in my interactions with my father, Stefan

Nowak, a sociologist and philosopher of science (e.g.,
S. Nowak, 1976, 1978). For him the issue of how social
theories should be build was a passion, and he per-
ceived himself more as a methodologist and philoso-
pher of science than a sociologist. He would try to ex-
plain to me the positivist approach and the ideas of
reductionism. The questions as to what needs to be as-
sumed in the theory and what can be proven empiri-
cally fueled our interactions even before I had finished
high school, and they significantly contributed to my
decision to study psychology.

The insights he imparted to me regarding
neopositivism prepared me for a subsequent stage in
the evolution of my theoretical approach, which was
inspired by my collaboration with Maciej Lewenstein,
a theoretical physicist. This collaboration instilled in
me an appreciation for concreteness and precision in
theory construction. But, perhaps more important, I de-
veloped a recognition that diverse phenomena can be
framed in terms of common rules and properties. The
trick was to develop formal models that captured what
is invariant across topics and levels of analysis, yet
maintain appreciation of what is unique to each area of
scientific inquiry. Together, Lewenstein and I (e.g.,
Lewenstein & Nowak, 1989a, 1989b; Lewenstein,
Nowak, & Latané, 1993) developed models in which
elements at the individual level—whether neurons or
people—influenced one another to produce complex-
ity at the aggregrate level—whether in brains or in so-
cial groups. Complexity, in other words, was an emer-
gent property rather than a feature that was inherent in
the individual elements themselves. We employed
computer simulations to demonstrate how simple rules
of interaction among simple elements can promote the
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emergence of highly complex phenomena. The collab-
orations with Lewenstein thus provided a very clear
lesson that complexity and minimalism are not contra-
dictory but rather provide a coherent picture of human
dynamics.

The next step in the evolution of my understanding
of social psychological theory came from my collabo-
ration with Bibb Latané. In developing and testing the
model of dynamic social impact (Nowak, Szamrej, &
Latané, 1990), I could confront my dynamical under-
standing of theory in social psychology with require-
ments of rigorous methodology of empirically oriented
social psychology. This collaboration has taught me
that empirical research is a crucial element in the de-
velopment of a theory in social psychology. In building
the theoretical accounts of a phenomenon, it is critical
not only to account for existing empirical results but
also to be able to predict new phenomena not predicted
by other theories and to actually demonstrate them in
empirical research. In discussions with Bibb Latané, I
developed my understanding that in dynamical re-
search, theory, simulation, and empirical research form
a whole whereby each element plays an important role
for the two other elements. The development of a the-
ory happens through repeated iteration of computer
simulations that investigate the properties of the theo-
retical model and empirical investigations that test the
model’s assumptions and predictions. Without the em-
pirical component, the value of the theory is greatly di-
minished. Without empirical tests, a theory built only
on a simulation model presents more a formal model of
abstract phenomena than a theory of a true social phe-
nomenon. It was this mix of simulations and experi-
mentation that distinguished the dynamical theory of
social impact from most other computational mi-
cro–macro models of social processes.

I have also realized the importance of understand-
ing the essential aspects of the phenomenon that is the
focus of a theory. It is critical, of course, to anchor the
phenomenon in existing theories. Interestingly
enough, Bibb Latané explicitly formulated advice in
theory construction, which to a certain degree I had al-
ready followed. He learned this rule, which he de-
scribed as the main secret in theory building, from his
advisor Stanley Schachter, who in turn had learned the
rule from his advisor Kurt Lewin. Simply put, if you
want to built a theory of social phenomena, try to build
it before you study other theories of the phenomenon.
It is difficult to create a novel theory by following the
footsteps of others. You certainly need to study other
relevant theories, of course, but only after you have de-
veloped the main thrust of your own theory.

Perhaps the greatest influence for my current under-
standing of theories came from my long-standing col-
laboration with Robin Vallacher. In our research
(Nowak & Vallacher, 1998; Vallacher & Nowak, 1994,
1997), we have tried to build dynamical theories of

phenomena from different levels of social reality, as
well as explicitly address the issue of how dynamical
theories should be constructed. Although often our the-
oretical interest was focused on finding dynamical
principles that are invariant across level of psychologi-
cal reality, Vallacher paid special attention to the subtle
nature of specific psychological phenomena. My les-
son was that in building dynamical models of social
phenomena, one of the most difficult tasks is to pre-
serve the depth of the understanding of theories formu-
lated in social psychology.

Perhaps the most important message of my collabo-
ration with both Latané and Vallacher is that if one be-
lieves that the theory is right and fascinating, one
should follow this avenue, even if it is novel and risky
to pursue. Both these established researchers have pur-
sued ideas that at the time were hardly mainstream and
thus might be viewed as somewhat risky, even if such
pursuit entailed a departure from their ongoing lines of
theory and research.

The Essence of Dynamical Minimalism

My approach to theory construction has been in-
spired by many people with different orientations, per-
sonalities, and scientific agendas. Yet these influences
have converged in important respects and have instilled
in me a set of assumptions about human behavior and
the means by which human behavior should be investi-
gated. Perhaps the basic lesson is this: To appreciate
what is unique about human behavior, we first need to
identify what is common across all domains of scien-
tific inquiry. Ironically, what is unique to humans can
be understood in terms of general principles that apply
in highly disparate levels of scientific inquiry and that
cut across levels of scientific explanation. I call this ap-
proach dynamical minimalism. It is minimalist in that
it attempts to identify the simplest mechanisms that
can produce the phenomenon that we are trying to ex-
plain.. It is dynamical in that it assumes that the behav-
ior of systems evolves in time through repeated inter-
action of these fundamental features.

This approach resolves the apparent trade-offs in
the construction of social theories. Two canonical as-
sumptions in theory construction are parsimony and re-
duction. The law of parsimony states that simple expla-
nations should always be preferred. The trade-off is
that simple theories may strip the phenomenon of its
complexity. The other notion, reduction, postulates
that a true explanation must be grounded in only the
most rudimentary features of the phenomena. In its ex-
treme one would be left with trying to explain jury de-
cisions with opening ion channels in neurons or, going
even further, with quantum wave equations. The
trade-off here is that for the sake of reduction, one nec-
essarily strips all the other levels of their significance.
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In dynamical minimalism, in contrast, these trade-offs
in theory construction are not necessary. Indeed, it is
precisely a concern with simple assumptions involving
rudimentary elements that allows us to construct theo-
ries that incorporate the rich complexity of human be-
havior and explain the significance of different levels
of psychological and social reality.

To apply the principles of dynamical minimalism to
the field of social psychology, it is first necessary to
discuss the basic assumptions and features of complex
systems generally. This insight into the nature of com-
plexity would not have been possible without the ad-
vent of high-speed computers and the use of computer
simulations. Building on this depiction, I discuss how
this approach and its means of implementation have
begun to generate insight into different facets of human
complexity as well as outline a new theoretical synthe-
sis of an otherwise fragmented field.

From Simple Rules to Complex
Properties

The discovery that complex properties may emerge
from simple rules is one of the most important discover-
ies of modern science (e.g., Holland, 1995; Johnson,
2001;Kaufman,1995;Waldrop,1992;Wolfram,2002).
Many discoveries across diverse disciplines of science
show that extremely simple rules can produce complex
phenomena. This is especially characteristic of systems
consisting of elements that interact in a nonlinear fash-
ion. Even if the system’s elements are relatively simple,
nonlinearity in their interactions may lead to highly
complex dynamic behavior, such as self-organization
and pattern formation (cf. Camazine, 2002; Haken,
1978; Johnson, 2001; Kelso, 1995; Prigogene &
Stengers, 1984; Wolfram, 2002). The emergence of
both order and chaos, for example, has been docu-
mented in neural networks (Amit, 1989) and cellular au-
tomata (Wolfram, 1986, 2002), in which the basic ele-
ments are essentially binary.

In the dynamical systems approach, it has been
shown that even systems composed of a few variables
may display very complex patterns of temporal
changes (Shuster, 1984). The temporal trajectory of
such a system may be chaotic and unpredictable over
longer time periods. Such a dynamic is characteristic
of weather patterns modeled in meteorology (Lorenz,
1963) or in hydrodynamics (Ruelle & Takens, 1971).
Complexity may also be produced in a spatial pattern
Very simple rules of interaction of nearby cells, for ex-
ample, can reproduce the patterns of pigmentations ob-
served in living organisms or shapes of plants and
shells (e.g., Meinhart, 1995; Wolfram, 2002) or in the
arrangement of columns in visual cortex (Miller,
Keller, & Stryler, 1989). Within psychology, the ap-
pearance of complexity from simple rules has been
demonstrated in both cognitive (Port & van Gelder,

1995) and social psychology (Nowak & Vallacher,
1998; Read & Miller, 1998; Vallacher, Read, &
Nowak, 2002).

The realization that complexity may be the flip side
of simplicity, rather than its opposition, has profound
consequences for theory construction in the social sci-
ences. If simple rules can produce complex phenom-
ena, then complex processes and structures can be ex-
plained by simple models. This provides a way to
follow the principle of parsimony without sacrificing
the depths of our understanding or trivializing what we
are trying to explain. It follows that a simple model can
be built that will exhibit the complex properties of a
psychological or social phenomenon. Complexity may
appear in systems governed by simple rules only if
these rules interact with each other or with the environ-
ment (Goldstein, 1999; Weisbuch, 1992). The mini-
malist model thus needs to be dynamic.

Building a Theory Based on
Emergence

Social psychology has always been concerned with
the means by which the individual elements of a phe-
nomenon (e.g., thoughts, behaviors, individual actors)
are combined into orderly and complex structures that
can perform complex functions such as decision mak-
ing, goal attainment, or maintaining group coherence.
Social psychological theory often assumed that some
higher level agent is necessary to impose structure and
order on lower level elements. With respect to the hu-
man mind, for example, such concerns often led to the
notion of the homunculus—the mind-within-the-mind
that itself could not be explained without invoking an
infinite regress.

The principle of self-organization, a fundamental
feature of nonlinear dynamical systems, provides a
very different picture of the relation between lower
level elements and higher order structure. The basic
idea is that the local interactions among low-level ele-
ments, in which each element adjusts to other elements
without reference to a global pattern, may lead to the
emergence of highly coherent structures and behavior
on the level of the whole. Such structures then may
provide in turn coordination for the lower level ele-
ments (Haken, 1978; Kelso, 1995). No higher order
agent is necessary for the emergence of such
coordinative structures (Camazine, 2003; Gell-Man,
1994; Haken, 1982). Rather than being imposed on the
system from above or from outside the system alto-
gether, the higher order structures emerge from the in-
ternal workings of the system itself or from interaction
of the system with its environment. In this process, the
system loses degrees of freedom and the state of the
system may be described by a small number of vari-
ables. Ironically, then, complex systems can some-
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times be described by fewer variables than can rela-
tively simple systems.

The proper theory of the coordination of individual
activities in ant colonies does not require an assump-
tion of the ant queen who knows what the pattern
should be. Instead, the assumption that each ant reacts
to the pattern of activities of other nearby ants is suffi-
cient to explain the differentiation and complexity of
life in a swarm (Bonabeau & Théraulaz, 2000). In a
process in which individual cells can assemble into an
organism in a slime mold, there is no center of coordi-
nation; no cell knows the shape of the resultant organ-
ism. Instead each cell follows simple rules of interac-
tion with the neighboring cells (Resnik, 1999). This
idea can be readily applied to psychological phenom-
ena. The process in which every individual adopts the
prevailing attitude of the individual’s interaction part-
ners leads to the emergence of coherent spatial patterns
of individual opinions on the level of the social group
(Nowak et al., 1990). The emergence of self-structure
can be modeled in a similar fashion. (Nowak,
Vallacher, Tesser, & Borkowski, 2000). In both mod-
els, the individual elements (people, thoughts) have no
notion of the overall pattern on the macro level. The
pattern simply emerges from rules governing individ-
ual behavior.

Mechanisms of Emergence

Cellular automata (Von Neumann, 1966; Wolfram,
1986, 2002) are the models of choice for simulating the
emergence of patterns from local interactions among
elements. A cellular automaton is a computer simula-
tion model composed of elements adopting discrete
states; these elements are arranged in a discrete spatial
arrangement such as a 2D lattice, and the time proceeds
in discrete states. Each cell is characterized by its loca-
tion and its state. In cellular automaton, the interaction
rules are local, in that the state of each cell depends on
the state of neighboring states in a way specified by a
specific rule. Even very simple rules can produce
amazingly complex dynamics, and no direct relation
exists between the complexity of the rules and the com-
plexity of the resultant dynamics (Wolfram, 2002).

Cellular automata are especially well suited for sim-
ulating social processes (Hegselman, 1996; Nowak &
Vallacher, 2002). Each cell corresponds to an individ-
ual.Neighborhoodstructurescreatedbyspatialproxim-
ity can capture the locality of human interactions. Each
individual can thus react to the social context created by
othernearby individuals.Theupdating rulescanspecify
principles governing changes of states of individuals
(such as attitude change) or their location in space.

Systems may also self-organize in the process of in-
teraction with their environment. This may happen ei-
ther in the process of learning or evolution. In this case,
the minimalist approach to theory construction is to es-

tablish the minimal assumptions that will allow the
system to self-organize in the process of interaction
with the environment. In a minimalist approach to the
question of how can children learn grammar
(Culicover & Nowak, 2003), computer simulations
were used to establish the minimal mechanisms neces-
sary for the system to be able to develop mechanisms
for parsing of sentences. Transcripts of the language
spoken to a child were fed into a computer. The number
of mechanisms contained in the program was system-
atically varied. The question was what features of the
grammar can the program learn under which types of
assumptions. The results indicated that the ability to
statistically analyze the regularities in the language is
not sufficient for learning the grammar. Such learning
is possible, however, when the meaning of the sen-
tences is present when the system is learning them and
if in the systems there are mechanisms that can find
correspondences between meaning and form. In this
approach the minimal assumptions do not correspond
to a structure of the system, but rather they concern
mechanisms by which the structure may be acquired in
interaction with the environment.

Two types of models are most common in which
self-organization appears though interaction with the
environment. Connectionist models (cf. Hopfield,
1982; McClelland & Rumelhart, 1986; O’Reilly &
Munakata, 2000), also referred to as artificial neural
networks, are composed of simple elements inter-
preted as neurons and connections between them,
which correspond to synapses. Despite the simplicity
of rules governing their behavior, connectionist models
can show a host of emergent functions such as a capac-
ity for pattern recognition that surpasses that of hu-
mans, generalization, learning statistical regularities of
language (Elman, 1995), functioning as content ad-
dressable memories, and so on. Recently a host of
models of social psychological processes have been
built within the framework of connectionist models (cf.
Read & Miller 1998; Smith, 1996).

Genetic algorithms (Holland, 1975) are computer
simulations that model evolutionary processes. A num-
ber of individual elements are simulated on a computer,
each equipped with specific characteristics encoded by
asetofgenes.Theseelements interactwitheachotheror
with their environment in a way specified by their char-
acteristics. A fitness function specifies criteria for deter-
mining how well each individual satisfies the require-
ments of the environment. The individuals with a low
value of fitness are eliminated in a process resembling
natural selection. Individualswithahighvalueof fitness
replicate producing an offspring. Mutation may alter
randomly the genes in the process of reproduction,
which introduces variation into population. Because the
least fit are eliminated and the best fit reproduce, the
level of fitness in the population increases in the course
of computer simulation.
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Genetic algorithms are capable of producing highly
complex structures and solving very difficult prob-
lems. Despite the simplicity of the mechanisms, these
procedures can lead to the emergence of structures ca-
pable of performing surprisingly complex functions.
Genetic algorithms can, for example, evolve solutions
to mathematical problems that humans can’t solve and
computer programs capable of performing functions
that are difficult for human programmers to program.
Within the social sciences, for example, a genetic algo-
rithm was applied to the task of explaining how coop-
eration can emerge from the concern with maximizing
one’s own outcomes (Axelrod, 1984).

Levels of Description

The approach of reductionism argues that, in princi-
ple, properties of a whole must be reducible to proper-
ties its component parts. Along these lines one might
try to explain the link between poverty and crime as a
group analog of the frustration–aggression principle.
In the view of simple reductionism, the complexity of
the whole would be dependent on the complexity of its
components.

The notion of emergence (Durkheim, 1938;
Stephan, 2003) directly counters the claims of
reductionism. Radically new properties emerge at each
higher level of description. The properties of a group
are markedly different from the properties of group
members, and thus the laws formulated on the individ-
ual level cannot explain laws governing social groups.
In a similar vein, in the domain of human cognition, the
information processing approach is explicitly based on
antireductionist assumptions (Pylyshyn, 1981). In this
view, the human mind is just an information-process-
ing device, and the essence of its function are opera-
tions on symbols. The underlying biological machin-
ery of the brain is irrelevant to the cognitive functions it
performs, and these functions might be carried out in
any physical system capable of adequate manipulation
of symbols, for example, a computer. The laws that
govern the symbolic operations of the mind can be ex-
plained in terms of information processing and are
shared with logic, computer science, and in particular
with artificial intelligence, whereas the laws that gov-
ern the brain are biological in nature and shared with
other biological systems.

Dynamical minimalism removes the contradiction
between reductionism and emergence. It shows how
the principle of parsimony may be applied without de-
tracting from depth of understanding. The aim of the
theory according to this approach is not to describe the
higher level phenomena in terms of the lower level
phenomena; rather, it is to propose rules at the lower
level from which the higher level phenomenon
emerges in its natural form and complexity.

Models of Qualitative Understanding

Models of qualitative understanding allow us to
combine the rigor associated with precise models and
the heuristics of verbally stated theories. Although pre-
cise, often mathematically expressed rules are used to
build models that are investigated by computer simula-
tions, the generic properties of these models can be ex-
pressed in verbal theories. In this approach, one does
not strive to find an exact match between the model and
empirical data, but rather attempts to achieve qualita-
tive understanding of the phenomenon. As Fiske (this
issue) observes, in psychology, even if theories are
built in the form of mathematical theories, usually they
are absorbed by the field of psychology as their verbal
descriptions. Dynamical minimalist models that are
most likely to have an impact on psychological theo-
ries are models of qualitative understanding.

It can be noted in this regard that physics and other
natural sciences also use the qualitative approach. In
complex nonlinear systems, prediction may be difficult
and limited, or simply impossible (e.g., Schuster,
1984; Wolfram, 2002). We may concentrate, however,
on finding patterns in the data instead of testing predic-
tions (Nowak, Lewenstein, & Vallacher, 1994). In this
approach, one tries to isolate and explain the most im-
portant features, which often are the qualitative aspects
of the phenomenon.

Usually in science, we look for patterns that corre-
spond to a causal relation in which one event reliably
follows another. Other patterns may express a linear re-
lation, in which the values of one variable are corre-
lated with values of another variable. Many other kinds
of relations are also possible, however, that cannot be
subsumed by causality or linearity. Examples include
the wavelike pattern of an individual’s behavior
(Newtson, 1994), the complex forms of behavior coor-
dination between individuals in relationships (Baron,
Amazeen, & Beek, 1994; Nowak, Vallacher, &
Zachowski, 2001), the spatial distribution of attitudes
in a society (Nowak et al., 1990), the distributions of
attitude values on a dimension (Latané & Nowak,
1994), the oscillations over time in social judgment
(Vallacher, Nowak, & Kaufman, 1994), the regularity
of changes of oscillations in self-evaluative thought
(Vallacher, Nowak, Froehlich, & Rockloff, 2002), and
patterns of movement coordination (Kelso, 1995).

From the dynamical point of view, perhaps the pat-
tern most frequently assumed by psychological theories
is that of the system converging on a point attractor. In
the absence of outside forces, the system will converge
on a specific value. The system is trying to stabilize on
this value and resist perturbations. If perturbations oc-
cur, the system will engage mechanisms designed to re-
instate this value (Nowak & Lewenstein, 1994). Ho-
meostasis (Cannon, 1932; Hull, 1943) is an example of
fixed-point attractor dynamics, as are the notions of
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optimality (Berlyne, 1960) and standards of self-regula-
tion (Carver & Scheier, 1998; Powers, 1973).

More than one attractor can exist in a system. A
qualitative change in dynamics would correspond to
the change in the system’s number or type of attractors.
This type of change, called bifurcation, is a fundamen-
tal feature of dynamical system theory (Ruelle, 1989).
How a change in a system’s attractors can occur is also
the subject of catastrophe theory (Thom, 1972). A
model of qualitative understanding would attempt to
explain the change in the structure of a system’s attrac-
tors. Such models in psychology have been imple-
mented with respect to attraction and love (Nowak &
Vallacher, 1998; Tesser & Achee, 1994) and the distri-
bution of attitudes in a social system (Latané &
Nowak, 1994). In such models, insights from formal
models are usually presented as verbal theories rather
than as mathematical formulas.

Qualitative models offer fundamental understand-
ing of social phenomena from a new perspective. Even
if the model makes predictions that are trivial from the
point of view of social science, what may be not trivial
is the simplicity of rules that allow us to make such pre-
dictions. Although it may be unrealistic to seek a direct
match between the phenomenon and the model, the
model indicates the most important factors affecting
the phenomenon and in what manner the phenomenon
will change following changes of these factors.

Models of qualitative understanding may even be
used to plan practical interventions. The knowledge of
qualitative factors influencing social change that
emerged as a result of computer simulations of social
influence models, for example, has made it possible to
plan a successful large-scale program aimed at reduc-
ing unemployment (Nowak, Kus, Urbaniak, &
Zarycki, 2001; Nowak & Vallacher, 2001).

Computer Simulations

In recent years, computer simulations have proven to
be the tool of choice in developing models of social dy-
namics (Gilbert&Troizsch,1999;Liebrandt,Nowak,&
Hegselman, 1996; Nowak & Vallacher, 2002). Com-
puters enable one to investigate a large number of inter-
acting elements and to track the behavior generated by
these interactions over many trials. There are many ap-
proaches to computer simulation in both the natural and
social sciences (Hegselman, Troitzch, & Muller, 1996).
In socialpsychology, themostpopularapproachmodels
the emergence of global properties from the interactions
of individualelements. Inmodelsof social cognition, el-
ements correspond to components of the cognitive sys-
tem, and the global level refers to macroscopic proper-
ties of the system such as decisions and judgments (cf.
Smith,1996).Atahigher levelofsocial reality,elements
correspond to individuals and the system-level proper-
ties refer to such group-level phenomena as the emer-

gence of public opinion (Nowak et al., 1990) and coop-
eration in social dilemma situations (e.g., Messick &
Liebrand, 1995).

Among the many advantages of computer simula-
tion (cf. Gilbert & Troizsch, 1999; Liebrand, Nowak,
& Hegselman, 1996; Nowak & Vallacher, 2002,
Nowak, Vallacher, & Burnstein, 1998), two are partic-
ularly noteworthy with respect to social psychology.
Computer simulations, first of all, allow one to investi-
gate the relation between micro and macro levels of so-
cial reality. In a prototypical example, we can equip in-
dividual elements with established rules of behavior.
Because there are many such elements in a computer
simulation, we can observe how these rules give rise to
global properties for the set of elements as a whole. In a
reversal of this procedure, we can start with known
global phenomena and trace backwards to discover
what rules on the level of individual elements are nec-
essary to produce the system-level phenomena.

The second noteworthy advantage of computer sim-
ulations is their capacity to reveal temporal patterns. In
social psychology, temporal aspects of interpersonal
phenomena are largely unexplored. Yet, in many in-
stances it is unreasonable to expect the effects of a
given cause to be revealed immediately. An insult may
produce hate, but the development of such a feeling
may take a relatively long time to develop. Although
love at first sight is a frequent subject of novels and
movies, in reality many interactions and prolonged
contact may be necessary for a romantic attraction to
develop. The very nature of computer simulations
makes it very easy to study the effects of multiple itera-
tions of a given process. Decades of real time, and
thousands of real interactions, may be compressed into
seconds of computer time, revealing delayed conse-
quences that simply cannot be observed in real time. In
sum, computer simulations are ideal tools to investi-
gate the dynamic consequences of a theory.

Computers are also the most potent tool for visual-
ization of both experimental and simulation data.
Computer visualization makes it possible to discover
patterns existing in reality and predicted by theory.
With visualization, one can literally see the emergence
of temporal and spatial patterns in a social psychologi-
cal process, whether the spread of public opinion
through social influence (Nowak et al., 1990) or the
progressive differentiation of self-concept through so-
cially provided feedback on one’s qualities (Nowak et
al., 2000). The comparison of patterns inherent in ex-
perimental data and produced by computer simulation
of a model provides a new means of verifying a theory.

Bridging Levels of Description

Computer simulations are most useful for investi-
gating phenomena across levels of description. In such
simulations rules and interactions at the lower level
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produce emergent properties at the higher level. Inter-
esting properties are not input into the model at the mi-
cro level. Models are usually trivial at the level at
which they are constructed. Properties become inter-
esting at a macro level. Consider, for example, the rela-
tion between specific thoughts and higher order mental
structures, such as attitudes and self-concept. In a re-
cent model of self-concept (Nowak et al., 2000), the
micro level corresponds to individual elements of
self-relevant information. The properties of these ele-
ments are extremely simple: An element has a value of
centrality (importance) and position in a grid such that
neighboring elements are relevant to each other in con-
tent. These properties do not change in the course of
the simulations. Each element has also valence (posi-
tive or negative). The rule of self-organization is amaz-
ingly simple: Each element adopts the valence that is
prevailing among the neighboring elements. As com-
puter simulation reveals, interaction of such simple el-
ements produces effects observed in many psychologi-
cal experiments concerning self-structure such as
evaluative integration and differentiation, positivity
bias, and resistance to incoming disconfirming infor-
mation. What is interesting in this simulation does not
concern the low-level description, but the fact that such
a simple description can produce a host of phenomena
empirically observed in the research on self.

Computer Simulation and Theory
Construction

The essence of the minimalist theory is to find the
minimal conditions under which interesting patterns
will emerge. To construct a minimalist model, we need
to include in the model only the essential features and
rules. Systematic use of computer simulations can tell
us which properties of the model are critical for emer-
gence. The first step is to establish the conditions de-
fining the class of models in which the phenomenon of
interest occurs. In the search for the critical properties,
one progressively strips the model of its features until
the emergent phenomenon vanishes. Alternatively,
features can be varied and substituted by other features
to establish which combinations of features are neces-
sary for emergence to occur. Those features that are ab-
solutely necessary for the phenomenon to emerge con-
stitute the minimalist model. The rest of the features
may be ignored in the explanation of the essence of the
emergence, even if we know that they appear in reality.

Computer simulations may be used to check which
variables correspond to control and order parameters
of the model (e.g., Latané & Nowak, 1997). To identify
the control parameters, one has to run the computer
simulation model and systematically vary all the vari-
ables in the model. By observing the model’s behavior,
one can identify the qualitative states or patterns exhib-
ited by the model. For a variable to qualify as an order

parameter, different values should distinguish between
these qualitatively different states (e.g., Latané,
Nowak, & Liu, 1994). Control parameters, meanwhile,
are those variables that decide which pattern of dynam-
ics the system adopts. As opposed to other factors in-
fluencing the system, in other words, variation in the
magnitude of control parameters result in qualitative
changes (i.e., phase transitions) in the behavior of the
system. Other variables, although they may have quan-
titative influence, are of secondary importance.

For a model to be complete so that it can serve as a
basis for computer simulations, it must contain more
assumptions then the minimalist set of essential fea-
tures. By using computer simulations, and systemati-
cally varying all the assumptions, we can isolate the
most important assumptions and then concentrate our
efforts on empirical verification of only these assump-
tions. In such a procedure, one would usually observe
that dropping some assumptions or substituting them
with other assumptions does not have much impact on
the system’s behavior. Some other assumptions are,
however, critical for the behavior of the system. Even
slight changes of their values lead to dramatic changes
in the system dynamics. The researcher may then fo-
cus, in the proper model, on the most important as-
sumptions or factors. In other words, computer simula-
tions may greatly simplify the process of model
building by eliminating the unnecessary variables and
assumptions of the model.

As an example, when we were building the model of
dynamic social impact of the emergence of public opin-
ion (Nowak et al., 1990), we were greatly concerned
withhowmany theoretical assumptionswehad tomake.
It seemed that it was impossible to set the right values of
all the parameters needed for the simulation and to make
the right choices concerning the mechanism of change
of individual characteristics. Even if the chance that
each of the assumptions needed for the model was cor-
rect equaled 90% (an overestimate as compared to our
subjective judgments), the chance that the model (i.e.,
all of the assumptions) was right equaled about .07 for
25 variables and assumptions. While running the simu-
lations, we discovered that variations of most of the fac-
tors did not lead to significant differences in simulation
runs. A simulation program, SITSIM, was built to allow
systematic variation of values of variables and simula-
tionassumption(Nowak&Latané,1994).Lateranalyti-
cal considerations (Lewenstein et al., 1993) and com-
puter simulations (Nowak & Latané, 1994) have shown
that of all the factors, three are of critical importance for
the qualitative behavior of the model: the geometry of
social space in which interactions take place, the exis-
tenceof individualdifferencesbetween individuals, and
the nonlinearity of the change of attitudes. Several fac-
tors such as the existence of randomness or the assump-
tion about symmetry of the attitudes were important,
and most of the assumptions (such as whether the simu-
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lation space has borders or is torus shaped) did not mat-
ter for the qualitative picture of simulation runs, al-
though theycouldmatter tosomedegree forquantitative
results.

Because the essence of the model is the transition
between micro and macro levels, the model should also
be tested on both the micro and level. On the micro
level, it is important to verify empirically the viability
of the model’s assumptions. On the macro level, pre-
dictions concerning the properties and behavior of the
model need to be subject to empirical tests. By itself,
the ability of the model to match quantitatively the pat-
tern of experimental data is not a sufficient criterion for
accepting the model.

Minimalist Psychology

Construction of theory in psychology faces difficult
choices. Because the subject matter of psychology is
highly complex, describing it in simple terms is likely
to trivialize the phenomena and lose the depth of our
understanding. Occam’s razor, on the other hand, re-
quires that the simplest theory of the phenomenon be
accepted. Integration of our knowledge indicates the
need for reductive explanation, whereas the emergent
nature of psychological and social phenomena indi-
cates that no reduction is possible.

Dynamical minimalism invalidates the long-cher-
ished assumption regarding the apparent contradiction
between parsimony and complexity as well as between
reduction and emergence. In dynamical models, simple
ruleson the lower levelcan lead to theemergenceofvery
complex structures and processes an the higher level.
Thus without forfeiting our depth of understanding re-
garding the phenomena, we can propose simple rules
that will generate the phenomenon in its complexity.

Beyond that, dynamical minimalism offers the
promise of providing coherence to a highly fragmented
field. This is possible because this approach identifies
formal principles that cut across common boundaries.
Although two structures or processes may have very
different surface properties, the underlying rules lead-
ing to the emergence of their properties may be the
same. Public opinion and self-understanding are very
different phenomena, for example, but very similar
rules may underlie the emergence of coherence in both
phenomena (e.g., Nowak et al., 1990, 2000). Because
dynamical minimalism explicitly provides a means of
integrating different levels or reality, it offers a unique
link between our understanding of micro and macro
levels of social reality.

Theory constructed in the tradition of dynamical
minimalism has a specific form. It concentrates on pro-
viding very simple explanations of complex phenom-
ena. It is simple to the point of sounding trivial in its
description of the micro level. The essence of the the-

ory is in finding the correspondence between simple
rules at the micro level and properties to be explained
on the macro level. The rules specify systems dynam-
ics, and only this dynamics leads to the emergence of
the phenomenon we are trying to explain.

Computer simulations are the tools of choice in
finding the macro consequences of different rules act-
ing on the micro level. The principle of computational
equivalence states that “all the processes both natural
and produced by humans may be viewed as computa-
tions” (Wolfram, 2002, p. 715). Computer simulations
give us the chance to observe emergent properties in
seconds or minutes, rather than having to wait for years
or decades for the process to conclude in reality.

As with all theories, dynamical minimalist theories
need to be verified empirically. In fact, the success of a
theory that follows the principles of dynamical
minimalism is to maintain a balance among the devel-
opment of a theory, computer simulations, and empiri-
cal verification.
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