You are here
Rapid distortion theory for rotor inflows
- Date Issued:
- 2013
- Summary:
- For aerospace and naval applications where low radiated noise levels are a requirement, rotor noise generated by inflow turbulence is of great interest. Inflow turbulence is stretched and distorted as it is ingested into a thrusting rotor which can have a significant impact on the noise source levels. This thesis studies the distortion of subsonic, high Reynolds number turbulent flow, with viscous effects ignored, that occur when a rotor is embedded in a turbulent boundary layer. The analysis is based on Rapid Distortion Theory (RDT), which describes the linear evolution of turbulent eddies as they are stretched by a mean flow distortion. Providing that the gust does not distort the mean flow streamlines the solution for a mean flow with shear is found to be the same as the solution for a mean potential flow with the addition of a potential flow gust. By investigating the inflow distortion of small-scale turbulence for various simple flows and rotor inflows with weak shear, it is shown that RDT can be applied to incompressible shear flows to determine the flow distortion. It is also shown that RDT can be applied to more complex flows modeled by the Reynolds Averaged Navier Stokes (RANS) equations.
Title: | Rapid distortion theory for rotor inflows. |
185 views
97 downloads |
---|---|---|
Name(s): |
Kawashima, Emilia, author Glegg, Stewart A. L., Thesis advisor College of Engineering and Computer Science, Degree grantor Department of Ocean and Mechanical Engineering |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Issued: | 2013 | |
Publisher: | Florida Atlantic University | |
Physical Form: | application/pdf | |
Extent: | 97 p. | |
Language(s): | English | |
Summary: | For aerospace and naval applications where low radiated noise levels are a requirement, rotor noise generated by inflow turbulence is of great interest. Inflow turbulence is stretched and distorted as it is ingested into a thrusting rotor which can have a significant impact on the noise source levels. This thesis studies the distortion of subsonic, high Reynolds number turbulent flow, with viscous effects ignored, that occur when a rotor is embedded in a turbulent boundary layer. The analysis is based on Rapid Distortion Theory (RDT), which describes the linear evolution of turbulent eddies as they are stretched by a mean flow distortion. Providing that the gust does not distort the mean flow streamlines the solution for a mean flow with shear is found to be the same as the solution for a mean potential flow with the addition of a potential flow gust. By investigating the inflow distortion of small-scale turbulence for various simple flows and rotor inflows with weak shear, it is shown that RDT can be applied to incompressible shear flows to determine the flow distortion. It is also shown that RDT can be applied to more complex flows modeled by the Reynolds Averaged Navier Stokes (RANS) equations. | |
Identifier: | FA0004030 (IID) | |
Note(s): |
Includes bibliography. Thesis (M.S.)--Florida Atlantic University, 2013. |
|
Subject(s): |
Computational fluid dynamics Fluid dynamic measurements Fluid mechanics -- Mathematical models Turbulence -- Computer simulation Turbulence -- Mathematical models |
|
Held by: | Florida Atlantic University Digital Library | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA0004030 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU |