You are here
Highwire coordinates synapse formation and maturation by regulating both a map kinase cascade and the ability of the axon to respond to external cues in the giant fiber system of Drosophila Melanogaster
- Date Issued:
- 2014
- Summary:
- The ubiquitin ligase Highwire is responsible for cell-autonomously promoting synapse formation in the Drosophila Giant Fiber system. highwire mutants show defects in synaptic function and extra branching at the axon terminal, corresponding to transient branching that occur in the course of giant synapse formation during metamorphosis. The MAP kinase pathway, including Wallenda and JNK/Basket, plus the transcription factor Jun, act to suppress synaptic function and axon pruning in a dosage sensitive manner, suggesting different molecular mechanisms downstream of the MAP kinase pathway govern function and pruning. A novel role for Highwire is revealed, regulating the giant fiber axon’s ability to respond to external cues regulated by Fos. When expression of the transcription factor Fos is disrupted in the post-synaptic TTMn or surrounding midline glia of highwire mutants, the giant fiber axons show a marked increase in axon overgrowth and midline crossing. However, synaptic function is rescued by the cell nonautonomous manipulation of Fos, indicating distinct mechanisms downstream of Highwire regulating synaptic function and axon morphology.
Title: | Highwire coordinates synapse formation and maturation by regulating both a map kinase cascade and the ability of the axon to respond to external cues in the giant fiber system of Drosophila Melanogaster. |
156 views
31 downloads |
---|---|---|
Name(s): |
Borgen, Melissa A., author Murphey, Rodney K., Thesis advisor Florida Atlantic University, Degree grantor Charles E. Schmidt College of Science Department of Biological Sciences |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2014 | |
Date Issued: | 2014 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 148 p. | |
Language(s): | English | |
Summary: | The ubiquitin ligase Highwire is responsible for cell-autonomously promoting synapse formation in the Drosophila Giant Fiber system. highwire mutants show defects in synaptic function and extra branching at the axon terminal, corresponding to transient branching that occur in the course of giant synapse formation during metamorphosis. The MAP kinase pathway, including Wallenda and JNK/Basket, plus the transcription factor Jun, act to suppress synaptic function and axon pruning in a dosage sensitive manner, suggesting different molecular mechanisms downstream of the MAP kinase pathway govern function and pruning. A novel role for Highwire is revealed, regulating the giant fiber axon’s ability to respond to external cues regulated by Fos. When expression of the transcription factor Fos is disrupted in the post-synaptic TTMn or surrounding midline glia of highwire mutants, the giant fiber axons show a marked increase in axon overgrowth and midline crossing. However, synaptic function is rescued by the cell nonautonomous manipulation of Fos, indicating distinct mechanisms downstream of Highwire regulating synaptic function and axon morphology. | |
Identifier: | FA00004081 (IID) | |
Degree granted: | Dissertation (Ph.D.)--Florida Atlantic University, 2014. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Cell differentiation Cellular control mechanisms Cellular signal transduction Drosophila melanogaster -- Cytogenetics Gene expression Genetic transcription |
|
Held by: | Florida Atlantic University Libraries | |
Sublocation: | Digital Library | |
Links: | http://purl.flvc.org/fau/fd/FA00004081 | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00004081 | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |