Harriet L. Wilkes Honors College

Honors Theses

Florida Atlantic University Libraries

 $Y\!ear \ {\tt 2007}$

Declining coral health and fish diversity in the South Pacific

Paul McCurdy Florida Atlantic University,

Declining Coral Health and Fish Diversity in the South Pacific by Paul McCurdy

A Thesis Submitted to the Faculty of The Wilkes Honors College in Partial Fulfillment of the Requirements for the Degree of Bachelor of Arts in Liberal Arts and Sciences

with a Concentration in Marine Science

Wilkes Honors College of Florida Atlantic University Jupiter, Florida May 2007

Declining Coral Health and Fish Diversity in the South Pacific by Paul McCurdy

This thesis was prepared under the direction of the candidate's thesis advisor, Dr. Jim Wetterer, and has been approved by the members of his supervisory committee. It was submitted to the faculty of The Honors College and was accepted in partial fulfillment of the requirements for the degree of Bachelor of Arts in Liberal Arts and Sciences.

AUTHOR:

Paul J. McCurdy

SUPERVISORY COMMITTEE:

Dr. Jim Wetterer

Dr. Jon Moore

Dean Jeffrey Buller, Wilkes Honors College

Date

Acknowledgements

First and foremost, I would like to thank Abigail Alling, Orla Doherty and the rest of the Planetary Coral Reef Foundation for all their help and permission to use their data. In addition, I would like to thank Dr. Jim Wetterer, Dr. Jon Moore, Dr. Stephanie Fitchett, and Dr. Terje Hoim for all their beneficial comments and suggestions. I would like to thank Dr. Nancy and Dr. Elliott McCurdy for their inspirational and financial support. I would also like to thank all my professors at the Wilkes Honor's College and Harbor Branch Oceanographic Institution for preparing me for this endeavor.

Abstract

Coral reefs harbor ~1-9 million species, including 30% of all marine fish species. Reef health worldwide is declining due to many factors: e.g. pollution, sedimentation, dynamite fishing, and global warming. Working with the Planetary Coral Reef Foundation and the crew aboard the R/V Heraclitus, I examined coral health and fish diversity in the Solomon Islands, Melanesia. In 2006, I surveyed coral and fish on Sagharughombe reef, Solomon Islands using SCUBA and compared the results with surveys done in 2000 and 2002. Coral surveys indicated a significant decline in health over the six-year period. Fish surveys found no clear trend in species abundances and species richness, but a significant decline in species diversity over the years. The decline in coral health we observed may have contributed to diminished fish diversity. To protect marine biodiversity, coral reefs must be better protected and declines in coral health must be halted.

To all the people that suffered from the April 2007 Solomon Islands Tsunami

Table of Contents

Signature Page	ii
Acknowledgements	iii
Abstract	iv
Table of Contents	vi
Introduction	1
Methods	4
Results	8
Discussion	12
Appendix A	17
Appendix B	20
Appendix C	32
References	

Introduction

Coral reefs provide a unique three-dimensional habitat for millions of invertebrates and vertebrates. These same reefs are the basis of many tropical coastal economies around the globe. However, increasing anthropogenic pressure and climate change have taken a toll on many reefs worldwide (Wilkinson 1999, Wilkinson 2002, Wilkinson 2004 and Hoegh-Guldberg 1999). As coral health deteriorates, these ecosystems run the risk of complete destruction.

The predominant reef-building corals are stony corals (Anthozoa, Scleractinia), which use dissolved calcium and carbon dioxide from the ocean to create a calcium carbonate skeleton. Coral growth rates vary from region to region and species to species. For example, Davies (1983) found that some Caribbean Acroporids, which are branching corals, grow 2.5-26.6 cm per year in length, and *Montastrea annularis*, a massive coral, has a linear growth of 0.81-2.5 cm per year. Over long periods of time, coral skeletons build up and form extensive structures called coral reefs. Many of these structures have existed for hundreds of millions of years. Currently, corals occupy about 600,000 square miles of the earth's surface (Nybakken 2001). Approximately one-sixth of the world's coastlines are fringed by coral reefs (Birkeland 1997).

Coral reefs are called the "rainforests of the sea" due to their great biodiversity. With respect to higher taxa, more diversity exists on coral reefs than any other marine ecosystem (Reaka-Kudla 1997). Karlson (1999) estimated that ~91,000 species, or 4-5% of all described species, are found on coral reefs, and Reaka-Kudla (1997) estimated that ~1-9 million species exist on coral reefs. This tropical environment, which accounts for

1

less than 1% of the oceans surface, provides habitat for roughly 30% of the total marine fish species (Vernon 1995, Reaka-Kudla 1997).

Many coastal human communities rely on these prosperous reefs for both their diet and income. Anthropogenic activities impact reefs as human populations continue to grow (Wilkinson 2004). Activities such as fishing and deforestation are needed to sustain human growth, however these same actions can damage corals indirectly by modifying predator/prey, competitor, pathogen, and mutualist interactions (Edinger *et al.* 1998). In addition, many fishing practices damage corals and can destroy entire reefs (Polunin and Roberts 1996).

Climate change contributes to coral reef decline, as well. Increased sea surface temperatures can cause frequent coral bleaching events (Hoegh-Guldberg 1999). Coral bleaching is when corals expel their symbiotic zooxanthellae, a photosynthetic dinoflagellate, due to stress. Temperature increases of as little as 1-2 °C can cause bleaching. If corals cannot recapture zooxanthellae soon after a bleaching event, they can soon die (Hoegh-Guldberg 1999). Global warming has already destroyed or severely damaged an estimated 25% of the worlds reefs (Goreau *et al.* 2000). In the Central Pacific, certain areas of the Phoenix Islands have shown almost complete coral mortality due to the 2002 bleaching event (Alling *et al.* submitted). The Intergovernmental Panel on Climate Change (IPCC 2007) predicts that the warming trend will continue and bleaching events may occur annually.

Since corals play a functional role in creating the foundation of the ecosystem, their degeneration may have adverse effects on other coral reef organisms. For instance, the branching coral *Pocillopora damicornis* harbors up to 16 species of crustaceans and

2

fish that use it for both food and shelter (Lassig 1977). When this coral becomes unhealthy or dies, the obligate species can lose their habitat and possibly become locally extinct. If coral health continues to deteriorate, overall diversity may decline.

For my thesis research, I worked with the Planetary Coral Reef Foundation and the crew aboard the R/V Heraclitus, studying coral health and fish diversity on Sagharughombe Reef in the Solomon Islands, Melanesia.

Methods

In 2006, I surveyed coral and fish using SCUBA and compared the results with previous surveys done in 2000 and 2002.

Study Site

The Sagharughombe Reef (S08°07.0' E156°54.7') in Western Province, Solomon Islands is located 10 kilometers east of Gizo, the provincial capital of Western Province. The reef lies adjacent to Kennedy Island, a small islet that gained its fame during WWII when, in a heroic rescue, John F Kennedy pulled his fellow soldiers ashore after the PT109 sank in the area (<u>National Geographic: The Search for Kennedy's PT109</u>). Nowadays, dive tour operators visit the vast reefs around Sagharughombe regularly.

Sagharughombe Reef lies on the northeast end of a vast lagoon system. On the lagoon side of the reef, coral growth occurs on a steep slope to 20 meters depth. At 20 meters, sand substrate dominates the bottom and gradually reaches about 70 meters depth. On the eastern side of the reef, there is a steep drop off, reaching 300+ meters in the Blackett Strait. On the northwest tip and southeast tips, there are channels separating Sagharughombe from its neighboring reefs.

The reef flat ranges from about 3 meters below the surface on the northwest end to 1 meter below the surface in the central section and southeastern end. Tidal influence was negligible during the study period. Coral health and fish diversity were surveyed on four transects on the reef.

	Transect				
Site Name	Site	Lat. Buoy A	Long. Buoy A	Lat. Buoy B	Long. Buoy B
Sagharughombe, SI					
(shallow zone)	1	S08°06.981'	E156°54.664'	S08°06.975'	E156°54.656'
Sagharughombe, SI					
(shallow zone)	2	S08°07.072'	E156°54.790'	S08°07.075'	E156°54.800'
Sagharughombe, SI					
(deep zone)	3	S08°06.818'	E156°54.612'	S08°06.827'	E156°54.618'
Sagharughombe, SI					
(deep zone)	4	S08°06.882'	E156°54.605'	S08°06.872'	E156°54.596'

Transect GPS coordinates are as follows:

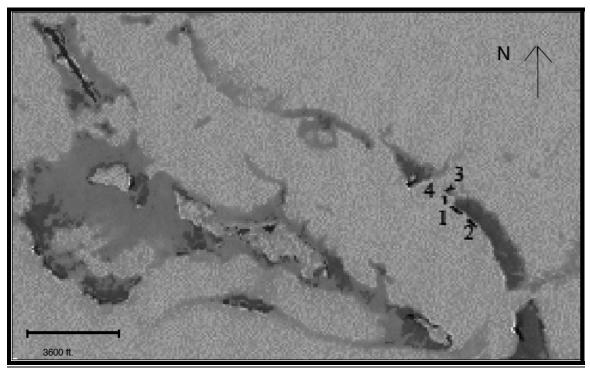


Figure 1. Satellite image of Sagharughombe Reef with locations of transects. Source for this data set was the Global Land Cover Facility, www.landcover.org.

Vitareef

The Vitareef methodology, developed by Dr. Phil Dustin of College of

Charleston, was implemented to determine the health of scleractinian corals on the reef.

In this methodology, individual coral colonies are identified to the genus level. Then, the health of each colony is assessed based on a set of codes, which represent almost all states of health and conditions found on hard stony corals. The Vitareef codes are as follows:

- 2. Unblemished: The colony appears perfectly healthy.
- Damaged but healed: Areas of the coral have been damaged, but healthy coral tissue has overgrown the damaged area.
- Edge damage: A condition resulting from filamentous algae trapping sediment and slowly choking the live tissue.
- 5. Damage to tissue and skeleton: Damage to skeleton resulting from various actions (i.e. fish bites, anchor damage, wave damage, diver damage, etc.).
- 6. Excessive sedimentation on live tissue: Sedimentation sits on the coral colony without smothering the live tissue beneath it.
- 7. Damage to tissue: Skeleton is intact, but coral tissue is damaged (i.e. snail and crownof-thorn predation).
- 8. Tissue bleaching: The condition in which the coral tissue expels the symbiotic zooxanthellae that live within its cell walls, resulting in a 'bleached' white appearance (may initially appear similar to tissue damage, however, upon closer inspection, tissue is intact in bleached corals).
- 9. Excessive mucous: A coral exudes mucous in order to protect itself from sedimentation and other environmental stresses.
- 10. Black band disease: A complex infection that gradually kills the coral colony.Often a thick black line separates healthy tissue from recently dead tissue.

- 11. Filamentous algae overgrowth: Parts of the colony are overgrown by filamentous algae.
- 12. Sedimentation with tissue necrosis: Excessive sedimentation causes necrosis of the underlying tissue.
- 13. White band disease: An infection that gradually kills the coral colony. Often a thin white line separates healthy tissue from recently dead tissue.
- 14. Healed with secondary algal colonization: A past scar is covered and contained by algae.
- 15. Recently dead: The entire coral colony is dead, but the genus of the colony is still recognizable indicating that the death was recent.
- 16. Macroalgae overgrowth: The colony is overgrown by macroalgae.
- 17. Colony decreasing in size: This code is used in conjunction with codes 4, 5, 7, 10, 11, 12, 13 and 16. It is also used with 19 if the invertebrate growth is actively encroaching over the surface of the colony (i.e. sponges, tunicates).
- 18. Almost unblemished: The colony appears healthy except for a small area.
- 19. Invertebrate overgrowth: Invertebrates covering much of the coral colony (i.e.

Christmas tree worms, bioeroding mussels, tunicates, sponges, etc.).

SCUBA diving was used to gather the Vitareef data on the reef. For each zone of the reef, at least five hundred coral colonies were identified to the genus level and evaluated based on the Vitareef codes. After the dive, each coral genus and the codes corresponding to the corals' conditions were entered into a spreadsheet and analyzed using the Vitareef program (see Appendix A). Coral health was calculated by summing the percentage of

unblemished (Vitareef code #2) and almost unblemished (Vitareef code #18) colonies for each transect zone.

Fish Observations

In addition to the Vitareef data collection, fish species and abundances were surveyed on each reef. Transects were laid in the same area that Vitareef data were obtained. Four transects were laid in the study site. Transect surveys were conducted at a depth between 5 and 10 meters. A 20-meter line was laid, using the measuring tape as a guide, and weighted buoys were placed at either end of the 20-meter line. A bearing was taken underwater from buoy A to buoy B, and the boat tender saved the GPS coordinates of each buoy at the surface. The transect 'zone' created consisted of an 80 m² area (central 20 meter line with 2 meter spans either side). Fish observations included identification to species level and counting the abundances of each species for forty-five minutes (see Appendix B). Fish diversity was calculated using the Shannon-Weiner Biodiversity and the Simpson's Biodiversity Indices (for equations see Appendix C).

Results

The Vitareef transect surveys of Sagharughombe Reef in the Solomon Islands indicate a significant decline in coral health over the six year period (Fig. 2; Single Factor ANOVA p<0.0001). In 2000, 2002 and 2006 the mean percentage of healthy corals on the four transects were 49.00%, 33.39%, and 24.94%, respectively. There was a significant decline in heath from 2000 to 2002 (p<0.000001), from 2002 to 2006 p<0.001) and from 2000 to 2006 (p<0.0000001).

The fish transect surveys of the Sagharughombe Reef in the Solomon Islands in 2000, 2002 and 2006 do not show any clear trends with respect to species abundances and species richness (Table 1). There were a total of 259 different fish species recorded on Sagharughombe Reef (see Appendix B). However, there was a decreasing trend in Shannon-Weiner diversity over the years, and Simpson's diversity significantly declined as well (Fig. 4; Sign Test p<0.05).

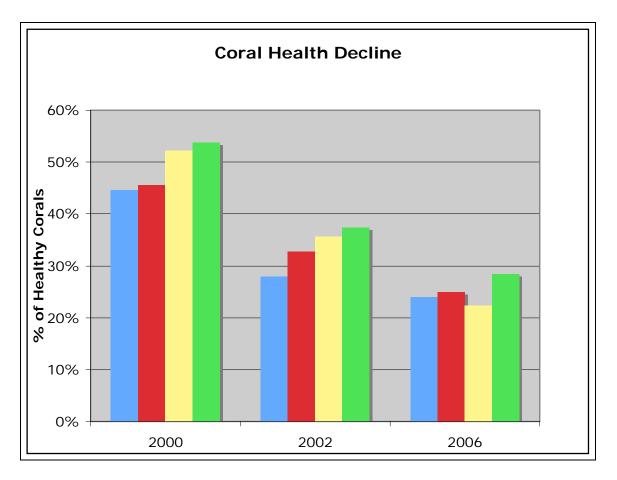


Figure 2. Coral health in four transects surveyed in 2000, 2002, and 2006 (p<0.001 for 2000 vs. 2002; 2002 vs. 2006, and 2000 vs. 2006).

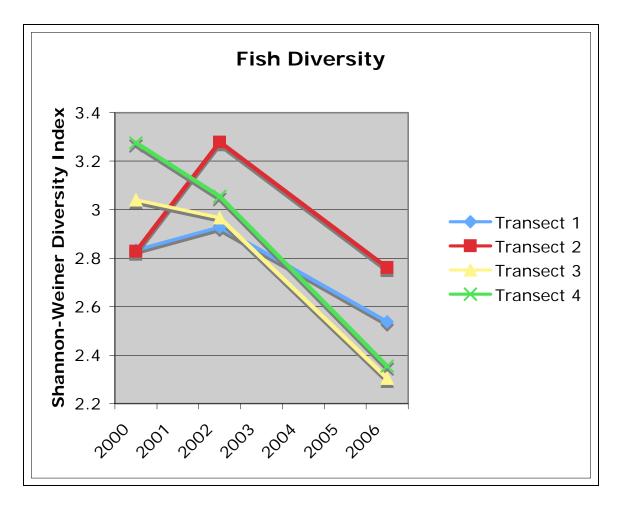


Figure 3. Fish diversity in four transects surveyed in 2000, 2002, and 2006 (Shannon-Weiner Index).

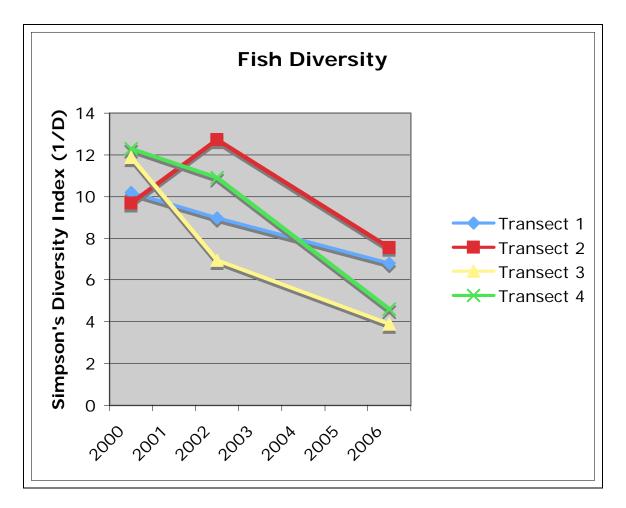


Figure 4. Fish diversity in four transects surveyed in 2000, 2002, and 2006 (Simpson's index; p<0.05).

	Fish	Surveys o	n Sagharugh	ombe Reef, S	Solomon Isla	nds	
Year	Transect #	Species Richness	Fish Abundance	Shannon- Weiner Diversity	Simpson's Diversity (D)	Index of Diversity (1-D)	Index of Diversity (1/D)
	1	63	1412	2.83	0.10	0.90	10.19
2000	2	73	1399	2.83	0.10	0.90	9.69
2000	3	67	944	3.04	0.08	0.92	11.89
	4	76	1041	3.28	0.08	0.92	12.30
	1	70	913	2.93	0.11	0.89	8.99
2002	2	79	906	3.28	0.08	0.92	12.72
2002	3	97	2817	2.97	0.14	0.86	6.94
	4	82	1222	3.05	0.09	0.91	10.91
	1	69	1709	2.54	0.15	0.85	6.80
2006	2	96	3336	2.76	0.13	0.87	7.57
2000	3	91	2890	2.30	0.26	0.74	3.89
	4	88	2549	2.35	0.22	0.78	4.60

Table 1. Fish diversity at four transect locations on Sagharughombe Reef, Solomon Islands in 2000, 2002, and 2006.

Discussion

Results from the surveys indicate a decline in both coral health and fish diversity on the Sagharughombe Reef, Solomon Islands from 2000 to 2006. Coral decline might have contributed to some decline in fish diversity. Corals create an intricate habitat for fish, and some fish have evolved an obligate association with certain corals. As coral health and cover declines, these obligate species can be displaced from their habitat as shown by Jones *et al.* (2004).

The most drastic coral health decline occurred between 2000 and 2002. Major bleaching events affected regions of the South Pacific during these years and were noticed during the April 2000 Vitareef survey (see Appendix A). "Almost continuous bleaching (occurred) throughout the period 2000-2002 (Wilkinson 2002)." From 2002 to 2006, no major bleaching events took place, but coral health continued to decline, though the decline was not as steep as the earlier period. A minor bleaching event was occurring during the January 2006 Vitareef survey (see Appendix A). Bleaching seemed to increase in intensity during our stay. It is likely that this extensive bleaching plays a major role in the declining coral health seen at Sagharughombe Reef in the Solomon Islands.

Sedimentation from terrestrial run-off, domestic sewage, and outbreaks of crownof-thorn starfish (*Acanthaster planci*) might have contributed to coral health decline, as well. Logging occurs throughout the region, especially on Kolombangarra, a nearby island. Sedimentation and eutrophication resulting from intense logging can lead to coral decline (Rogers 1990). Domestic sewage from the nearby village on Mbangbanga might be causing eutrophication problems on the reef. Few corallivorous crown-of-thorn starfish were seen on the transect surveys in 2006, although the local dive operator, Dive

14

Ghizo, removed over one hundred crown-of-thorn starfish from a neighboring reef near Kennedy Island during our stay in 2006.

A significant decline in fish diversity occurred from 2000 to 2002. In the 2000 to 2002 time period, the Shannon-Weiner Index for fish diversity decreased in two out of the four transects. The Simpson's index for fish diversity significantly declined in three out of four transects in the same time period. The discrepancy is due to the difference in how factors influence each index. Both indices take into account the number of species present and the relative abundance of each species, but the Shannon-Weiner places more importance on the maximum evenness of each species.

In the 2002-2006 time period, fish diversity declined more rapidly than in 2000 to 2002. This may largely be due to a lag effect described by Tillman *et al.* (1994). There tends to be a lag period between loss of habitat and species extinction. Coral health degraded quickly during the 2000 to 2002 period, but the greater decline in fish diversity occurred in the subsequent years. A study on the Great Barrier Reef, Australia by Lewis (1998) demonstrated a similar decline in fish diversity on damaged patch reefs.

The current decline in coral health and fish diversity on the Sagharughombe Reef in Western Province, Solomon Islands might have devastating effects in the local region. In the recent years, a relatively unstable government caused most tourist companies and conservation groups to pull out of the Solomon Islands. Governmental stability has gradually increased, and some tour operators have returned. Most tourism in this region focuses on fishing and diving. If the reefs health and fish diversity continue to decline, so might the tourism in this region. This scenario would have devastating effects on the reemerging economy.

15

Coral bleaching has probably caused the most harmful effects on coral health at this particular reef, as seen by the concurrent bleaching and coral health decline from 2000 to 2002. The increase in water temperature is linked to anthropogenic global warming (IPCC 2007). In order to prevent the detrimental effect caused by coral bleaching, countries worldwide need to decrease their greenhouse gas output to curb anthropogenic global warming.

The creation of marine protected areas, also known as MPAs, can preserve coral health and fish diversity, as well. Research has shown that MPAs can prevent marine biodiversity loss by banning fishing and other extractive practices (Agardy 1994, Halpern & Warner 2002, and Lubchenco 2003). Although this method of preservation can effectively control "top-down" disturbances on the reef, it cannot prevent damage from larger scale processes like pollution, sedimentation and global warming, as demonstrated by Jones *et al.* (2004). On the other hand, MPAs cause a spillover effect when fish and other organisms flourish in bordering regions (Grafton *et al.* 2005). MPAs also act as a genetic bank for species with larval dispersal. This has immediate benefits to neighboring reefs.

Appendix A

	Shallow (3-5m)	Shallow (3-5m)	Deep (7-9m)	Deep (7-9m)
Transect #	1	3	2	4
Unblemished	22.56%	14.91%	29.35%	25.9%
Damaged but				
healed	1.4%	1.4%	0.63%	1.55%
Edge damage	26.16%	32.45%	23.9%	21.13%
Tissue &				
Skeleton				
Damage	8.87%	7.14%	8.39%	5.28%
Excessive				
sedimentation on	10 70/	10 110/	7.600/	5 5 4 5
live tissue	13.7%	12.11%	7.63%	5.545
Tissue Damage	5.79%	0.47%	2.94%	0.64%
Bleaching	6.32%	18.94%	17.46%	25.52%
Excessive	10.10/	= 0.000	1.000/	0.6104
Mucous	10.1%	7.92%	4.88%	3.61%
Black Band	0.000/	00/	00/	00/
Disease	0.09%	0%	0%	0%
Filamentous algae overgrowth	15.28%	21.58%	16.58%	22.040/
Sedimentation	13.28%	21.38%	10.38%	22.04%
with tissue				
necrosis	10.45%	4.35%	8.14%	8.51%
White Band	10.1070	1.5570	0.1170	0.0170
Disease	0.26%	0%	0.13%	0%
Healed with				
secondary algal				
colonization	4.57%	1.55%	2.94%	0.77%
Recently dead	0.79%	2.64%	0.94%	0.52%
Macroalgae				
overgrowth	19.84%	5.285	9.82%	3.35%
Colony				
decreasing in			51 010/	10.000
size	56.54%	59.94%	51.81%	49.23%
Almost	22.040/	27 270/	16 150/	27.040/
unblemished Invertebrate	22.04%	37.27%	16.15%	27.84%
overgrowth	28.97%	32.14%	23.9%	18.69%
¥	20.71%	32.14%	23.9%	10.07%
Health (Unblemished +				
Almost				
Unblemished)	44.6%	52.18%	45.5%	53.74%
Chorennoneu)	11.070	52.1070	15.570	55.7770

Vitareef Data for Coral Health on Sagharughombe Reef, Solomon Islands in April 2000

	Shallow (3-5m)	Shallow (3-5m)	Deep (7-9m)	Deep (7-9m)
Transect #	4	2	1	3
Unblemished	23.04%	17.84%	22.96%	17.32%
Damaged but				
healed		0%	0.3%	0%
Edge damage	40.07%	43.27%	45.33%	50.55%
Tissue &				
Skeleton Damage	11.85%	15.2%	14.22%	22.15%
Excessive				
sedimentation on live tissue	16 960/	26 020/	12 790/	15 200/
	16.86%	26.02%	13.78%	15.29%
Tissue Damage	11.85%	9.65%	5.93%	11.08%
Bleaching	8.01%	5.26%	1.33%	8.42%
Excessive Mucous	8.51%	7.6%	13.63%	9.67%
Black Band	0.31%	7.0%	13.03%	9.07%
Disease	0%	0%	0%	0.16%
Filamentous	0,0	0,0	070	011070
algae overgrowth	6.01%	7.89%	5.78%	12.01%
Sedimentation				
with tissue				
necrosis	7.85%	8.77%	10.37%	2.5%
White Band		00/	0.07	0.04
Disease	0%	0%	0%	0%
Healed with secondary algal				
colonization	1.67%	0.58%	1.04%	0.94%
Recently dead	2.67%	0.29%	0.74%	0.62%
Macroalgae		0.22770	0.7 170	0.0270
overgrowth	3.84%	7.89%	4%	4.37%
Colony				
decreasing in size	57.26%	64.62%	62.22%	64.9%
Almost				
unblemished	14.36%	14.91%	4.89%	18.25%
Invertebrate	21 550/	20.240/	25.020/	22 780/
overgrowth	31.55%	29.24%	25.93%	22.78%
Health (Unblemished +				
Almost				
Unblemished)	37.4%	32.755	27.85%	35.57%

Vitareef Data for Coral Health on Sagharughombe Reef, Solomon Islands in September 2002

	Shallow (3-5m)	Shallow (3-5m)	Deep (7-9m)	Deep (7-9m)
Transect #	1	2	3	4
Unblemished	9.83%	7.26%	10.82%	16.85%
Damaged but				
healed	0.49%	0.78%	0.37%	0%
Edge damage	3.9%	4.8%	2.61%	4.12%
Tissue &				
Skeleton Damage	4.25%	4.58	2.24%	1.12%
Excessive sedimentation on				
live tissue	0.59%	0.22%	0%	0%
Tissue Damage	3.61%	2.46%	8.96%	1.87%
Bleaching	11.86%	15.87%	6.72%	3.755%
Excessive				
Mucous	1.38%	1.34%	0%	0%
Black Band				
Disease	0%	0%	0%	0%
Filamentous		2.020/	2 720/	0.040/
algae overgrowth		3.02%	3.73%	8.24%
Sedimentation with tissue				
necrosis	0.4%	0.11%	0%	0%
White Band		0.1170	070	070
Disease	0.05%	0%	0%	0%
Healed with				
secondary algal				
colonization	28.71%	30.95%	47.01%	16.1%
Recently dead	1.88%	1.45%	2.24%	0.37%
Macroalgae				
overgrowth	1.58%	2.23%	2.61%	2.25%
Colony				
decreasing in size	16.4%	15.31%	19.78%	18.73%
Almost			44 675	
unblemished	14.13%	17.43%	11.57%	11.61%
Invertebrate overgrowth	21.59%	22.46%	29.48%	15.73%
		∠∠.40%	27.40%	13.73%
Health (Unblemished +				
Almost				
Unblemished)		24.69%	22.39%	28.46%

Vitareef Data for Coral Health on Sagharughombe Reef, Solomon Islands in January 2006

Appendix B

Tish Surveys a					000			20			2006					
Family	Common Name	Latin Name	Site 1	Site 2	Site 3	Site 4	Site 1	Site 2	Site 3	Site 4	Site 1	Site 2	Site 3	Site 4		
Angelfish	three spot	Apolemichthys trimaculatus					1									
Angelfish	bicolor	Centropyge bicolor	3		2	12	4		1				2	6		
Angelfish	dusky	Centropyge bispinosus	3					3				2	4			
Angelfish	midnight	Centropyge nox							2							
Angelfish	pearlscale	Centropyge vroliki	5	2	3	4	3	3	2	3	4	2	7	5		
Angelfish	blue girdled	Pomacanthus navarchus	2	4	2	1	1	1			2	2		1		
Angelfish	six banded	Pomacanthus sexstriatus				1										
Angelfish	blue faced	Pomacanthus xanthompetopon	1	3	2											
Angelfish	regal	Pygoplites diacanthus	5	5	3	6	4	4	3	2	6	4		3		
[]														<u> </u>		
Anthia	threadfin	Psudanthias huchtii					40						60			
Anthia	lyretail	Pseudanthias squamipinnis					30									
Anthia	Purple	Pseudanthias tuka	200	80	60	80		250		30	8	50	250	10		
Anthia	Peach	Pseudanthias dispar										30				
Anthia	unidentified	Unidentified sp				10										
T																
Barracuda	yellowtail	Sphyraena flavicauda					50									
[]														<u> </u>		
Batfish	orbicular	Platax orbicularis							1							
[]																
Bigeye	glasseye	Heteropriacanth us cruentatus									2					
[]																
Blanquillo	striped	Malacanthus latovittatus		2												

Fish Surveys at Four Transect Locations on Sagharughombe Reef, Solomon Islands in 2000, 2002 & 2006

			2000					20	02		2006			
Family	Common Name	Latin Name	Site 1	Site 2	Site 3	Site 4	Site 1	Site 2	Site 3	Site 4	Site 1	Site 2	Site 3	Site 4
Blenny	lined fangblenny	Meiacanthus lineatus					1							
Blenny	bluestriped fangblenny	Plagiotremus rhinorhynchos			1		2		1			1		
Blenny	blennies	Unidentified sp	5		10	10	5	3			1			
Blenny	fang blennies	Unidentified sp	3		2								3	

Butterflyfish	threadfin	Chaetodon auriga										2		1
Butterflyfish	eastern triangle	Chaetodon baronessa	4	3	3	7	2	2		2	5	3	3	2
Butterflyfish	Bennett's	Chaetodon bennetti	3	4			2	2		1				
Butterflyfish	pacific saddletail	Chaetodon ephippium	2	2				2	3		2		4	3
Butterflyfish	Klein's	Chaetodon kleinii			1	1	8	8						1
Butterflyfish	lined	Chaetodon lineolatus							2					
Butterflyfish	raccoon	Chaetodon lunula										3		
Butterflyfish	spot tail	Chaetodon ocellicaudus					1							
Butterflyfish	eight banded	Chaetodon octofasciatus					3							
Butterflyfish	ornate	Chaetodon ornatissimus				3								1
Butterflyfish	dot and dash	Chaetodon pelewensis					2							2
Butterflyfish	latticed	Chaetodon rafflesi			3				4	4	2		5	3
Butterflyfish	ovalspot	Chaetodon speculum										1		
Butterflyfish	redfin	Chaetodon trifasciatus	5	7	10	4	4		7	7	2	3	8	3
Butterflyfish	pacific double saddled	Chaetodon ulietensis	2	2		5			2			2	2	1
Butterflyfish	vagabond	Chaetodon vagabundus	1	4	4	2	3	3		2	1		1	4
Butterflyfish	forcepfish	Forcipiger flavissimus							1		5	2		4
Butterflyfish	longnosed	Forcipiger longirostris	7	5	2	1	1							2
Butterflyfish	pyramid	Hemitaurichthys polylepis							3					
Butterflyfish	longfin bannerfish	Heniochus acuminatus										3		
Butterflyfish	pennant bannerfish	Heniochus chrysostomus		2		2		2	2	3	2	1	1	

			2000					20	02		2006			
Family	Common Name	Latin Name	Site 1	Site 2	Site 3	Site 4	Site 1	Site 2	Site 3	Site 4	Site 1	Site 2	Site 3	Site 4
Butterflyfish	masked bannerfish	Heniochus monoceros					1							
Butterflyfish	singular bannerfish	Heniochus singularis		4			3							4
Butterflyfish	humphead bannerfish	Heniochus varius	4	5	3	6	2	2		2	4	6		1

Cardinalfish	three saddled	Apogon bandanensis						3			
Cardinalfish	split banded	Apogon compressas						20	60		
Cardinalfish	ochre striped	Apogon compressus	10	20							
Cardinalfish	yellow striped	Apogon cyanosoma			12						
Cardinalfish	narrowstrip	Apogon exostigma						4			
Cardinalfish	gray	Apogon fuscus	10								
Cardinalfish	girdled	Archamia zosterophora						7			
Cardinalfish	five lined	Cheilodipterus quinquelineatus	10				12	10			
Cardinalfish	unidentified	Unidentified sp							37		

		Fistularia							
Cornetfish	cornetfish	commersonii			1	1			

Damselfish	spiny chromis	Acanthochromis polyacanthus					50	30	50	50	30	100	100	150
Damselfish	golden damsel	Amblyglyphidod on aureus	200	10	50	30	50	50	10	100				
Damselfish	staghorn	Amblyglyphidod on curacao	10					2			10		20	
Damselfish	white belly	Amblyglyphidod on leucogaster	30	100	150	30	40	20	30	20	20	5	60	20
Damselfish	dusky anemonefish	Amphiprion melanopus									2			
Damselfish	Clark's anemonefish	Amphiprion clarkii							2	5				4
Damselfish	clown anemonefish	Amphiprion percula					3							
Damselfish	anemone fish	Amphiprion spp.	10	2	10	2							3	
Damselfish	midget chromis	Chromis acares									2			
Damselfish	ambon chromis	Chromis amboinensis	200	200	250			200	200	200	50	6	250	60

				20	00			20	02			20	06	
Family	Common Name	Latin Name	Site 1	Site 2	Site 3	Site 4	Site 1	Site 2	Site 3	Site 4	Site 1	Site 2	Site 3	Site 4
Damselfish	black axel chromis	Chromis atripectoralis									2			
Damselfish	darkfin chromis	Chromis atripes					30			30		20	35	15
Damselfish	scaly chromis	Chromis lepidolepis										4	80	1
Damselfish	black bar chromis	Chromis retrofasciata	100	40	100	50	30	30	100	20	7		7	10
Damselfish	Ternate chromis	Chromis ternatensis										250		
Damselfish	Vanderbilt's chromis	Chromis vanderbilti										20		
Damselfish	blue green chromis	Chromis viridis									15		15	
Damselfish	Weber's	Chromis weberi												9
Damselfish	black chromis	Chromis xanthura	50	5	4	20					8	1	4	
Damselfish	bicolor chromis	Chromis margaritifer										40	6	
Damselfish	Rolland's demoiselle	Chrysiptera rollandi							15	5	2			
Damselfish	Talbot's demoiselle	Chrysiptera talboti									3		2	
Damselfish	humbug dascyllus	Chrysiptera spp.	5					20	30	40				
Damselfish	black tailed dascyllus	Dascyllus melanurus								10				
Damselfish	reticulated dascyllus	Dascyllus reticulatus	50		40	40	100	50	50	40	1	20	70	30
Damselfish	threespot dascyllus	Dascyllus trimaculatus					100	20	5					
Damselfish	white damsel	Dischistodus perspicillatus						4						
Damselfish	black vent	Dischistodus melanotus	10					2			3			
Damselfish	black damsel	Neoglyphidodon melas							20					
Damselfish	yellow fin damsel	Neoglyphidodon nigroris	20	20	3			2	5	5	7	6	50	4
Damselfish	Johnston's damsel	Plectroglyphido don johnstonianus											3	
Damselfish	jewel damsel	Plectroglyphido don lacrymatus											8	
Damselfish	ambon damsel	Pomacentrus aboinensis				50								2
Damselfish	lemon damsel	Pomacentrus moluccensis									40	30		15
Damselfish	charcoal damsel	Pomacentrus brachialis										60		50
Damselfish	scaly damsel	Pomacentrus lepidogenys										2		

				20	00			20	02			20	06	
Family	Common Name	Latin Name	Site 1	Site 2	Site 3	Site 4	Site 1	Site 2	Site 3	Site 4	Site 1	Site 2	Site 3	Site 4
Damselfish	black axil damsel	Pomacentrus nigromanus		50	50	30			100				18	5
Damselfish	other chromis species	Unidentified sp		30	150	250								
Damselfish	other damsel species	Unidentified sp	250	10	250	50	200	200	50	50			200	
		Ptereleotris												
Dartfish	blackfin	evidens										3		
Emperor	longfin	Letfirinus erythropterus		1	2									
Emperor	long face	Lethrinus olivaceus				1						1		
Emperor	orange striped	Lethrinus obsoletus				1								
Emperor	bigeye	Monotaxis grandoculis	1	1	10	3	1	2	3	2	4	7	9	4
Emperor	unidentified	Unidentified sp					1							
Filefish	broom	Amanses scopas			1									
Fusilier	scissor tailed	Caesio caerulaurea										100		50
Fusilier	deep bodied	Caesio cuning		4	5	5			15		10	200		15
Fusilier	lunar fusilier	Caesio lunaris					40	15			30	150		140
Fusilier	yellowback	Caesio teres									250	100	13	
Fusilier	yellow lined fusilier	Caesio varilineata					150	40	20	20				
Fusilier	yellow tail falser fusilier	Paracaesio xanthura					70							
Fusilier	ruddy	Pterocaesio pisang		30		40	105 0				200	100 0	150 0	500
Fusilier	tessellated	Pterocaesio tessellata										100		100 0
Fusilier	bluestreak	Pterocaesio tile		100	50	20	150	30	30		500	500		100
Fusilier	three striped	Pterocaesio trilineata		50	30									
Fusilier	undentified	Unidentified sp									50			

				20	000			20	02			20	06	
Family	Common Name	Latin Name	Site 1	Site 2	Site 3	Site 4	Site 1	Site 2	Site 3	Site 4	Site 1	Site 2	Site 3	Site 4
Goatfish	yellowstripe	Mulloidochtys flavolineatus										2		
Goatfish	dash and dot	Parupeneus barberinus	3			4			1	1		9		
Goatfish	two barred	Parupeneus bifasciatus			1					2	3	2	1	4
Goatfish	yellowsaddle	Parupeneus cyclostomus		1	1	1		2	3			1	1	
Goatfish	multibarred	Parupeneus multifasciatus	1	2			4	2	4		1	1	2	1
Goatfish	sidespot	Parupeneus pleurostigma				2								

Goby	old glory goby	Amblygobius rainfordi					2	5			
Goby	goby	Unidentified sp		5		10	10	10		2	

					1	-	-	-		-	-	-	-	
Grouper	white lined rockcod	Anyperodon leucogrammicus											1	
Grouper	peacock	Cephalopholis argus	2	1	1									
Grouper	blue spotted rockcod	Cephalopholis cyanostigma			1	1	5	2	4	5				3
Grouper	leopard rockcod	Cephalopholis leopardus				1	3	2	1	1				
Grouper	coral cod	Cephalopholis miniata				4	15	2	1	1				
Grouper	starry	Cephalopholis sp.	1	1									2	
Grouper	flagtail grouper	Cephalopholis urodeta					4	2	1			3	1	
Grouper	whitespotted	Epinephelus caeruleopunctat us												1
Grouper	black tipped rockcod	Epinephelus fasciatus					3	1						
Grouper	blacksaddle grouper	Epinephelus howlandi				1								
Grouper	dwarf spotted rockcod	Epinephelus merra						1		1				
Grouper	coronation trout	Variola louti							2	1				

Hawkfish	two spotted	Amblycirrhitus bimacula		1					
Hawkfish	dwarf	Cirrhitichthys falco			1	1			
Hawkfish	longnose	Oxycirrhites typus			1				

				20	00			20	02			20	06	
Family	Common Name	Latin Name	Site 1	Site 2	Site 3	Site 4	Site 1	Site 2	Site 3	Site 4	Site 1	Site 2	Site 3	Site 4
Hawkfish	arc-eye	Paracirrhites arcatus	3											
Hawkfish	freckled	Paracirrhites forsteri				3				2		3		
Hawkfish	halfspotted	Paracirrhites hemistictus					1	1						

Jack	orangespotted trevally	Carangoides bajad							2		14
Jack	whitefin trevally	Carangoides equula			20						
Jack	blue trevally	Carangoides ferdau					25			3	
Jack	yellow spotted trevelly	Carangoides fulvoguttatus			40						
Jack	bluefin trevally	Caranx melampygus			10	2				3	3
Jack	rainbow runner	Elagatis bipinnulata						1	200		
Jack	jack spp.	Unidentified sp	1	1				2	1		

	scrawled								
Leatherjacket	leatherjacket	Aluterus scriptus						2	

Lizardfish	lizardfish sp	Unidentified sp				1		1

Mackerel	mackerel tuna	Euthynnus affinis			7				5
Mackerel	dogtooth	Gymnosarda unicolors			2	2			

Moorish Idol Moorish idol <i>Zan</i>	10	9	5	4	5	3	5	2	7	6	2	10
--------------------------------------	----	---	---	---	---	---	---	---	---	---	---	----

		Gymnothorax						
Moray Eel	giant moray	javanicus						1

Parrotfish	bumphead parrot	Bolbometopon muricatum		1	1			1	
Parrotfish	bicolor	Cetoscarus bicolor	1					1	4
Parrotfish	Bleeker's	Chlorurus bleekeri						5	3

T				20	00	1		20	02			20	06	1
Family	Common Name	Latin Name	Site 1	Site 2	Site 3	Site 4	Site 1	Site 2	Site 3	Site 4	Site 1	Site 2	Site 3	Site 4
Parrotfish	pacific longnose	Hippopscarus longiceps										3		
Parrotfish	turquoise- capped	Scarus dimidiatus										9	7	
Parrotfish	yellowfin	Scarus flavipectoralis									1	3	4	
Parrotfish	bullet head	Scarus sordidus											3	
Parrotfish	unidentified	Unidentified sp	30	40	20	40	50	30	30	30	2	2	2	20
Rabbitfish	golden rabbit	Siganus guttatus												1
Rabbitfish	lined	Siganus lineatus	6											
Rabbitfish	masked	Siganus puellus	1			2	2	2	2				2	
Rabbitfish	peppered	Siganus punctatissimus		6	3									
Rabbitfish	foxface	Siganus vulpinus	5	7	5	2	2		2		1	2	5	6
r				1	1	1	T	1	1	1	r	1	1	1
Ray	bluespotted ribbontail	Dasyatis kuhlii										2		
Ray	spotted eagle ray	Aetobatus narinari												1
·														
Rudderfish	highfin rudderfish	Kyphosus cinerascens					25							
Sandperch	latticed	Parapercis clathrata								1				
Shark	black tip reef shark	Carcharhinus melanopterus	1											
Shark	white tip reef shark	Triaenodon obesus										1		
Snapper	small tooth jobfish	Aphareus furca	1		1	1	1	1	1	1		2	1	3
Snapper	green jobfish	Aprion virescens												1
Snapper	two spot	Lutjanus biguttatus	2	2	1							1	6	
Snapper	red bass	Lutjanus bohar					30		2			2	1	12

				20	00			20	02			20	06	
Family	Common Name	Latin Name	Site 1	Site 2	Site 3	Site 4	Site 1	Site 2	Site 3	Site 4	Site 1	Site 2	Site 3	Site 4
Snapper	flametail	Lutjanus fulvus		2				1				12		
Snapper	paddletail	Lutjanus gibbus				9						16		9
Snapper	bluelined	Lutjanus kasmira		2								40		
Snapper	one spot	Lutjanus monostigma	1			1	1					6		
Snapper	black banded seaperch	Lutjanus semicinctus	1	1	1	2				1			1	3
Snapper	black and white	Malcolor macularis		7			15						7	10
Snapper	black snapper	Malcolor niger	1		1	1	30	2	1			2		21
Snapper	unidentified	Unidentified sp										3		
				1		[[[
Spinecheek	two line spinecheek	Scolopsis bilineatus	3	3	2	4			7	5				1
Spinecheek	pearly monocle bream	Scolopsis margaritifer							3	2	1			
			1	T	n							n	n	
Squirrel & Soldierfish	shadowfin soldierfish	Myripristis adjusta							1					
Squirrel & Soldierfish	epaulette soldierfish	Myripristis kuntee							3					
Squirrel & Soldierfish	tailspot squirrelfish	Sargocentron caudimaculatum					2							
Squirrel & Soldierfish	crown squirrelfish	Sargocentron diadema							1					
Squirrel & Soldierfish	squirrel/solder spp.	Unidentified sp	10	10	5	30	5	3			1	6	11	1
					•									
Surgeonfish	ringtail	Acanthurus blochii				7								
Surgeonfish	black	Acanthurus gahhm		3										
Surgeonfish	mimic	Acanthurus pyroferus	5	10	10	20	30	5	20	20	8	11	9	4
Surgeonfish	Thomson's	Acanthurus thompsoni				12	50							
Surgeonfish	twospot bristletooth	Ctenochaetus binotatus					2	2		5		2	4	10
Surgeonfish	lined bristletooth	Ctenochaetus striatus						7		2				
Surgeonfish	Tomini	Ctenochaetus tominiensis	3											
Surgeonfish	whitemargin unicornfish	Naso annulatus					20							

				20	00			20	02			20	06	-
Family	Common Name	Latin Name	Site 1	Site 2	Site 3	Site 4	Site 1	Site 2	Site 3	Site 4	Site 1	Site 2	Site 3	Site 4
Surgeonfish	blacktongue unicornfish	Naso hexacanthus					5							2
Surgeonfish	orangespine unicornfish	Naso lituratus	1			2	5	2						
Surgeonfish	bignose unicorn	Naso unicornis												8
Surgeonfish	Vlaming's	Naso vlamingi					30						1	
Surgeonfish	brushtail tang	Zebrasoma scopas	15	10	12	10	10	7	1	1	4	8	8	4
Surgeonfish	sailfin tang	Zebrasoma veliferum		3		5	2	1					2	
Surgeonfish	unidentified	Unidentified sp										13		4

Sweetl	p giant sweetlip	Plectorhinchus albovittatus			1				
Sweetl	p harlequin	Plectorhinchus chaetodonoides	1						
Sweetl	p Lesson's	Plectorhinchus lessonii	1					3	
Sweetl	p oriental	Plectorhinchus vittatus	1	1					

Triggerfish	clown	Balistoides conspicillum	1	1					1					
Triggerfish	orange striped	Balistapus undulatus	1	4	7	2	10	10	12	5	1	5	8	4
Triggerfish	titan	Balistoides viridescens	1	1		1	1	1				1	2	1
Triggerfish	oceanic triggerfish	Canthidermis sufflamen					20							
Triggerfish	pink tail	Melichthys vidua	1	1	2	5	20		7		2	3	5	2
Triggerfish	redtooth	Odonus niger				15	50					40		
Triggerfish	yellowmargin	Pseudobalistes flavimarginatus										2	4	1
Triggerfish	scythe	Sufflamen bursa					2	2	2					
Triggerfish	half moon	Sufflamen chrysopterus				2								

Trumpetfish	trumpetfish	Aulostomus chinensis	2	4	2	2	1	1	1	5	2	4	
Trunk/puffer	puffer	Arothron spp.	2	1		2							

				20	00			20	02			20	06	_
Family	Common Name	Latin Name	Site 1	Site 2	Site 3	Site 4	Site 1	Site 2	Site 3	Site 4	Site 1	Site 2	Site 3	Site 4
Trunk/puffer	blackspotted	Arothron nigropuctatus							1		1	2		
Trunk/puffer	spotted toby	Canthigaster solandri												1
Trunk/puffer	striped boxfish	Ostracion solorensis	1											

		Anampses												
Wrasse	spotted	meleagrides											1	
Wrasse	Diana's hogfish	Bodianus diana					4							8
		Bodianus												
Wrasse	mesothorax	mesothorax		2	2	3			1			1	4	1
Wrasse	floral maori	Cheilinus chlorourus											1	
Wrasse	redbreasted	Cheilinus fasciatus	3	3	2	10			2	2	3	4	7	1
Wrasse	maori	Cheilinus spp.		3	7						2			
Wrasse	tripletail	Cheilinus trilobatus			,		3							
Wrasse	Napoleon wrasse	Cheilinus undulatus					2	1	1	1			3	1
Wrasse	slingjaw	Epibulus insidiator	1				2	2	4	6		2		
Wrasse	bird	Gomphosus spp.	1					1	1					
Wrasse	bird	Gomphosus varius					1					1		
Wrasse	checkerboard	Halichoeres hortulanus	2			2	1	1	1		2		12	
Wrasse	dusky wrasse	Halichoeres marginatus											2	
Wrasse	tailspot	Halichoeres melanurus	15		2	4		3		3	4		4	
Wrasse	two tone	Halichoeres prosopeion		5	6	7	4	4	3				1	3
Wrasse	zigzag	Halichoeres scapularis						1						
Wrasse	barred thicklip	Hemigymnus fasciatus					2		3					3
Wrasse	black eye thicklip	Hemigymnus melapterus	1						2		3	1	3	
Wrasse	tubelip	Labrichthys unlineatus					1	1	1	1			1	
Wrasse	striped cleaner	Labroides dimidiatus									2	6		2
Wrasse	bicolor cleaner	Labroides bicolor				1			1			1		1
Wrasse	cleaner	Labroides spp.	15	5	8	20	10	12	3	10	5			

				20	00			20	02			20	06	
Family	Common Name	Latin Name	Site 1	Site 2	Site 3	Site 4	Site 1	Site 2	Site 3	Site 4	Site 1	Site 2	Site 3	Site 4
Wrasse	blackspotted	Macropharyngo don meleagris					1		1	1				
Wrasse	dragon wrasse	Novaculichthys taeniourus										3		
Wrasse	Arenatus' wrasse	Oxycheilinus arenatus							1					
Wrasse	cheeklined maori	Oxycheilinus digrammus											1	
Wrasse	six stripe	Pseudocheiliniu s hexataenia								2	1		11	
Wrasse	chiseltooth	Pseudodax moluccanus										2		4
Wrasse	eightstripe	Pseudochelinius octotaenia									1			
Wrasse	blue lined	Stethojulis bandanensis											1	
Wrasse	slender	Suezichthys gracilis						17						
Wrasse	bluntheaded	Thalassoma amblycephalum							5	2		1		
Wrasse	six-bar	Thalassoma hardwicke	3					3	1	2	3	3	7	
Wrasse	crescent	Thalassoma lunare		1			2		3		2	1		
Wrasse	sunset	Thalassoma lutescens									1			
Wrasse	yellowtail coris	Coris gaimard	1			1								
Wrasse	other wrasse species	Unidentified sp	20	3	10	5						21	30	12

Appendix C

Shannon-Weiner Index (H')

$$H' = -\sum_{i=1}^{S} p_i \ln p_i$$

 p_i : The relative abundance of each species, calculated as the proportion of individuals of

a given species to the total number of individuals in the community: $\frac{n_i}{N}$

 n_i : The number of individuals in each species; the abundance of each species.

N: The total number of all individuals: $\sum_{i=1}^{S} n_i$

S: The number of species. Also called species richness.

Adapted from Charles Krebs. 1989. <u>Ecological Methodology</u>. HarperCollins, New York. Simpson's Index (D)

$$D = \sum_{i=1}^{S} p_i^2$$

 p_i : The relative abundance of each species, calculated as the proportion of individuals of a

given species to the total number of individuals in the community: $\frac{n_i}{N}$

 n_i : The number of individuals in each species; the abundance of each species.

N: The total number of all individuals: $\sum_{i=1}^{S} n_i$

Index of Diversity (D')

D'=1/D (D' can also be defined as 1-D)

* Simpson's Index has an inverse relationship with biodiversity. To make the information

easily understood in the graphs, this study uses the Index of Diversity (D'=1/D).

Adapted from E.H. Simpson. 1949. Measurement of diversity. Nature 163:688.

References

- Agardy T. 1994. Advances in marine conservation: The role of marine protected areas. *Trends in Ecology & Evolution*. 9: 267–270.
- Alling A, Doherty O, Logan H, Feldman L, & Dustan P. Submitted 2007. Catastrophic coral mortality in the remote central Pacific Ocean: Kiribati, Phoenix Islands. *Atoll Research Bulletin*.
- Birkeland C, Ed. 1997. Life and Death of Coral Reefs. Chapman and Hall, New York.
- Davies PJ. 1983. Reef growth. *In* Barnes DJ, Ed. <u>Perspectives on Coral Reefs</u>. Brian Clouston for AIMS, Canberra.
- Edinger EN, Jompa J, Limmon GV, Widjatmoko W & Risk MJ. 1998. Reef degradation and coral biodiversity in Indonesia: Effects of land-based pollution, destructive fishing practices and changes over time. *Marine Pollution Bulletin*. 36 (8): 617-630.
- Grafton RQ, Kompas T & Schneider V. 2005. The bioeconomics of marine reserves: A selected review with policy implications. *Journal of Bioeconomics*. 7 (2): 161-178.
- Goreau TF, McClanahan T, Hayes R & Strong A. 2000. Conservation of coral reefs after the 1998 coral bleaching event. *Conservation Biology*. 14: 5-15.
- Halpern BS & Warner RR. 2002. Marine reserves have rapid and lasting effects. *Ecology Letters*. 5: 361–366.
- Hoegh-Guldberg O. 1999. Climate change, coral bleaching and the future of the world's coral reefs. *Marine & Freshwater Research.* 8: 839-866.
- Intergovernmental Panel on Climate Change (IPCC). 2007. Climate change 2007 summary for policymakers: The physical science basis. Fourth assessment report (AR4). Paris.
- Jones GP, McCormick MI, Srinivasan M, Eagle JV. 2004. Coral decline threatens fish biodiversity in marine reserves. *Proceedings from National Academy of Sciences*. 101 (21): 8251-3.
- Karlson RH. 1999. <u>Dynamics of Coral Communities</u>. Kluwer Academic Publishers, Dordrecht and Boston.
- Krebs C. 1989. Ecological Methodology. HarperCollins, New York.

- Lubchenco J, Palumbi SR, Gaines SD & Andelman S. 2003. Plugging a hole in the ocean: the emerging science of marine reserves. *Ecological Applications*. 13: S 3-7.
- Lassig BR. 1997. Communication and coexistence in a coral community. *Marine Biology*. 42: 85-92.
- Lewis AR. 1998. Effects of experimental coral disturbance on the population dynamics of fishes on large patch reefs. *Journal of Experimental Marine Biology and Ecology*. 230(1): 91-110.
- National Geographic: The Search for Kennedy's PT 109. 2002. Prod. Jon Goodman. DVD. National Geographic.
- Nybakken JW, Ed. 2001. <u>Marine Biology: An Ecological Approach (5th ed)</u>. Benjamin Cummings, San Francisco.
- Polunin NVC & Roberts CM, Eds. 1996. Reef Fisheries. Chapman and Hall, London.
- Rogers CS. 1990. Responses of coral reefs and reef organisms to sedimentation. *Marine Ecology Progress Series*. 62: 185-202.
- Reaka-Kudla ML. 1997. The global biodiversity of coral reefs: A comparison with rain forests. In: Reaka-Kudla ML, Wilson DE, Wilson EO, Eds. 1997. <u>Biodiversity II</u>. John Henry Press, Washington DC.
- Simpson EH. 1949. Measurement of diversity. Nature. 163: 688.
- Tilman D, May RM, Lehman CL & Nowak MA. 1994. Habitat destruction and the extinction debt. *Nature*. 371: 65.
- Veron JEN. 1995. <u>Corals in Space and Time. The Biogeography and Evolution of the</u> <u>Scleractinia</u>. Cornell University Press, Ithaca.
- Wilkinson CR. 1999. Global and local threats to coral reef functioning and existence: Review and predictions. *Marine & Freshwater Research*. 50: 867-87.
- Wilkinson CR, Ed. 2002. <u>Status of Coral Reefs of the World: 2002</u>. Australian Institute of Marine Science, Cape Ferguson and Dampier.
- Wilkinson CR, Ed. 2004. <u>Status of Coral Reefs of the World: 2004</u>. Australian Institute of Marine Science, Cape Ferguson and Dampier.