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Famous mathematician Paul Erdös conjectured the existence of infinite se-

quences of symbols where no two adjacent subsequences are permutations of one

another. It can easily be checked that no such sequence can be constructed using

only three symbols, but as few as four symbols are sufficient. Here, we expand this

concept to include sequences that may contain ‘do not know’ characters, called

holes. These holes make the undesired subsequences more common. We explore

both finite and infinite sequences. For infinite sequences, we use iterating mor-

phisms to construct the non-repetitive sequences with either a finite number of

holes or infinitely many holes. We also discuss the problem of using the minimum

number of different symbols.
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1 Introduction

Information represented by a stream of symbols such as DNA sequences, binary

code, DVD decipher keys, or plain English sentences is common in everyday life.

But, how can we characterize these information streams? In mathematics and

theoretical computer science, a stream of symbols is called a word. A word is

simply a sequence of characters, called letters. By using abstract definitions,

results can be applied as long as the definitions are met, regardless of context.

For example, a theorem about words is valid in reference to both DNA sequences

and binary code, because both are examples of our abstract words. Also, because

of the abstract nature, direct applications are often still undiscovered. However,

the properties of words are extremely interesting and carry mathematical merit.

In the early 1960s famous mathematician Paul Erdös suggested the existence

of a particular class of words that are special in that, despite being infinitely long,

no two adjacent subsections are permutations of one another [8]. At this time,

less-constrained infinite-length words, where adjacent subsections could not be

equal, had already been studied [18,19]. However, Alexander Evdokimov was the

first to construct the words that Erdös has postulated [9]. His word used twenty-

five unique characters. It was not until 1992 that theoretical computer scientist

Veikko Keränen established that as few as four letters could be used [13]. The

words that Erdös conjectured have become known as being infinitely-long and

“abelian square-free.”

In this thesis we expand the concept of “abelian squares” by defining and

exploring infinitely-long abelian square-free partial words. Partial words are sim-

ilar to regular or full words except that any number of letters may be missing.
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The concept of partial words is easily applied to imperfect DNA sequences [11].

DNA sequences can be viewed as words but often there are many gaps in them.

These gaps can be represented mathematically as gaps in partial words. We call

these gaps “holes.” The main question of this theory is whether or not infinite

abelian square-free partial words exist. Or to the contrary, does a partial abelian

square-free word necessarily have a finite length? How many distinct characters

are needed to construct an infinite abelian square-free partial word? If such a con-

struction exists, how many holes can an infinite abelian square-free partial word

have? The ultimate goal would be to construct an abelian square-free word where

we have removed an infinite number of letters.

Fortunately, we have been able to adapt combinatorics-based techniques, such

as those employed by Peter Pleasants, to the case of partial words [17]. As such,

we have avoided the complicated set-theoretic approach. Instead, computer-aided

combinatorics have provided the necessary tools to characterize this new set of

words. Generally, we use the computer programs for two different tasks: checking

if a word is abelian square-free and generating abelian square-free words.

The thesis is organized as follows. The basics are given in Section 2. Section 3

consists of the computer algorithms used in the research. Section 4 describes

finite-length abelian square-free partial words. Particularly, we establish that over

a three-letter alphabet, abelian square-free words have bounded length. Further-

more, we explore the conditions where abelian square-free words over a four-letter

alphabet have bounded length. In Section 5, we switch to infinitely long words.

By using morphisms, we begin by constructing an infinite abelian square-free par-

tial word containing one hole using five different characters. We will then use a

similar process to create an infinite abelian square-free partial word using only
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four characters. Furthermore, we will prove that an infinite abelian square-free

word over four letters can have at most one hole. However, more characters allow

for words with more holes. In fact, we will construct an infinite abelian square-

free word over seven letters which has an infinite number of holes. Finally, we will

modify the construction so that the word uses only six letters. In Section 6, we

discuss two special case alphabets that provide unique interpretations. Section 7

includes concluding remarks and suggestions for further research.

2 Preliminaries

2.1 Word and Partial Word Basics

The basic set we will be working with is an alphabet, a finite set of symbols or

letters. The sets {a, b, c} and {0, 1, 2} are examples of alphabets. The cardinality

of an alphabet A is denoted by ||A||. For example, if A = {a, b, c, d}, then A is a

four-letter alphabet (||A|| = 4). While we will form our alphabets with the letters

a, b, c, and so on, Section 6 shows how particular alphabets can have interesting

characteristics.

The letters of an alphabet can be concatenated together to form words. A

word x is a sequence of letters from an alphabet concatenated together. Let A be

an alphabet {a, b, c}. The following are examples of words: ab, bac, abaac. Words

made from an alphabet A are elements in the set of all possible words A∗. DNA

sequences and binary code are two real-world examples of words. Words may

be empty, finite length or infinite length and the length of a word x is denoted

by |x|. We represent the unique, empty word as ε, defined as |ε| = 0. With

the empty word and concatenation, we have a monoid. The reversal of a word
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x = a0a1 . . . an is simply the word written backwards and is denoted by rev(x) =

anan−1 . . . a1a0. Furthermore, it is useful to denote the number of occurrences of

a word a within x with the notation |x|a. Also, from time to time we will use

parikh vectors which represent the number of each letter in a particular word.

Specifically, let A = {a0, a1, . . . an} be an alphabet for some n ∈ N and let x ∈ A∗

be a word. Then, the parikh vector of x, ψ(x) is defined as

ψ(x) = 〈|x|a0 , |x|a1 , . . . , |x|an〉.

It is also necessary to define a type of mapping called a morphism. Given

alphabets A and B (usually but not necessarily A = B), a morphism is a function

A∗ → B∗ which maps words onto words by concatenating the images of each letter

in the preimage. For example, take the simple morphism φ over A = {a, b} such

that

φ(a) = b

φ(b) = a.

This morphism simply maps a to b and b to a. This is often referred to, in the

context of binary values, as a bit flip or bitwise negation. As an example of the

above morphism, φ(abaabba) = babbaab. The morphism φ is said to be uniform

when the images are all equal-length. A non-uniform morphism would be, for
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example,

χ(a) = ab

χ(b) = a.

So, with the non-uniform morphism we get χ(abaabba) = abaababaaab. As a short-

hand notation, we write repeated applications of a morphism as an exponent, that

is φ(φ(x)) = φ2(x). Morphisms are particularly useful for creating infinite and

arbitrarily long words.

It is natural to think of a word as a function from the natural numbers (or

whole numbers) to a particular alphabet. With this in mind, we assign indices to

each of the letters of a word. For convenience, we begin with 0. We denote the

letter of a word x at the index a by x(a). Also, we will extend this notation to

include intervals. That is, x[a, b) is the a-th through (but not including) the b-th

letters of x concatenated together. The resulting interval is a factor of x, but in

this context we will refer to such as a subword.

In 1999, J. Berstel and L. Boasson expanded the study of words by introducing

the concept of partial words [2]. Partial words include a provision for missing

letters and this is useful for applications in word algorithms and DNA sequenc-

ing [11]. A hole, represented by �, is an unknown character or a wildcard. This

is different from a function being undefined at a point. In our case, the word is

defined at the hole, we simply do not know what it is. The hole symbol, �, is not

a letter and so it is not an element of any alphabet. The set of all partial words

made from an alphabet A is written A∗�. The words in A∗� consist of characters

from A ∪ �. As such, all full words are also partial words. Examples include a�,

5



bac, ab�ac. We define the domain set, D(x) of a word x as the set containing the

positions of all letters and the hole set, H(x), as the set containing the positions

of all holes. For clarity, we may refer to a word that has an empty hole set as a

full word.

For convenience we define new operations containment and compatibility. A

word x is contained by a word y, denoted by x ⊂ y, if all elements in D(x) are in

D(y) and x(i) = y(i), for all i ∈ D(x). Words x and y are said to be compatible,

denoted by x ↑ y, if there exists a word z such that x ⊂ z and y ⊂ z.

2.2 Squares and Abelian Squares

Words x0, x1, x2 are called factors of x if x0x1x2 = x. Furthermore, a factor that

begins a word, such as x0 in the word x, is called a prefix. A factor that ends

a word, such as x2 above, is called a suffix. For example, let x = abaca. Then,

a, b, c, ab, ac, ba, ca, aba, bac, aca, abac, baca, and abaca are all the factors of

x. A word x1x2 is called a square if x1 = x2. Or in other words, x is a square

if it is made of two equal subwords. For example, the word ababbaba has the

squares bb, bab, abab, baba. Furthermore, a word which contains no squares as

factors is called square-free. It is easily seen that a binary alphabet only has

finite square-free words. However, using a ternary alphabet, one can already write

infinite square-free words. Examples of this include variations on the Thue-Morse

word such as abcacbabcbac . . . [16].1

Considered as an abstraction of a square, we say a word xy is an abelian

1The word abcacbabcbac . . . is reached in several steps. First, the morphism φ(a) = ab, φ(b) =
ba is applied infinitely often to a starting word a. This results in abbabaabbabab . . . which is known
as the Thue-Morse word. Then, the inverse of the mapping χ(a) = abb, χ(b) = ab, χ(c) = a
applied to the Thue-Morse word gives the square-free word abcacbabcbac . . ..
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square if the factors x and y are permutations of one another. The words cabcab

and cabcba are both abelian squares. Abelian squares are less constrained than

squares and squares are a subset of abelian squares. If we examine our previous

example of the word ababbaba, all the regular squares listed above are abelian

squares but, in addition, we notice that abab is the first half of an abelian square

because it is directly followed by a factor baba. An alternative definition is that

words x, y make an abelian square xy if and only if ψ(x) = ψ(y). A morphism

φ(x) is called an abelian square-free morphism if x being abelian square-

free implies φ(x) is abelian square-free. Morphisms of this type have interesting

characterizations and are, at times, studied independently [6].

We can use the concepts of containment and compatibility to extend the defi-

nitions of square and abelian square to the context of partial words as follows:

1. Two partial words x0, x1 form a square x0x1 if x0 ↑ x1.

2. Two words x0, x1 ∈ A∗� form an abelian square x0x1 if it is possible to

substitute letters from A for each hole in such a way that x0x1 becomes a

full abelian square. That is, two words x0, x1 ∈ A∗� form an abelian square

x0x1 if, after a substitution of letters of A for the holes in x0 and x1 to get

x′0 and x′1, we have ψ(x′0) = ψ(x′1).

Our definition of abelian square-free words now requires refinement. Note that

any word containing a hole will necessarily contain the trivial abelian square a� or

�a, where a is some letter. Thus, we say a word x ∈ A∗� is abelian square-free (in

the context of partial words) provided it avoids all abelian squares except those of

the forms a� and �a, a ∈ A. Using these definitions we see that aba� is an abelian

square. If we replace the hole with b, this word becomes abab, which is a square
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and abelian square. Actually, every length-4 word made from a binary alphabet

contains a square.

The study of abelian square-free words is the main focus of this thesis. We will

consider infinite abelian square-free words with both finitely many holes and with

infinitely many holes. We will prove that at least a four-letter alphabet is required

and sufficient for an infinite abelian square-free partial word with provided there

is at least one hole. Although, a larger alphabet is needed to create an abelian

square-free word with an infinite number of holes. We will show that at most a

six-letter alphabet is required.

3 Computer Tools

When working with words from a combinatorics approach, computer software

becomes extremely useful. Software can be used to create words with certain

properties or check words for existing properties. In doing so, programs can even

prove theorems by exhaustion, if there are a finite number of cases. However, proof

by a computer program is impossible when there are an infinite or extremely large

number of cases. A common solution in such situations is to prove mathematically

that only certain bounded conditions need to be checked. In this section we

detail the methods and algorithms used for various purposes including checking

for abelian squares and creating abelian square-free words.

3.1 Checking for Abelian Square-Freeness

As stated before, a word is considered abelian square-free if it contains no abelian

squares. Our program will systematically check growing factors in the word for
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abelian squares. In efforts to keep the code cohesive, we need first to be able to

determine if a particular word is an abelian square. The pseudocode is listed in

Algorithm 1. The first step checks that the length of a word is even, as an odd-

lengthed word cannot be an abelian square. Then, we count the number of holes

in the word. Finally, we compare the parikh vectors of the first half of the input

word to the second half of the input word. This comparison is done component-

wise. We subtract the difference for any given number from the number of holes

since each hole can “correct” a one-letter difference. This algorithm completes in

Algorithm 1 A test for abelian square.

if input.length % 2 6= 0 then
return false

end if
nHoles = 0
for all a ∈ input do

if a = hole then
nHoles+ +

end if
end for
factor1 = input[0, input.length/2]
factor2 = input[input.length/2, input.length]
for {i = 0; i < alphabetSize; i+ +} do
nHoles = nHoles− |ψ(factor1)[i]− ψ(factor2)[i]|

end for
return nHoles ≥ 0

O(N) time.2 The process of creating the parikh vectors is a simple count which

is proportional to the length of the word. We make no claim that this algorithm

is overly efficient. A faster algorithm may be very well possible. For the full

word case, if we are selective in our alphabet, we can create an alternate, simpler,

2We use the standard O(N) to represent ‘Big O’ notation. That is, the program’s operation
time is bounded by a linear function of the length of the input.
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O(N) algorithm. We do this by storing the letters as sequential prime numbers.3

That is, if our original alphabet is {a, b, c}, we use {2, 3, 5}. Then, as shown in

Algorithm 2, we can simply multiply the two halves of the input word. If the

products match, they make an abelian square. This algorithm could be modified

Algorithm 2 Alternate test for an abelian square.

if input.length % 2 6= 0 then
return false

end if
prod1 = 1;
prod2 = 1;
for {i = 0; i < input.length/2; i+ +} do
prod1 = prod1 ∗ input[i]

end for
for {i = input.length/2; i < input.length; i+ +} do
prod2 = prod2 ∗ input[i]

end for
return prod1 == prod2

for partial words by examining the prime factorization of the quotient of the two

partial products. However, we do not expect it to be more efficient, in general,

than Algorithm 1.

With the ability to check to see if a given word is an abelian square, we can now

develop an algorithm to test if a word is abelian square-free. Although inefficient,

we can do this exhaustively as shown in Algorithm 3. Remember, we have defined

abelian square-free in such a way that abelian squares of length two are deemed

trivial. So, first the algorithm checks to see if there are any double letter words. If

not, possible abelian squares range from length-four to half the input word length.

Factors of all these lengths are checked systematically starting at the beginning

of the word. Provided the check for an abelian square is O(N), checking a word

3Section 6 provides a further discussion of these alphabets.
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for abelian square-freeness is bounded by O(N3).

Algorithm 3 Method for determining abelian square-freeness.

for all a ∈ alphabet do
if input.contains(a+ a) then

return false
end if

end for
for {length = 4; length < input.length/2; length = length+ 2} do

for {i = 0; i < input.length− lenght; i+ +} do
if isAbelianSquare(input[i, i+ length]) then

return false
end if

end for
end for
return true

3.2 Generating Abelian Square-Free Words

We will also use software to generate abelian square-free words. The number of

abelian square-free words increases with alphabet size and word length (provided

the alphabet is sufficiently large). A small selection of alphabet sizes, word lengths,

and the corresponding number of abelian sqaure-free words are listed in Table 1.

n ||A||
3 4 5 6

2 6 12 20 30
3 12 36 80 150
5 30 264 1140 3,480
10 - 15,360 646,560 8M
15 - 286,296 273M >3B

Table 1: Number of abelian square-free words of lengths 2, 3, 5, 10, and 15 for
alphabets of 3, 4, 5, and 6 letters.
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The lengths and sheer amount of abelian square-free words can lead to issues in

computing resources, particularly memory, surprisingly early. For example, Table

1 lists 273 million length-15 abelian square-free words for a five-letter alphabet.

This means there are approximately 4 billion characters. Using 8 bits per unicode

character yields memory requirements of about 4 GiB. Possible solutions include

working on smaller sets of words or caching to disk.

Abelian square-free words could be generated by creating all possible words

and then only returning the abelian square-free ones. This method, however, is

extremely inefficient. It creates and checks ||A||n words, where A is the alphabet

and n is the length of the words. Generating and checking this many words not

only requires a long computation time but also exacerbates the memory require-

ment. A better method is to create shorter abelian square-free words and combine

these. For example, if we want length-four words, we would check all combinations

of two length-two words. If this example is for a four-letter alphabet, the original

approach has us check 44 = 256 possibilities, whereas 12 two-letter abelian square-

free words combine to form 144 possibilities. If we omit repeats (since these are

clearly abelian squares), we only need to check 132 words.

4 Finite-Length Partial Words

In this section, we explore finite-length abelian square-free partial words. More-

over, we look at the implications of using small alphabets (no larger than four

letters) and the constraints on possible word lengths these alphabets introduce.

Several subtle differences exist between full and partial words. Since a unary

alphabet is trivial, and a binary alphabet is simplistic (any word with four char-
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acters contains an abelian square), we begin with a ternary alphabet. Many of

the results in the following sections are to appear in Abelian Square-Free Partial

Words by F. Blanchet-Sadri, J. Kim, R. Mercaş, W. Severa, and S. Simmons [3].

Theorem 1. Over a three-letter alphabet, an abelian square-free partial word with

at least one hole has a maximum length of six.

While the statement can be easily shown using a computer program, it can also

be proven directly. However, several intermediate facts are first required. Also, as

the word abacaba ∈ {a, b, c}∗ illustrates, full abelian square-free ternary words can

be longer than six letters. In fact, the maximum length of a full abelian square-free

word is seven [17]. While the partial and full word cases are only slightly different,

the simple example shows how the inclusion of holes creates abelian squares.

Proposition 1. All three-letter abelian square-free words over a three-letter al-

phabet A = {a, b, c} take the form aba or abc, up to a renaming of letters.

Proposition 1 implies the following two lemmas:

Lemma 1. Let A be a three-letter alphabet. Up to a renaming of letters, the

word aba, where a, b ∈ A, must be a prefix, suffix, or both of all length-six abelian

square-free partial words w ∈ A∗�.

Proof. Suppose, to the contrary, that an abelian square-free word w ∈ {a, b, c}∗�,

where |w| = 6, does not contain as a prefix or a suffix aba, aca, bab, bcb, cac, or cbc.

This implies that ψ(w[0, 3)) = 〈1, 1, 1〉 or that each letter appears in the first three

letters of w. But also, we know that ψ(w[3, 6)) = 〈1, 1, 1〉 or each letter appears

in the last three letters of w. Hence, ψ(w[0, 3)) = ψ(w[3, 6)) and w contains an

abelian square. �
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Lemma 2. Over a three-letter alphabet A = {a, b, c}, there does not exist an

abelian square-free partial word of the form u�v such that |u| = 2, |v| = 3 and

u, v ∈ A∗.

Proof. This statement follows directly from Proposition 1. Let A be a three-letter

alphabet and w ∈ A∗d be an abelian square-free word of the form u�v, where

|u| = 2, |v| = 3. If a subword of the form aba is a suffix of w, then w[3, 6) = �aba,

which is an abelian square. Thus, we reach a contradiction. The same is true if

v contains a hole. We can now assume that ψ(w[3, 6)) = 〈1, 1, 1〉. We can also

assume that u is a full word as the hole would produce an abelian square. Clearly

w(1) 6= w(2) and there exists some x ∈ A such that x 6= w(1) and x 6= w(2).

Therefore, we can substitute x into the hole and we have an abelian square. �

We are now ready to prove Theorem 1 which characterizes abelian square-free

partial words over a ternary alphabet.

Proof of Theorem 1. Let the alphabet be A = {a, b, c}. As a shorthand notation

we will define ai = w(i) ∈ A, for some i ∈ N. We know that the maximum length

must be at least 6 as the word �bcaba is abelian square-free. Now, we must show

that if there exists a partial word of length seven, where w = u�v with w ∈ A∗�,

u, v ∈ A∗, then the word w contains an abelian square. We can assume that w

contains only one hole because any multiple-hole case can be reduced to a one-

hole case. Suppose to the contrary that w is abelian square-free. We proceed by

examining the possible positions for the hole.

1. If both |u| and |v| are at least 2, Lemma 2 states that w has an abelian

square.
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2. If |u| = 1, and |v| = 5, applying Lemma 1 to the first six characters yields

w = a0�a0a3a4a5a6 or w = a0�a2a3a4a3a6. The first form contains the

abelian square a0�a0a3. So, we assume that w takes the second form. But,

Lemma 1 also applies to the suffix w[1, |w|). Hence, we have either w =

a0�a2a3a4a3a4 or � = w(1) = a3. Either case is a contradiction.

3. The last case is if |u| = 0 and |v| = 6. As above, the suffix w[1..|w|) must

be abelian square-free, so Lemma 1 gives two possible forms: �a1a2a1a4a5a6

and �a1a2a3a4a5a4. In the first form, we have the abelian square �a1a2a1.

To avoid a square in the second form, the letters in positions 3 and 5 must

be different, i.e. a3 6= a5 and clearly a1 6= a2. Thus, the subword w[0..6)

is �a1a2a3a4a5, where a1, a2 and a3, a4, a5 are distinct. Hence w violates

Lemma 1. Therefore, w contains an abelian square.

Based on these three observations above, we conclude that, no length-seven partial

word w ∈ A∗� with H(w) 6= ∅ is abelian square-free and the maximum length of

such a word is 6. �

Expanding to a four-letter alphabet complicates the situation. Direct proofs

would be far more difficult, but by using a computer program, it is easy to check

that over a four-letter alphabet all words of the form u�v, where u, v are words

with |u| = |v| = 12, contain an abelian square. A direct implication is that that

all words with a factor of this form also contain an abelian square. Hence, we can

conclude that:

Proposition 2. Over a four-letter alphabet, no bi-infinite abelian square-free par-

tial word with one hole exists.
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Furthermore, there are limited possibilities for abelian square-free words with

three holes. By computer, we verify that over a four-letter alphabet, for all full

words u, v, with |u|, |v| ≤ 12, the partial word �u�v� contains an abelian square.

Proposition 3. If a word over a four-letter alphabet contains three holes, it has

an abelian square.

Similarly we see that all partial words �u�v contain an abelian square provided

either |u|, |v| ≤ 10 or |u| = 11, |v| ≥ 5. This means that, over a four-letter

alphabet, an abelian square-free word with two holes has bounded length.

Proposition 4. No infinite abelian square-free word with two holes can be con-

structed over a four-letter alphabet.

5 Infinite-Length Partial Words

Originally conceived by Paul Erdös in [8], infinite abelian square-free full words

have been discovered over four-letter [13,14], five letter [17] and larger [10] alpha-

bets. These infinite words are created using several different abelian square-free

iterative morphsims. In this thesis, we are interested in Pleasants’ morphism.

In the 1970, Pleasants constructed an infinite abelian square-free word using

a five-letter alphabet [17]. By design, his abelian square-free morphism creates

imbalances by locally increasing the count of a particular letter. For example, a

small section may include a very high number of the letter ‘a’ whereas another

would have a high occurrences of the letter ‘b.’ These imbalances allowed Pleas-

ants to prove that, if an abelian square existed in an image word, then it could

be reduced to specific cases of bounded length. These cases were then checked by
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computer software. This general method has been repeatedly used by subsequent

research on abelian square-free words [13–15]. Here we modify this approach to

include partial words.

Theorem 2. There exists an infinitely long abelian square-free partial word with

one hole over a five letter alphabet.

Proof. Let A = {a, b, c, d, e} and let the morphism φ be defined by

φ(a) = aebedebecedecea

φ(b) = bacaeacadaeadab

φ(c) = cbdbabdbebabebc

φ(d) = dcecbcecacbcacd

φ(e) = edadcdadbdcdbde.

Note that |φ(f)| = 15, for all f ∈ A, and within φ(f) there are two occurrences

of each letter from the alphabet except one letter, which has 7 occurrences. Also,

each φ(f) begins and ends with the letter f . We will call the image of each letter

a block. The morphism φ is an abelian square-free morphism as it is merely a

cyclic permutation of the morphism given by Pleasants in [17].

We will show that �φn(a) is an abelian square-free partial word, for all integers

n ≥ 0. The hole can act as any letter in A. As such, showing that fφn(a) is (non-

trivially) abelian square-free, for all f ∈ A, proves the claim.

If f 6= a, then the word φn(fa) is φn(f)φn(a) and, as φ(f) begins and ends

with f , we have φn(f)φn(a) = f . . . fφn(a). Since fa is abelian square-free, all

subwords of φn(fa) = φn(f)φn(a) must be abelian square-free. We simply take
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the subword fφn(a).

We cannot use the above logic in the case where f = a because the word aa

is an abelian square. Instead, we will show that for all abelian square-free words

w = a0a1a2 . . . al−1 ∈ A∗, the word aφ(w) has no abelian squares other than the

initial aa. To do this, we adapt the proof that φ is an abelian square-free morphism

shown in [17]. Suppose to the contrary that there is some abelian square uv found

in aφ(w), where u, v,∈ A∗. We will show that it is only necessary to check factors

shorter than a maximum bounded length. First we will define, for some word

x ∈ A∗ and letter f ∈ A, the number |x|(φ(f)) as the number of non-overlapping

occurrences of the block φ(f) within x including the cases where a suffix of φ(f)

begins the word x or a prefix of φ(f) ends the word x. Thus, we can determine

upper and lower bounds for |x|a as

|x|a ≤
2

15
|x|+ 5|x|(φ(b)) +

32

15

and

|x|a ≥
2

15
|x|+ 5|x|φ(b) −

32

15
.

These inequalities are modified versions of those found in [17]. The first two terms

estimate |x|a based on the number of occurrences of a in each φ(f), for all f ∈ A.

The third term in both inequalities comes from the maximum error, i.e., when the

upper bound is too low or vice versa. Now, substituting the factor u for x, we get

|u|a ≤
2

15
|u|+ 5|u|(φ(b)) +

32

15
. (1)
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Doing the same for v gives

|v|a ≥
2

15
|v|+ 5|v|φ(b) −

32

15
. (2)

We have assumed that the factors u and v are abelian squares. Thus, we know

that |u|a = |v|a. Hence, the inequalities (1) and (2) can be combined and they

reduce to

|u|(φ(b)) ≥ |v|φ(b) − 64/75.

For any word x, the numbers |x|φ(b) and |x|(φ(b)) are counts of occurrences and

thereby, always integers. So we can remove the fraction from the inequality which

yields |u|(φ(b)) ≥ |v|φ(b). Similarly, we have |v|(φ(b)) ≥ |u|φ(b). Thus, if we cancel

as many pairs of blocks of φ(b) in u and v (which preserves the abelian square

uv), for any remaining blocks of φ(b) fully contained in one factor, there must be

part of a block of φ(b) in the other. The same is true for all other letters in A.

Therefore, the factors u and v can be reduced to factors u′ and v′, each of which is

no longer than twice φ(a) plus possibly an extra a at the beginning. These finite

number of cases can be checked by computer to be abelian square-free. So, for an

abelian square-free word w, the word aφ(w) has no abelian squares other than an

initial aa. We conclude that, for all integers n ≥ 0 and abelian square-free words

w, the word aφn(w) is assured to be abelian square-free, except for the initial aa.

Clearly, the word a contains no abelian squares and therefore the word �φn(a)

is abelian square-free, for all n ≥ 0. The hole can act as any letter from A and the

resulting word is still (non-trivially) abelian square-free. Therefore, there exists

an infinitely long abelian square-free partial word over a five letter alphabet. �
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Theorem 2 gives several immediate corollaries.

Corollary 1. Over a five letter alphabet, there exists an infinite number of abelian

square-free partial words with at least one hole.

Proof. By Theorem 2, there exists an infinitely long abelian square-free partial

word with one hole and this hole has an infinite number of subwords, each of which

is abelian square-free. Thus, there are an infinite number of abelian square-free

partial words over a five-letter alphabet with at least one hole. �

Corollary 2. There exists an abelian square-free partial word with one hole over

a six-letter alphabet which extends infinitely in both directions.

Proof. For a word w, let φ′(w) = rev(φ(w)) with φ being the morphism from the

proof of Theorem 2. Hence, φ′(w) is abelian square-free for all abelian square-free

words w and φ′n(a)� is abelian square-free for all integers n ≥ 0. Also, let χ be

the morphism over the alphabet B = {b, c, d, e, f} that is constructed by replacing

each a in the definition of φ with a new letter f :

χ(b) = bfcfefcfdfefdfb

χ(c) = cbdbfbdbebfbebc

χ(d) = dcecbcecfcbcfcd

χ(e) = edfdcdfdbdcdbde

χ(f) = febedebecedecef

By construction, χ is an abelian square-free morphism and �χn(f) is abelian

square-free for all integers n ≥ 0.
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We will show that φ′n(a)�χn(f) ∈ A∗ is abelian square-free for all integers

n ≥ 0, where A = {a, b, c, d, e, f}. Suppose to the contrary that there is an

abelian square w, which is a subword of φ′n(a)�χn(f) for some integer n ≥ 0.

Then, the word w must contain parts of both φ′(a) and χ(f). Therefore, at least

one half, called u, will be a subword of either φ′n(a) or χn(f), meaning it contains

either a or f but not both and it does not contain the hole. The other half of

w, called v, necessarily contains the complementary letter and the hole. Thus, v

contains a letter that u does not and u has no holes. Hence, the two halves of

w cannot be permutations of each other.4 Thus, the word φ′n(a)�χn(f) ∈ A∗ is

abelian square free for all integers n ≥ 0. �

Corollary 3. There exists an abelian square-free partial word with two holes over

an eight-letter alphabet which extends infinitely in both directions.

Proof. Let the morphisms φ and φ′ be defined as above and let A be the alphabet

{a, b, c, d, e, f, g, h}. The word φ′n(a)�fgh�φn(a) ∈ A∗ is abelian square-free for

all integers n ≥ 0. If not, then there exists a word w that is an abelian square

and w must contain f , g, or h. By the same logic as in the proof of Corollary 2,

w must be centered between the holes. By similar logic as that of the proof of

Corollary 2, no such word is an abelian square. Therefore, for all integers n ≥ 0,

the word φ′n(a)�fgh�φn(a) ∈ A∗ is abelian square-free. �

While this line of reasoning could be extended to an arbitrary number of

holes, it increases the alphabet size as well. As such, it is counter-productive

towards our goal of finding minimum alphabet sizes. Instead, we will now focus

on minimizing the alphabet size of the one-hole infinite abelian square-free partial

4Note that the hole in v cannot cause u to contain the absent letter.
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word. Interestingly, Pleasants noted that his methods could be modified to prove

the existenence of an infinite abelian square-free word over four letters, but this

would require “considerable computation” and longer morphism blocks of about

30 letters [17]. In 1992, V. Keränen did precisely what Pleasants suggested and

proved that as few as four letters are sufficient provided there are no holes [13].

Keränen’s work did require greater computation and a morphism with much longer

image words—85 letters in the image for every letter in the preimage [13]. Here we

use a similar morphism to produce a one-sided infinite abelian square-free word

with one hole over four letters.

Theorem 3. There exists an infinitely long abelian square-free word with one hole

over a four-letter alphabet.

Proof. We will use an abelian square-free morphism φ over the four-letter alphabet

A = {a, b, c, d} provided by Keränen [15] that is defined by

φ(a) =abcacdcbcdcadbdcadabacadcdbcbabcbdbadbdcbabcbdcdacd−

cbcacbcdbcbabdbabcabadcbcdcbadbabcbabdbcdbdadbdcbca

φ(b) =bcdbdadcdadbacadbabcbdbadacdcbcdcacbacadcbcdcadabda−

dcdbdcdacdcbcacbcdbcbadcdadcbacbcdcbcacdacabacadcdb

φ(c) =cdacabadabacbdbacbcdcacbabdadcdadbdcbdbadcdadbabcab−

adacadabdadcdbdcdacdcbadabadcbdcdadcdbdabdbcbdbadac

φ(d) =dabdbcbabcbdcacbdcdadbdcbcabadabacadcacbadabacbcdbc−

babdbabcabadacadabdadcbabcbadcadabadacabcacdcacbabd.

Here “−” denotes concatenation. The length of each block is 102 and the parikh
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vector of each is a permutation of ψ(φ(a)) = 〈21, 31, 27, 23〉. We will show that

the word �φn(a) is abelian square-free for all integers n ≥ 0. The general method

of proof is similar to the five-letter case. We will prove that only finitely-many

bounded cases need to be checked and then check these cases. Since φ is abelian

square-free, it is sufficient to check the cases where a subword uv begins with the

hole.

We argue that, for all letters f ∈ A, we can remove blocks of φ(f) present in

both u and v. Furthermore, after we do so, we will have one of two cases. Either

u can contain a full block or v can contain a full block but both cases cannot

occur simultaneously, and neither u nor v contains more than one block. Suppose

to the contrary we cannot cancel blocks from u and v in this way and some

subword of w = �φn(a) is an abelian square uv such that, after the cancellation,

we have |u|φ(f) > 0 but |v|φ(f) = 0. Note that the opposite case where |v|φ(f) > 0

but |u|φ(f) = 0 cannot occur as it implies that |u| < |v|. We can write uv =

�φ(w0)φ(e)φ(w1)x, where e ∈ A, w0, w1, x ∈ A∗, �φ(w0) is a prefix of u, u is a

prefix of �φ(w0e), and �φ(w0ew1) is a prefix of uv and |x| < 102. We will denote

u′ as u with a letter substituted for the hole such that ψ(u′) = ψ(v). Knowing

ψ(u′) = ψ(v), we can build a system of equations for all letters in A. For example,
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the system of equations for the letter a consists of the following five equations:

u′|φ(a) + |u′|φ(b) + |u′|φ(c) + |u′|φ(d) = |v|φ(b) + |v|φ(c) + |v|φ(d) + Λ (3)

21|u′|φ(a) + 23|u′|φ(b) + 27|u′|φ(c)+31|u′|φ(d) =

23|v|φ(b) + 27|v|φ(b) + 31|v|φ(b) + λa (4)

31|u′|φ(a) + 21|u′|φ(b) + 23|u′|φ(c)+27|u′|φ(d) =

21|v|φ(b) + 23|v|φ(b) + 27|v|φ(b) + λb (5)

27|u′|φ(a) + 31|u′|φ(b) + 21|u′|φ(c)+23|u′|φ(d) =

31|v|φ(b) + 21|v|φ(b) + 23|v|φ(b) + λc (6)

23|u′|φ(a) + 27|u′|φ(b) + 31|u′|φ(c)+21|u′|φ(d) =

27|v|φ(b) + 31|v|φ(b) + 21|v|φ(b) + λd (7)

Equation (4) is a result of the fact that the number of occurrences of the letter a in

the word u′ must be equal to the number of occurrences of the letter a in the word

v′. Likewise, since the number of occurrences of the letter b must be equal, we

have Equation (5). The same logic applied to the letter c provides Equation (6).

Equation (7) corresponds to the letter d. The parameter Λ is an error term taking

values of −1, 0, 1, but can only be non-zero for one system of equations. Each

λi represents error caused by the opening �, φ(e) or x. Using software-assisted

Gaussian elimination, it is easy to see that this system is inconsistent provided

that some λi 6= 0. However, the hole in the beginning ensures at least one λi 6= 0.

Thus, except for possibly one φ(f) with f ∈ A, we can cancel φ(w0) and φ(w1) to

yield �φ(e)x or �φ(e)φ(f)x. As we remove the same letters from each side, any

abelian square is preserved. Also, the preimage of uv[1..|uv|) is abelian square-free,
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so φ(e)x or φ(e)φ(f)x must be the image of some abelian square-free word. This

means that we only need to check the image of abelian square-free words having

outputs that are less than three times the block length. For all such words, it is

easy to verify that we always have an abelian square-free result. Thus, �φn(a) is

abelian square-free for all integers n ≥ 0. �

With this new result, we can reduce the alphabet requirements of Corollaries 1,

2, and 3 by one letter and obtain the following stronger corollaries.

Corollary 4. Over a four letter alphabet, there exists an infinite number of abelian

square-free partial words with at least one hole.

Corollary 5. There exists an abelian square-free partial word with one hole over

a five-letter alphabet which extends infinitely in both directions.

Corollary 6. There exists an abelian square-free partial word with two holes over

a seven-letter alphabet which extends infinitely in both directions.

In addition, since Proposition 1 states that over a three-letter alphabet, no

infinite abelian square-free partial word exists, we know that four letters is the

minimum alphabet size.

Corollary 7. The minimum alphabet size of an abelian square-free partial word

with one hole is four.

While Proposition 4 states that we cannot build an infinite abelian square-free

word over four letters that has two holes, we can increase the alphabet size to

accommodate more holes. In fact, provided we have a large enough alphabet, we

can introduce an infinite number of holes and still have an abelian square-free

word.
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Theorem 4. There exists an infinite partial word with infinitely many holes over

a seven-letter alphabet that is abelian square-free.

Proof. As shown by Keränen, there exist infinite abelian square-free full words

over four-letter alphabets [13]. Let w be one such word of infinite length over an

four-letter alphabet A = {a, b, c, d}. We will define a sequence kj in the following

way. There exists some x, z, y ∈ A so that for infinitely many i we have w(i−1) =

x, w(i) = y, and w(i+1) = z. Let k0 be the smallest integer so that w(k0−1) = x,

w(k0) = y and w(k0 + 1) = z. We define kj recursively, where kj is the smallest

integer such that kj > 5kj−1, w(kj − 1) = x, w(kj) = y, and w(kj + 1) = z.

Moreover, define A′ = A ∪ {e, f, g}, where e, f, g /∈ A. Note that |A′| = 7.

We will now define an infinite partial word w′ ∈ A′∗ which is abelian square-

free. For all j ∈ N, if j ≡ 0 mod 7, then let w′(kj−1) = e, w′(kj) = �, w′(kj+1) =

f . Similarly, for all j ∈ N, if j 6≡ 0 mod 7, then let w′(kj) = g. For all other

indices, let w′(i) = w(i). It should be noted that w′ has infinitely many holes.

In order to prove that w′ contains no abelian squares, we will assume that it

does contain one and obtain a contradiction. Let u and v be two words defined

by u = w′(i) . . . w′(i + l) and v = w′(i + l + 1) . . . w′(i + 2l + 1) (so the words u

and v both have length l > 1) and let uv be an abelian square.

Let J1 and J2 be sets defined by J1 = {j : i ≤ kj ≤ i + l} and J2 = {j :

i+ l+1 ≤ kj ≤ i+2l+1}. Thus, |J1| is the number of the kj’s in u and |J2| is the

number of kj’s in v. We assert that |J1| < 3 and |J2| < 2. To see this, first assume

that |J2| > 1. Then there exists a j ∈ J2 so that j+1 ∈ J2. However, this implies a

contradiction because l = i+2l+1−(i+l+1) > kj+1−kj > kj > i+l ≥ i+l−i = l.

Now assume that |J1| > 2. Then there are at least two occurrences of the letter g

in u, and for each occurrence of g there must also be a g or a hole in v. However,
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g’s and holes only occur when i = kj for some j, so this implies |J2| ≥ 2, which

violates the claim that |J2| < 2. The facts that |J1| < 3 and |J2| < 2 imply that

|J1 ∪ J2| < 4.

Next, we want to show that no holes occur in the abelian square uv. We will

only prove that no holes exist in u, as the proof for v is similar. The occurrence

of a hole implies that there exists a j so that i ≤ kj ≤ i + l. Therefore, either e

or f occurs in u, since w′ must contain either w′(kj − 1) or w′(kj + 1). Assume

that e occurs; the case where f occurs is similar. Then v must contain either e or

a hole, but that implies that i+ l ≤ kj+7 − 1 ≤ i+ l+ 1, since w′(kj+7 − 1) is the

next occurrence in the w′ of either e or a hole. Thus j, j + 1, .., j + 6 ∈ J1 ∪ J2,

which implies that |J1 ∪ J2| ≥ 6 > 3, a contradiction, so no such hole can exist.

Therefore, we can assume all characters in uv are letters in A′. Define w′′

as follows. If w′(i) = e, then w′′(i) = z. If w′(i) = f , then w′′(i) = y. If

w′(i) = g, then w′′(i) = x, otherwise w′′(i) = w′(i). In other words, we have

mapped e, f , and g back to their original values. Let u′ = w′′(i) · · ·w′′(i+ l), v′ =

w′′(i + l + 1) · · ·w′′(i + 2l + 1). Obviously u′v′ is still an abelian square, but by

construction u′v′ = w(i) · · ·w(i + l)w(i + l + 1) · · ·w(i + 2l + 1), which implies

that w contains an abelian square. This is a contradiction. Therefore, w′ avoids

abelian squares. �

Using a similar construction, we can reduce the required alphabet size by one.

The overall argument is the same as in the proof of Theorem 4 but we need to

address several more details.

Theorem 5. There exists an infinite partial word with infinitely many holes over

a six-letter alphabet that is abelian square-free.
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The following remark will aid in proving Theorem 5:

Remark 1. Let A be a k-letter alphabet, uv ∈ A∗, ai ∈ A and ak 6∈ A. Replace

an equal number of ai’s in both u and v with the same number of ak’s, yielding

a new word u′v′. If uv was originally an abelian square, u′v′ remains an abelian

square. Similarly, if uv was originally abelian square-free, u′v′ remains abelian

square-free.

Proof of Theorem 5. As before, there exists an abelian square-free word w of infi-

nite length over an four-letter alphabet A = {a, b, c, d} [13]. Define a sequence kj

as follows. Choose some x, y ∈ A so that for infinitely many j we have w(j−1) = x,

w(j) = y, and w(j + 1) = x. Let k0 be the smallest integer so that w(k0− 1) = x,

w(k0) = y, and w(k0 + 1) = x. We define kj recursively, where kj is the smallest

integer such that kj > 5kj−1, w(kj − 1) = x, w(kj) = y, and w(kj + 1) = x. Also,

let the alphabet A′ = A ∪ {e, f}, where e, f /∈ A. This means that |A′| = 6.

As before, we will substitute e and f for x and y to form an infinite word

w′ ∈ A′∗ that is abelian square-free. For all j ∈ N, if j ≡ 0 mod 7, then let

w′(kj − 1) = e, w′(kj) = �, and w′(kj + 1) = f . For all j ∈ N, if j ≡ 1 mod 7, let

w′(kj) = e. For j 6≡ 0 mod 7 and j 6≡ 1 mod 7, let w′(kj) = f . Everywhere else let

w′(i) = w(i). In order to prove that w′ contains no abelian squares, we will assume

that it does contain one and obtain a contradiction. Let u = w′(i) · · ·w′(i+ l), v =

w′(i+ l + 1) · · ·w′(i+ 2l + 1) and uv be an occurrence of an abelian square.

Let the sets J1 and J2 be defined as in the proof of Theorem 4. That is to say,

let J1 = {j : i ≤ kj ≤ i + l} and J2 = {j : i + l + 1 ≤ kj ≤ i + 2l + 1}. Then,

we claim that |J1| < 3 and |J2| < 2. The reasoning for |J2| < 2 is exactly the

same as above. However, the rationale for the claim |J1| < 3 is slightly different.

Assume to the contrary that |J1| > 2. Then there are at least two occurrences of
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the letter f in u, and for each occurrence of f , there must also be an f or a hole

in v. Holes and the letter f only occur at indices that are equal to kj, for some j.

Therefore, the assumption that |J1| > 2 implies |J2| ≥ 2. We can again conclude

that |J1 ∪ J2| < 4.

Next, we will show that abelian square uv contains no holes. First, we will

prove none occur in u. There are three subcases:

1. If u begins with a hole, then the letter e corresponding to j ≡ 1 mod 7 either

occurs in u or it does not. If e is in u, then e is also contained in v. However,

this implies that |J2| > 1, a contradiction. If e does not occur in u, the word

u contains only �f . The letter e corresponding to j ≡ 1 mod 7 is contained

in v, but f must also occur in v. This implies that |J2| > 1, a contradiction.

2. If the hole is in the middle of u, then both e and f are in u, and must also

be contained in v. However, this can only occur if |J2| > 2, a contradiction.

3. If u ends with a hole, then there is at least one e in u, which implies that

there is also an e in v. This, together with the recursive definition of kj,

means that |v| ≥ kj+1 − kj > kj − kj−2. Since |u| = |v| > kj − kj−2, u

also contains two f ’s. Then v must also contain two f ’s, but this cannot be

resolved with |J2| < 2.

Likewise, the case where a hole is in v contains three subcases.

1. If v begins with a hole at w(kj+1) = w(i+ l+ 1), then there is necessarily an

f in v. This implies that there is exactly one f in u. Let this f in u occupy

w(kj). We claim that |ψ(u0fu1e)− ψ(fv0)| > 1, where u0 = w(i) · · ·w(kj −

1), u1 = w(kj + 1) · · ·w(i+ l− 1), and v0 = w(i+ l+ 3) · · ·w(i+ 2l+ 1). We
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may prove this by carefully examining the construction of uv. In the original

w(i) · · ·w(i+ 2l+ 1), there must be at least two letters a0, a1 ∈ A such that

|w(i) · · ·w(i + l)|a0 6= |w(i + l + 1) · · ·w(i + 2l + 1)|a0 , and similarly for the

number of a1. Replacing the letter in w(i + l) with e and in w(i + l + 2)

with f results in four letters with an unequal number of occurrences, while

there is at most one a2 ∈ A′ such that |u0w(kj)u1e|a2 = |w(i+ l + 1)fv0|a2 .

Substituting f into w(kj) and � into w(kj+1) = w(i+ l+ 1) yields uv. There

are three cases to consider. If the hole takes the value of any letter in A, then

there remains exactly one e in uv, making it abelian square-free. If the hole

takes the value of f , then |uv|f is odd, so uv is not an abelian square. If the

hole takes the value of e, we have replaced x and y in w(i) · · ·w(i+ l) with f

and e, respectively, while in w(i+l+1) · · ·w(i+2l+1) we have replaced x and

y with f and e, respectively. Extending Remark 1, since w(i) · · ·w(i+2l+1)

is abelian square-free, uv must also be abelian square-free.

2. If the hole in v is in the middle of v, then there is an e in v and a corre-

sponding e in u. This implies that |J1| ≥ 6 > 2, a contradiction.

3. If v ends with a hole, then there is an e in v and a corresponding e in u.

This implies that |J1| ≥ 6 > 2, a contradiction.

Therefore, no holes are present in uv and we can assume that all characters in

uv are letters in A′. Due to the fact that |J1∪J2| < 4, the abelian square uv occurs

only if both u and v contain exactly one f and no e’s. Define u′ and v′ as follows.

If w′(i) = f , then w′′(i) = y. Otherwise, w′′(i) = w′(i). The word u′v′ remains an

abelian square, but we have a subword of our original abelian square-free word w.

Thus, we may conclude that the infinite word w′ is an abelian square-free partial
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word containing infinitely many holes. �

By further modification to the construction of the word w′, the alphabet size

can be further reduced to five. For a proof of the next theorem, see [3].

Theorem 6. There exists an infinite abelian square-free partial word that contains

an infinite number of holes over a five-letter alphabet.

6 Special Case Alphabets

Throughout the thesis we have used a general, abstract approach and this ap-

proach is usually beneficial. However, using specific alphabets can allow for inter-

esting, alternative interpretations. In this section we will examine words, squares

and abelian squares using two such alphabets. We will see that these alphabets

can provide geometric interpretations and convenient definitions.

We begin by using alphabets made of orthogonal unit vectors. We define an

alphabet En = {e1, e2, . . . en} to be the standard basis of Rn. Of course this means

that ||En|| = n. Furthermore, a word w ∈ E∗n is a path of vectors (end-to-end) in

n-space which, for convenience, begins at the origin. For example, we can represent

e1e2e1e2 with the sequence of unit vectors in Figure 1. The characterization of

squares remains largely the same as in general. However, abelian squares now

have geometric meaning. Suppose we have an abelian square uv. Then, we know

that the number of each ei in u is the same as in v. Hence, we know that

|u|−1∑
j=0

u(j) =

|v|−1∑
j=0

v(j).

In other words, the resultant sum of the components of u is the same as the
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Figure 1: Vector representation of e1e2e1e2.

resultant sum of the components in v. This means that uv is an abelian square

if and only if the origin, midpoint, and endpoint are collinear. An example of

this is shown in Figure 2. So if we define a sequence w′ as the sequence of points

formed by the endpoints of the vectors in w, the word w is abelian square-free if

the points w′i, w
′
i+n, w′i+2n are not collinear, for all i, n ∈ N.

Another interesting set of alphabets are Pn, where Pn denotes the first n

primes. These alphabets are central to Algorithm 2. Since prime factorizations are

unique, the product of the letters of a word form a unique integer up to a rearrange-

ment of the letters. Hence, these alphabets are convenient when working with

abelian squares. An abelian square is a word uv, where
∏|u|−1

i=0 u(i) =
∏|v|−1

i=0 v(i).

This definition of abelian square provides a logically simple way to check if a word

is an abelian square, which is shown in Algorithm 2. In addition, this type of

checking is aided by the fact that all modern computer processors are optimized
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Figure 2: The square and abelian square e1e2e1e3e1e2e1e3. Positive z-axis is into
the page.

for highly efficient integer multiplication.

We will now provide a way in which we could check if certain partial words

are abelian squares. Suppose we have a partial abelian square uv ∈ P ∗n , for some

n, where v contains no holes. Let us denote the number of holes in u with n.

Since, by definition, there exists some full word u′v such that uv ⊂ u′v and u′v is

an abelian square, we know that every letter in u also exists in v. Recall that in

this case all the letters are prime numbers. Hence, we know that
∏

k∈D(u′) u
′(k)

divides
∏|v|−1

k=0 v(k). Let q be the quotient of
∏|v|−1

k=0 v(k)/
∏

k∈D(u) u
′(k). If the

prime factorization of q contains n factors, we know that there exist n letters that

we can use to form u′ such that u′v is an abelian square. Hence, we conclude that

uv is an abelian square.

Unfortunately, this method has several flaws. First, the prime factorization

of q is a time-consuming operation. This operation alone hinders the efficiency
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of any implementations. Second, the method does not easily generalize to all

partial words. The problem is that if v contains holes, then
∏

k∈D(u) u(k) does not

necessarily divide
∏

k∈D(v) v(k). Nonetheless, the use of multiplication instead of

counts makes these alphabets noteworthy.

7 Conclusion

We see that, despite the extra freedom awarded by holes, abelian squares are

avoidable in partial words. Moreover, the required alphabet sizes are not entirely

different than in the case of full words. Table 2 shows that, in the single-hole,

single-direction case, the minimum alphabet size is exactly the same as in the full

word case, namely 4. Furthermore, by extending the alphabet to five letters we

construct a bi-infinite abelian square-free word. In fact, we know that as few as

five letters can be used to construct an infinite abelian square-free word with an

infinite number of holes.

No Holes 1 Hole 2 Holes Infinitely-Many Holes
Single-Direction 4 4 5 5
Bi-Infinite 4 5 5 5

Table 2: Required alphabet sizes for infinite and bi-infinite words.

In reference to future research, there are at least three immediate, intriguing

areas. First is the issue of distance between holes. The constructions in the proofs

of Theorem 4 and Theorem 5 produce words with holes that are arbitrarily far

apart. In fact, the increasing distance between holes is essential to the intermedi-

ate claims used in the proof. Hence, we are interested in a construction with holes

being a bounded distance apart. What size alphabet is required to construct such
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a word? And, how close can the holes be? Second, is it possible to construct a

word that is abelian square-free after arbitrary insertion of holes? This type of

results have been found for regular repetitions in partial words [5, 16]. However,

no such research has been published on abelian repetitions and it is unknown if

appropriate words exist. Lastly, we suggest the investigation of abelian overlap-

free words. An overlap is a repetition that shares center characters (a word of

the form xyx) and overlaps have been studied both in full and partial word con-

texts [1,4,7,12]. It would be interesting to extend this idea to abelian overlaps or

abelian squares which share center characters. However, we have no conjecture as

to the existence of abelian overlap-free words.
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A Symbol Glossary

A∗ All full words made of letters in A 3

A∗� All partial word made of letters in A 5

||A|| Size of alphabet A 3

D(x) Domain set of x 6

ε Empty word 3

En Standard Basis of Rn 31

H(x) Hole set of x 6

ψ(w) Parikh vector of w 4

φn n applications of the φ 5

N Natural numbers; 0, 1, 2, . . . -

O(N) Big O 9

Pn The first n primes 32

rev(x) Reversal of x 3

|w| Length of w 3

|w|a Number of occurrence of a in w 4

|w|(x) Number of partial occurrences of x in w 18

w(i) i-th letter of w 5

w[i, j) w(i)w(i+ 1) . . . w(j − 1) 5

� Hole 5

� Halmos, End-of-Proof -

⊂ Containment 6

↑ Compatibility 6

− Concatenation 22
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