You are here
Developing interpretive turbulence models from a database with applications to wind farms and shipboard operations
- Date Issued:
- 2013
- Summary:
- This thesis presents a complete method of modeling the autospectra of turbulence in closed form via an expansion series using the von Kármán model as a basis function. It is capable of modeling turbulence in all three directions of fluid flow: longitudinal, lateral, and vertical, separately, thus eliminating the assumption of homogeneous, isotropic flow. A thorough investigation into the expansion series is presented, with the strengths and weaknesses highlighted. Furthermore, numerical aspects and theoretical derivations are provided. This method is then tested against three highly complex flow fields: wake turbulence inside wind farms, helicopter downwash, and helicopter downwash coupled with turbulence shed from a ship superstructure. These applications demonstrate that this method is remarkably robust, that the developed autospectral models are virtually tailored to the design of white noise driven shaping filters, and that these models in closed form facilitate a greater understanding of complex flow fields in wind engineering.
Title: | Developing interpretive turbulence models from a database with applications to wind farms and shipboard operations. |
114 views
31 downloads |
---|---|---|
Name(s): |
Schau, Kyle A., author Gaonkar, Gopal H., Thesis advisor College of Engineering and Computer Science, Degree grantor Department of Ocean and Mechanical Engineering |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | single unit | |
Date Created: | Fall 2013 | |
Date Issued: | 2013 | |
Publisher: | Florida Atlantic University | |
Physical Form: | Online Resource | |
Extent: | 149 p. | |
Language(s): | English | |
Summary: | This thesis presents a complete method of modeling the autospectra of turbulence in closed form via an expansion series using the von Kármán model as a basis function. It is capable of modeling turbulence in all three directions of fluid flow: longitudinal, lateral, and vertical, separately, thus eliminating the assumption of homogeneous, isotropic flow. A thorough investigation into the expansion series is presented, with the strengths and weaknesses highlighted. Furthermore, numerical aspects and theoretical derivations are provided. This method is then tested against three highly complex flow fields: wake turbulence inside wind farms, helicopter downwash, and helicopter downwash coupled with turbulence shed from a ship superstructure. These applications demonstrate that this method is remarkably robust, that the developed autospectral models are virtually tailored to the design of white noise driven shaping filters, and that these models in closed form facilitate a greater understanding of complex flow fields in wind engineering. | |
Identifier: | FA0004058 (IID) | |
Note(s): |
Includes bibliography. Thesis (M.S.)--Florida Atlantic University, 2013. |
|
Subject(s): |
Fluid mechanics Renewable energy sources Von Kármán, Theodore -- 1881-1963 Wind energy conservation systems Wind power Wind turbines -- Aerodynamics |
|
Held by: | Florida Atlantic University Digital Library | |
Sublocation: | Boca Raton, Fla. | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA0004058 | |
Restrictions on Access: | All rights reserved by the source institution | |
Restrictions on Access: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU |