You are here
FAU Collections » FAU Research Repository » FAU College Collections » Harriet L. Wilkes Honors College » Honors Student Theses
Devising a noncancerous model system to study multipolar spindle formation
- Date Issued:
- 2010
- Summary:
- Aneuploid tumor cells have characteristically unstable genomes which can be caused by mitotic defects such as multipolar spindles. Multipolarity relies upon the presence of extra centrosomes to form. However, some cells, both cancerous and noncancerous are able to avoid the formation of multipolar spindles through centrosomal clustering. Previous research has shown that there are a large number of genes whose activity contributes to the clustering activity, making analysis of individual components of the process difficult. In order to better understand centrosomal clustering in cancer cells, we induced supernumerary centrosomes in a genomically normal cell line, RPE, to observe how the normal cells cope with extra centrosomes. Using colcemid to induce extra centrosomes in the RPE cell line, we observed an intact clustering mechanism in fixed cells. Further manipulation of the cells has allowed us to induce multipolarity in this cell line using various disrupters of cell-cycle checkpoint and dynein function.
Title: | Devising a noncancerous model system to study multipolar spindle formation. |
116 views
31 downloads |
---|---|---|
Name(s): |
Nagarsheth, Nisha. Harriet L. Wilkes Honors College |
|
Type of Resource: | text | |
Genre: | Thesis | |
Issuance: | multipart monograph | |
Date Issued: | 2010 | |
Publisher: | Florida Atlantic University | |
Physical Form: | electronic resource | |
Extent: | vii, 21 p. : ill. (some col.) | |
Language(s): | English | |
Summary: | Aneuploid tumor cells have characteristically unstable genomes which can be caused by mitotic defects such as multipolar spindles. Multipolarity relies upon the presence of extra centrosomes to form. However, some cells, both cancerous and noncancerous are able to avoid the formation of multipolar spindles through centrosomal clustering. Previous research has shown that there are a large number of genes whose activity contributes to the clustering activity, making analysis of individual components of the process difficult. In order to better understand centrosomal clustering in cancer cells, we induced supernumerary centrosomes in a genomically normal cell line, RPE, to observe how the normal cells cope with extra centrosomes. Using colcemid to induce extra centrosomes in the RPE cell line, we observed an intact clustering mechanism in fixed cells. Further manipulation of the cells has allowed us to induce multipolarity in this cell line using various disrupters of cell-cycle checkpoint and dynein function. | |
Identifier: | 779480861 (oclc), 3335107 (digitool), FADT3335107 (IID), fau:1405 (fedora) | |
Note(s): |
by Nisha Nagarsheth. Thesis (B.A.)--Florida Atlantic University, Honors College, 2010. Includes bibliography. Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web. |
|
Subject(s): |
Centrosomes -- Research Cancer -- Genetic aspects Cellular signal transduction Cell division |
|
Held by: | FBoU FAUER | |
Persistent Link to This Record: | http://purl.flvc.org/FAU/3335107 | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Host Institution: | FAU |