You are here

Detection of multiple change-points in hazard models

Download pdf | Full Screen View

Date Issued:
2014
Summary:
Change-point detection in hazard rate function is an important research topic in survival analysis. In this dissertation, we firstly review existing methods for single change-point detection in piecewise exponential hazard model. Then we consider the problem of estimating the change point in the presence of right censoring and long-term survivors while using Kaplan-Meier estimator for the susceptible proportion. The maximum likelihood estimators are shown to be consistent. Taking one step further, we propose an counting process based and least squares based change-point detection algorithm. For single change-point case, consistency results are obtained. We then consider the detection of multiple change-points in the presence of long-term survivors via maximum likelihood based and counting process based method. Last but not least, we use a weighted least squares based and counting process based method for detection of multiple change-points with long-term survivors and covariates. For multiple change-points detection, simulation studies show good performances of our estimators under various parameters settings for both methods. All methods are applied to real data analyses.
Title: Detection of multiple change-points in hazard models.
189 views
97 downloads
Name(s): Zhang, Wei, author
Qian, Lianfen, Thesis advisor
Florida Atlantic University, Degree grantor
Charles E. Schmidt College of Science
Department of Mathematical Sciences
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2014
Date Issued: 2014
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 81 p.
Language(s): English
Summary: Change-point detection in hazard rate function is an important research topic in survival analysis. In this dissertation, we firstly review existing methods for single change-point detection in piecewise exponential hazard model. Then we consider the problem of estimating the change point in the presence of right censoring and long-term survivors while using Kaplan-Meier estimator for the susceptible proportion. The maximum likelihood estimators are shown to be consistent. Taking one step further, we propose an counting process based and least squares based change-point detection algorithm. For single change-point case, consistency results are obtained. We then consider the detection of multiple change-points in the presence of long-term survivors via maximum likelihood based and counting process based method. Last but not least, we use a weighted least squares based and counting process based method for detection of multiple change-points with long-term survivors and covariates. For multiple change-points detection, simulation studies show good performances of our estimators under various parameters settings for both methods. All methods are applied to real data analyses.
Identifier: FA00004173 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2014.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Problem solving--Data processing.
Process control--Statistical methods.
Point processes.
Mathematical statistics.
Failure time data analysis--Data processing.
Survival analysis (Biometry)--Data processing.
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00004173
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.