You are here
Adaptive controller design for an autonomous twin-hulled surface vessel with uncertain displacement and drag
- Date Issued:
- 2014
- Summary:
- The design and validation of a low-level backstepping controller for speed and heading that is adaptive in speed for a twin-hulled underactuated unmanned surface vessel is presented. Consideration is given to the autonomous launch and recovery of an underwater vehicle in the decision to pursue an adaptive control approach. Basic system identification is conducted and numerical simulation of the vessel is developed and validated. A speed and heading controller derived using the backstepping method and a model reference adaptive controller are developed and ultimately compared through experimental testing against a previously developed control law. Experimental tests show that the adaptive speed control law outperforms the non-adaptive alternatives by as much as 98% in some cases; however heading control is slightly sacrificed when using the adaptive speed approach. It is found that the adaptive control law is the best alternative when drag and mass properties of the vessel are time-varying and uncertain.
Title: | Adaptive controller design for an autonomous twin-hulled surface vessel with uncertain displacement and drag. |
![]() ![]() |
---|---|---|
Name(s): |
Klinger, Wilhelm B., author von Ellenrieder, Karl, Thesis advisor Florida Atlantic University, Degree grantor College of Engineering and Computer Science Department of Ocean and Mechanical Engineering |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2014 | |
Date Issued: | 2014 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 122 p. | |
Language(s): | English | |
Summary: | The design and validation of a low-level backstepping controller for speed and heading that is adaptive in speed for a twin-hulled underactuated unmanned surface vessel is presented. Consideration is given to the autonomous launch and recovery of an underwater vehicle in the decision to pursue an adaptive control approach. Basic system identification is conducted and numerical simulation of the vessel is developed and validated. A speed and heading controller derived using the backstepping method and a model reference adaptive controller are developed and ultimately compared through experimental testing against a previously developed control law. Experimental tests show that the adaptive speed control law outperforms the non-adaptive alternatives by as much as 98% in some cases; however heading control is slightly sacrificed when using the adaptive speed approach. It is found that the adaptive control law is the best alternative when drag and mass properties of the vessel are time-varying and uncertain. | |
Identifier: | FA00004130 (IID) | |
Degree granted: | Thesis (M.S.)--Florida Atlantic University, 2014. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Adaptive control systems Drag (Aerodynamics) Intelligent control systems Intelligent control systems Vehicles, Remotely piloted |
|
Held by: | Florida Atlantic University Libraries | |
Sublocation: | Digital Library | |
Links: | http://purl.flvc.org/fau/fd/FA00004130 | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00004130 | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |