You are here

Bulk diffusion of high performance concrete specimens exposed to different levels of sodium chloride and seawater

Download pdf | Full Screen View

Date Issued:
2014
Summary:
The purpose of this study was to investigate the performance to chloride penetration of specimens made with three base compositions (three different supplementary cementitious materials) and water to cementitious ratios of 0.35, 0.41, or 0.47. The specimens were subjected to bulk diffusion test or full immersion. The mixes were exposed to 0.1 M, 0.6 M, or 2.8 M sodium chloride solution for different periods of time. Also, partially immersed specimens were exposed to indoor and outdoor exposures (tidal, splash, barge). Chloride concentration profiles were obtained and the apparent diffusion coefficient was calculated. The skin effect was found only on some chloride profiles exposed to 0.1 M sodium chloride solution. The chloride binding capacity was calculated; specimens with 20% Fly Ash and 8% Silica Fume had the highest binding capacity (70.99%). The apparent diffusivity coefficient was found to be dependent on the curing regime as well as the water to cement ratio. The correlation between effective resistivity and apparent diffusion coefficient was determined.
Title: Bulk diffusion of high performance concrete specimens exposed to different levels of sodium chloride and seawater.
226 views
107 downloads
Name(s): Arias, Wendy J., author
Presuel-Moreno, Francisco, Thesis advisor
Florida Atlantic University, Degree grantor
College of Engineering and Computer Science
Department of Ocean and Mechanical Engineering
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2014
Date Issued: 2014
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 118 p.
Language(s): English
Summary: The purpose of this study was to investigate the performance to chloride penetration of specimens made with three base compositions (three different supplementary cementitious materials) and water to cementitious ratios of 0.35, 0.41, or 0.47. The specimens were subjected to bulk diffusion test or full immersion. The mixes were exposed to 0.1 M, 0.6 M, or 2.8 M sodium chloride solution for different periods of time. Also, partially immersed specimens were exposed to indoor and outdoor exposures (tidal, splash, barge). Chloride concentration profiles were obtained and the apparent diffusion coefficient was calculated. The skin effect was found only on some chloride profiles exposed to 0.1 M sodium chloride solution. The chloride binding capacity was calculated; specimens with 20% Fly Ash and 8% Silica Fume had the highest binding capacity (70.99%). The apparent diffusivity coefficient was found to be dependent on the curing regime as well as the water to cement ratio. The correlation between effective resistivity and apparent diffusion coefficient was determined.
Identifier: FA00004076 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2014.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Bulk solids flow
Concrete -- Corrosion
Concrete, Effect of salt on
Reinforced concrete -- Deterioration
Sustainable construction
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Links: http://purl.flvc.org/fau/fd/FA00004076
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00004076
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.