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Climate models are common tools for developing design standards in the hydrologic field; however, 

these models contain uncertainties in multi-model and scenario selections.  Along with these uncertainties, 

biases can be attached to the models.  Such biases and uncertainties can present difficulties in predicting 

future extremes.  These hydrologic extremes are believed to be non-stationary in character. Only in the 

recent past have model users come to terms that the current hydrologic designs are no longer relevant due 

to their assumption of stationarity.  This study describes a systematic method of selecting a best fit model in 

relationship to location and time, along with the use of that best fit model for evaluation of future extremes.  

Rain gage stations throughout Florida are used to collect daily precipitation data used in extreme 

precipitation and quantitative indices.  Through these indices conclusions are made on model selection and 

future extremes, as they relate to hydrologic designs.
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Chapter 1 Introduction 

1.1 Background 

Climate models are an important part of forecasting hydrologic events; however, they have not 

always been as reliable as they appear today. Accurate climate models have only been available in the 

recent past.  With rapidly improving technology, orthodox methods of rainfall data collection, such as rain 

gage stations, are being combined and in some cases replaced by radar methods.  With the implementation 

of higher maintenance on existing rain gages along with radar, rainfall data as decreased in missing data 

and mechanical error (Teegavarapu, 2012).  Although the recent improvements in technology have enabled 

data recording to reach a higher level of accuracy, there is still room for improvements in the way the 

historical and projected data are viewed by researchers. 

  Up until recently, climate researchers, water resource managers, civil engineers, and hydrologists 

alike have viewed the climate as stationary with respect to time and space.  As accurate data records went 

under review by leading climate organizations and researchers, it became clear that the climate is in fact 

non-stationary.  This theory comes with grave implications on the hydrologic and water resource fields, by 

threatening local environments, especially urban areas, with extreme rainfall events leading to flooding or 

drought (Arisz & Burrell, 2006).  By improving rainfall data, stormwater run-off trends can be 

acknowledged and local infrastructures such as retention and detention ponds, storm sewer lines, and 

roadways can all be appropriately modified to be better suited for changing climate. 

With the climate being non-stationary, meaning that the climate is changing in frequency and 

intensity as time progresses, regions, on a local scale, find themselves in a struggle to elevate the level of 

service of hydrologic infrastructure without exhausting budgets (Hamlet, 2011).  Once outdated or decrepit 

infrastructure is removed, engineers cannot simply replace it, because the current design standards are no
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longer suited to withstand the approaching climate.  In order to accommodate the changing climate, there 

must be a new set of design standards created.  These standards will be unique on a regional level.  

Downscaled climate models coupled with regional historic climate data will provide analysts the necessary 

tools to understand and prepare for the future climate and climate extremes. 

Climate models have been around for many years now and have offered themselves to water 

resource managers, hydrologic engineers, and climatologists in the hope to better understand and predict 

the future climate.  There are several versions of climate modeling currently in circulation. Of the 

numerous models, an organization known as IPCC has developed one of the more prominent and accepted 

modeling methods.  These models are known as General Circulation Models (GCMs) and they represent 

physical processes in the atmosphere, ocean, cryosphere, and land surface.  GCMs depict the climate using 

a three dimensional grid over the globe, typically having a horizontal resolution of between 250 and 600 

km, 10 to 20 vertical layers in the atmosphere and sometimes as many as 30 layers in the oceans (IPCC, 

2007). 

Downscaling is a process used to bring the GCMs 10 to 30 layers in the atmosphere to a local scale 

and also reduce the grid resolution up to an eighth degree.  There are two methods to downscale climate 

models.  The first involves nesting of regional models into GCMs.  This is known as dynamic downscaling, 

because regional climate models (RCMs) and GCMs are both dynamic in character.  The second method is 

statistical downscaling, which uses statistical regressions to connect local variables to driving forces in the 

GCMs (Wilby, et al., 2004).  The advantages and disadvantages of statistical versus dynamic downscaling 

are listed in Table 1. 
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Table 1: Advantages and disadvantages related to various downscaling methods (Brekke, et 

al., 2009). 

 Statistical Dynamic 

Advantages 
 Comparatively cheap and 

computationally efficient 

 Produces responses based 

on physically consistent 

processes 

 Can provide point-scale climatic 

variables from GCM-scale output 

 Produces finer-resolution 

information from GCM-

scale output that can 

resolve atmospheric 

processes on a smaller 

scale (for example, 

orographic and rain shadow 

effects in mountainous 

areas) 

 Able to directly incorporate 

observations into method 
 

Disadvantages  Does not account for non-stationarity in 

the predictor-predictand relationship 

 Computationally intensive 

 Climate system feedbacks not included 
 Limited number of scenario 

ensembles available 

 Dependent on GCM boundary forcing; 

affected by biases in underlying GCM 

 Dependent on GCM 

boundary forcing; affected 

by biases in underlying 

GCM 

 Dependent on statistical or empirical 

model structure and associated 

parameters; different models will give 

different results 

 Dependent on RCM 

parameterizations; different 

RCMs will give different 

results 

 

Once the model's results are downscaled to a local resolution, they become useful to the water 

resource managers, hydrologic engineers and climatologist in the development and understanding local 

scale effects of climate change.  One of the major areas that the climate change has an effect on is 

hydrologic design, especially in urban areas.  The current standards used today were developed under the 

notion that climate is stationary and will mimic the past in the present and future.  The fact is that climate is 

not stationary. 

1.2 Problem Statement  

A major concern in the hydrologic, water resources and climatology fields is the changing climate.  

The climate is believed to be non-stationary, opposite to prior belief.  This notion will cause significant 

changes in the water resource and hydrologic fields and their current designs.  The current design standards 
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will need revision to accommodate a more flexible and robust future climate.  Climate models will need to 

be married with design parameters to better understand the future needs of urban infrastructure; however, 

these models are space and time specific making it difficult to develop a general methodology to correct 

this problem.     

The use of downscaled climate models for accurate climate projections present uncertainties on 

temporal and spatial scales.  The downscaled climate models possess a unique combination of climate 

model type, initial condition, and emission path scenario.   Due to extreme variation of climate through 

space and time, the models will perform differently at different locations and times.  The uncertainty of this 

spatial and temporal variation needs to be put to rest through a systematic comparison to rank and select a 

best model based on several performance measures.    

1.3 Objectives 

This thesis reviews the uncertainties related to multiple-model and multiple-scenarios and how each 

model combination performs on a site and regional scale.  Through a best fit model and scenario 

combination, the assessment of future hydrologic event will be performed.  Along with this evaluation, the 

restructure of current hydrologic design standards, as they relate to sustainability, will be performed as 

needed.   

The objectives of this study are as follows: 

1) Evaluate bias corrected downscaled climate change models. 

2) Determine the best performing model(s) through extreme precipitation and performance 

measure indices. 

3) Evaluate future extremes based on best performing model(s). 

4) Use re-sampling techniques for obtaining bias corrections factors for downscaled 

precipitation extremes. 

5) Determine extent of non-stationarity on a local scale. 

6) Assess uncertainty in hydrologic designs through future climate model projections. 
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1.4 Thesis Outline 

Organization of the contents of the thesis: 

Chapter One: Provides introduction to the impacts that climate change and climate variability have on 

hydrologic events, specifically extreme precipitation, the problem of current hydrologic models and designs 

not considering the non-stationarity related to the climate along with the list of objectives for this study.  

Chapter Two: Documents the existing literature on oscillations, climate change models and simulations, as 

well as the documented effects seen from climate change. 

Chapter Three: Describes a step-by-step approach involving various methods of model selection including 

the evaluation of performance measures along with precipitation extremes to determine a site specific 

optimum model.  Deviations witnessed by hydrologic events compared to projected hydrological events are 

noted and design standards changed accordingly.  

Chapter Four: The methodology mentioned in Chapter Three is applied to a case study in order to provide 

real world scenarios where climate change is affecting hydrologic events.  This chapter also highlights 

general background information needed to describe the case study region. 

Chapter Five: Results from the case study are recorded and analyzed and a site specific optimum model is 

selected.  Further analysis on the selected model to determine the accuracy of current hydrologic design 

standards is performed.   

Chapter Six: Conclusions from the case study, as well as, contribution, limitations and recommendations 

for future studies are mentioned in this Chapter.
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Chapter 2 Literature Review 

2.1 Climate Variability and Teleconnections 

The climate has a large influence on nearly every aspect of the Earth, from the health and well being 

of both plants and animals, to water resources and infrastructure design.  The theory that climate is 

stationary has been discredited over the past years as new methods of data collection have revealed the 

truth on climate variability and change and their effects on the local and global environments and 

economies.  According to the United States Geological Survey (USGS) (2012) climate variability and 

change are having a large effect on future hydro-climatic activity.   

Climate variability refers to variations in the mean state and other statistics (such as standard 

deviations, the occurrence of extremes, etc.) of the climate at all spatial and temporal scales beyond that of 

individual weather events. Variability may be due to natural internal processes within the climate system 

(internal variability), or to variations in natural or anthropogenic external forcing (external variability) 

(IPCC, 2011).   Due to climate change and variability the extreme precipitation events are believed to be 

increasing in both intensity and frequency, whether that is expressed through extreme floods or droughts.  

Because of these projections, the design and operational assumptions about water management are 

questioned (Brekke, et al., 2009).  
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With the increase in extreme precipitation also comes higher peak runoff.  This increase in storm-

water runoff in urban areas will present strain on the existing storm sewer infrastructure and the existing 

design parameters.  This thesis proposes that due to climate change the preset storm-water design 

parameters must be reviewed and changed accordingly to match future projections for rainfall.  Current 

water management practices may not be robust enough to cope with the impacts of the climate change on 

water supply reliability and flood risk (Bates, et al., 2008). 

One major contributor to climate variability is a climate phenomenon known as teleconnections, 

which occur between multiple climatic oscillations.  The teleconnections between oscillations act in both 

positive and negative correlations which can magnify or diminish climatic trends in local climates. This can 

have drastic effects on water management, for example, exceeding expected extremes in precipitation. 

From a prior study by Gershunov and Bernett (1998), the Pacific Decadal Oscillation (PDO) during the 

high phase formed a teleconnection with El Niño Southern Oscillation (ENSO) to create high extremes in 

precipitation for both the warm and cool phase in ENSO throughout the southern portion of the United 

States (Gershunov & Barnett, 1998).   

During the 1930-1960 warm phase of the Atlantic Multidecadal Oscillation (AMO), the rainfall had 

a significant negative correlation with ENSO, whereas during the cool phases of AMO the correlation 

where insignificant with ENSO (Enfield, et al., 2001).  Climate variability is mostly experienced on a 

regional scale, thus research and modeling should be done on a regional scale as well.  There is reason to 

believe that climate extremes are increasing, but with poor data and evaluation methods it is difficult to 

gather accurate conclusions on the topic (RMetS, 2009).      

2.2 Atlantic Multidecadal Oscillation (AMO) 

The Atlantic Multidecadal Oscillation is a source of variability that is expressed through sea surface 

temperature (SST), shifting from warm to cool, in the North Atlantic Ocean ranging approximately from 

95°W-30°E and 0°-70°N (Knight, et al., 2006).  The past 100 years of recorded data shows warm phases 

during 1860-1880 and 1940-1960, and cool phases during 1905-1925 and 1970-1990.  Although warm and 

cool phases have been defined in the past and present, there has not been a trend related to the shifts from 
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warm and cool phases within AMO.  The cycles are defined by temperature shifts with the rainfall 

remaining highly variable year to year (Obeysekera, et al., 2006); however, due to the variability in Sea 

Surface Temperature (SST), there is a direct relationship to the tropical storm activity on the eastern 

seaboard.   An index of AMO’s SST variability is described by Figure 1. 

 

Figure 1: AMO Index and its relation to Tropical Cyclone (Scott, 2010). 

 

The warm phase of AMO is producing a much higher frequency of tropical storms in the North 

Atlantic Ocean, while the cool phase shows a decrease in the number of tropical storms.  According to 

Enfield, et al., (2001), AMO has a global effect with a 0.4˚C range in sea surface temperature.  Between 

AMO warm and cool phases, Mississippi River outflow varies by 10% while the inflow to Lake 

Okeechobee varies by 40%.  These large deviations in streamflows can be caused by the effects that AMO 

has on local precipitation extremes.  The multidecadal time periods of AMO’s warm and cool phases are 

listed in Table 2. 
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Table 2: AMO Multidecadal Shifts. 

Warm phase Cool phase 

1860-1880 1905-1925 

1940-1960 1970-1990 

1995-2012  

 

When positive (warm) phases predominate, flooding is a greater risk, while negative (cool) phases 

generate opposite effects.  The future attempts to predict and prepare for climatic impacts will remain 

inaccurate if AMO is not accounted for, specifically for regions that encounter higher frequencies of 

tropical storms.   

2.3 El Niño/ La Niña Southern Oscillation (ENSO) 

The El/La Niño Southern Oscillation fluctuates between warm and cool phases every 3-7 years 

during the dry season in South and Central Florida, as well as having a global influence.  Each of the two 

phases have opposite extreme effects on local temperature and rainfall.  The warm phase generates higher 

rainfall and lower temperature while the cool phase generates higher temperatures and lower rainfall 

(Obeysekera, et al., 2006).  The oscillation index is described by Figure 2. 

 

Figure 2: ENSO SST Index (Null, 2012). 
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According to the research of Rapelewski and Halpert (1986), ENSO is a contributor to surface 

temperature and precipitation variability throughout North America.  The study revealed that 81% of the 

cases exhibited above normal precipitation through the southeastern portions of North America.  However, 

there was a clear negative correlation between the ENSO event and the surface temperature within the 

southeastern region (Ropelewski & Halpert, 1986).  ENSOs recorded phases are described by Table 3. 

Table 3: ENSO Recorded Years. 

El Niño La Niña 

1951 1950  

1953  1954  

1957 1955  

1958  1964 

1963  1967  

1965  1970  

1968  1971  

1969 1973  

1972  1974  

1976  1975  

1977  1983  

1979  1984  

1982  1988  

1986  1995  

1987  1998  

1991  1999  

1994 2000  

1997 2005  

2002  2007  

2004 2008 

2006  

2009  

 

Due to ENSOs rainfall extremes and the rapid phase shifts, water management is struggling to keep 

up with the demands.  ENSO has severe effects on the hydrology of South Florida.  The increases in 

rainfall during El Niño caused flooding in Lake Okeechobee and forced water management to discharge the 

excess water into the estuaries causing significant damage to the local environment.  The lack of rainfall 

during La Niña causes droughts and water management is forced to limit water usage and implement 
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restrictions on the public water supply (Enfield, et al., 2001).  Water management must use ENSO to make 

decision more suitable to the real world climate and its non-stationarity.      

2.4 Pacific Decadal Oscillation (PDO) 

The Pacific Decadal Oscillation is very similar to ENSO with near identical cycle patterns; however, 

PDO has decadal phases.   PDO also does not have as much effect on the Southeast portions of the United 

States as ENSO does.  PDO is directed more towards the North Pacific/ North American sector.  The warm 

and cool phases of PDO have the same effects as the Warm and Cool phases of ENSO (Obeysekera, et al., 

2006). Because of their close similarities, the two oscillations have strong influences over one another.  The 

oscillations are characterized by sea surface temperatures, sea level pressure, and wind patterns (CIG C. I., 

2008).   

PDO has stronger effects on the Pacific North West then it does on the rest of the United States.   

There have recording of 10% decreases in precipitation during warm phases then in the cool phases during 

the water year, October 1-September 30 of the following year.  While temperatures are on average 1°F 

higher during warm phases then in cool phases during the water year, these effects on the Pacific North 

West are exemplified by coinciding warm and cool phases between PDO and ENSO.  The similarities 

between the oscillations allow for positive correlations between the two.  This magnifies both precipitation 

and temperature effects in the local climates.  The effects are demonstrated in Figure 3.  
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Figure 3: Teleconnections between PDO and ENSO and their magnified effects (CIG C. I., 

2011). 

 

The reinforcing effects that PDO and ENSO have on one another during coinciding warm or cool 

phases are significantly noticeable with nearly ±0.5 inch difference in precipitation and 1°F in temperature 

depending on the phase.  However the effects are not as significant when opposing phases in PDO and 

ENSO occur.  There have been cases of the two oscillations cancelling each other out, but it is not 

consistent in time or space (CIG C. I., 2011). 

2.5 North Atlantic Oscillation (NAO) 

Hurrell (2003) states that the North Atlantic Oscillation is the prevailing climatic oscillation in the 

North Atlantic Region, North America to Europe, Asia, and Africa.  NAO refers to swings in the 

atmospheric sea level pressure difference between the Arctic and the subtropical Atlantic that is most 

noticeable during the boreal cold season (November–April) and are associated with changes in the mean 

wind speed and direction. Such changes alter the seasonal mean heat and moisture transport between the 

Atlantic and the neighboring continents, as well as the intensity and number of storms, their paths, and their 

weather (Hurrell, et al., 2003).   
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Due to the drastic pressure differences produced by NAO’s positive phase, there are generally 

stronger westerly winds throughout the middle grounds of the North Atlantic region.  These strong westerly 

winds result in warm and wet winters in the Eastern USA and Europe and cold and dry winters in Canada 

and Greenland (Rosenzwei, et al., 2011). The effects of NAO are generally strongest in the winter, 

December through March, but will prevail throughout the year.  The negative phase of NAO has opposing 

effects then that seen during the positive phase.  The results are weaker and eastward subtropical high and a 

weaker Iceland low (Rosenzwei, et al., 2011). This generates winds moving west to east and will bring 

colder and drier winters to the eastern USA.  

Durkee, et al. (2007) performed a study where seasonal phases of the NAO are compared to changes 

in the frequency and distribution of winter season (December–March) precipitation-type observations for 

the years 1961–2001 in the eastern U.S. Statistically significant increases in the frequency of rain 

observations across the study region are associated with positive NAO phases (Durkee, et al., 2007). The 

study encompasses a network of 100 stations to measure rain or snow fall.  Stations are located throughout 

the eastern portion of the U.S.   The northern portion of the study area saw a 24% increase in rainfall 

between positive and negative NAO phases, with the remainder of the stations experiencing at least a 20% 

increase in rainfall between phases.  The snowfall observations were not as significant; however, they did 

experience increases of at least 8% of snowfall (Durkee, et al., 2007).  The water management division 

must heed the results of this study to better develop and prepare for future water management practices.  

With a 20% shift in rainfall frequency between NAO phases, there can be drastic fluctuations in stream 

flows causing flooding or drought in local watersheds. 

2.6 Climate Change and Extreme Precipitation 

Due to present day infrastructure reaching its maximum yield performance the study of climate 

change and its effects on water resources has become a hot topic.  With the increasing frequency and 

duration of extreme precipitation, there is concern that infrastructure will experience more frequent failure, 

in particular urban drainage.  The difficulties and uncertainties that present themselves with urban drainage 

are in both temporal and spatial scales.  The current climate models represent coarse grids for long-term 
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forecasts.  The water resources field is interested in the short term and local scale effects that climate 

change has on urban drainage, sewer systems, and flooding.   In order to accommodate these needs, global 

climate models must be downscaled to a local scale.  It is important to follow the climate models as they 

are updated and compared to local scale rainfall extremes.  The results of the climate models will be 

beneficial to hydrologic planners and designers in upgrading infrastructure to accommodate the effects of 

future climate change (Willems, et al., 2011). 

Madsen, et al., (2012) composed a report on the causes and effects of global warming in light of the 

growing concern of its effects of hydrologic events.  Extreme rainfall and storm events were highlighted as 

some of the effects global warming has on local and global scales.  The rising temperature is directly 

related to the increases seen in the intensity, frequency and durations of rainfall events.  Rain stations 

around the country have been used to predict trends in rainfall caused by global warming.  These trends 

show a 30% increase in extreme storm events and a 10% increase in the rainfall over the past 60 years.  

These trends could increase exponentially if there is no action taken to decrease the pollution generated by 

the burning of fossil fuels, which in return releases CO2 into the atmosphere (Madsen, et al., 2012). 

2.6.1 Climate Projection Models 

  Most commonly used for precipitation projections is the GCMs.  Only GCMs have the potential to 

provide geographically and physically consistent estimates of regional climate change which are required in 

impact analysis, thus fulfilling IPCC’s criterion 2 (Viner, 2011). There are five criterions that must be 

fulfilled to consider a scenario possible.  The five criterion are: 

Criterion 1: Consistency with global projections. The model scenarios should be consistent with a 

broad range of global warming projections based on increased concentrations of greenhouse gases. This 

range is variously cited as 1.4°C to 5.8°C by 2100, or 1.5°C to 4.5°C for a doubling of atmospheric CO2 

concentration (otherwise known as the "equilibrium climate sensitivity"). 

Criterion 2: Physical plausibility. The model scenarios should be physically plausible; that is, they 

should not violate the basic laws of physics. Hence, changes in one region should be physically consistent 
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with those in another region and globally. In addition, the combination of changes in different variables 

(which are often correlated with each other) should be physically consistent. 

Criterion 3: Applicability in impact assessments. The model scenarios should describe changes in a 

sufficient number of variables on a spatial and temporal scale that allows for impact assessment. For 

example, impact models may require input data on variables such as precipitation, solar radiation, 

temperature, humidity and wind speed at spatial scales ranging from global to site and at temporal scales 

ranging from annual means to daily or hourly values. 

Criterion 4: Representative. The model scenarios should be representative of the potential range of 

future regional climate change. Only in this way can a realistic range of possible impacts be estimated. 

Criterion 5: Accessibility. The model scenarios should be straightforward to obtain, interpret and 

apply for impact assessment. Many impact assessment projects include a separate scenario development 

component which specifically aims to address this last point. The DDC and this guidance document are 

also designed to help meet this need (IPCC, 2011).  These criterions are used to develop climate models. 

2.6.1.1 Coupled Model Intercomparison Project (CMIP) 

GCM is on a global level and needs to be downscaled in order to be useful for any regional level 

precipitation or temperature model.  GCMs are downscaled to what is known as Bias Corrected Statistical 

Disaggregation (BCSD) models which are downscaled from the GCMs at 2° pixel to 1/8° pixel and are 

displayed as monthly projections, or Bias Corrected Constructed Analog (BCCA) models which are daily 

projections with similar downscaling.  There are currently 134 downscaled climate models available by 

BCCA that include: 21 GCMs, 4 emission scenarios (RCP2.6, RCP4.5, RCP6.0, RCP8.5), and ensemble 

runs 1 to 12.  Each of these models is different and will perform better or worst depending on the study 

domain and scenario chosen. 

CMIP Phase 3 (CMIP3) paved the way in the study of climate change and water resource 

management and still provides accurate data recordings and projection models for research.  The selection 

of the scenario and model will greatly affect the outcomes; however, the results will be beneficial in 
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providing insight on the effects of multiple-model and multiple-scenario uncertainties.  The most 

commonly used scenario, for CMIP3, is the doubling of CO2 emissions from 2000-2050, scenario A1b.  

This climate scenario is predicted to increase rainfall intensities by 15%-20% or cutting storm design return 

periods in half (Arisz & Burrell, 2006). 

As time moves forward so does technology and with this technology, there becomes a desire for 

more efficient climate projection models.  CMIP Phase 5 (CMIP5) was created, utilizing a parallel process 

in developing new circulation models in order to reduce turnaround time and increase efficiency. The new 

models come with new and improved "scenarios" although they are now known as Representative 

Concentration Pathways (RCPs), which display interest in not only concentration levels, but also emission 

paths.  CMIP5 utilizes a peer to peer methodology by removing the IPCC from the process allowing more 

mobility and speed.  There are benefits to using CMIP5, such as extended projections and fewer data gaps 

(Moss, et al., 2010).  CMIP5 utilizes four versions of RCPs: RCP2.6, RCP4.5, RCP6.0, RCP8.5.  These 

pathways represent various concentration pathways that are described in Table 4.   

Table 4: CMIP5 RCP details (Moss, et al., 2010). 

  Name Radiative forcing 
Concentration 

(ppm) 
Pathway 

Model 

providing 

RCP* 

PCP8.5 
>8.5 W m

-2
 in 

2100 

>1,370 CO2 

equiv. in 2100 
Rising MESSAGE 

RCP6.0 

~4.5 W m
-2

 at 

stabilization after 

2100 

~850 CO2 equiv. 

(at stabilization 

after 2100) 

Stabilization 

without overshoot 
AIM 

RCP4.5 

~6 W m
-2

 at 

stabilization after 

2100 

~600 CO2 equiv. 

(at stabilization 

after 2100) 

Stabilization 

without overshoot 
GCAM 

RCP2.6 

Peak ~3 W m
-2

 

before 2100 and 

then decline 

Peak at ~490 CO2 

equiv. before 

2100 and then 

decline 

Peak then decline IMAGE 

 

The pathways describe extremes at each end of the spectrum.  The worst case being RCP8.5, where 

the concentration steadily increases without stabilization or decline, and the best case being RCP2.6, where 

the concentrations peak before 2100 and decline afterwards displayed in Figure 4. 
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Figure 4: CO2 emission concentration pathways according to the various representative 

concentration pathways models (Moss, et al., 2010). 

 

These variations in models and scenarios are cause for concern when selecting a suitable model.  

There is large uncertainty related to model selection when the variations have high deviations from one 

another. A study by Teegavarapu (2013) discusses model selection and the uncertainties associated with it.  

Climate change models present limitations on the assessment of uncertainties with climate change.  

Uncertainties such as extreme precipitation have influences on hydrologic design and water resources and 

will need proper modeling in order to reduce biases and missed predictions.  

2.6.2 Variability in Extremes 

Anthropogenic changes to the environment have drastic effects on the climate and local hydrologic 

cycle.  The dramatic increase of CO2 over the past years is expected to continue to increase by two fold 

during this century.  With these increased CO2 emissions, increases in hydrological and climatic extremes 

are expected.  General Circulation Models predict additional increases in mean global temperature by 1.1 to 

6.4 degrees Celsius (IPCC, 2007). The global atmospheric circulation and hydrologic processes patterns are 

predicted to increase in mean annual precipitation and inter- and intra-annual variability of precipitation 
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(Easterling, et al., 2000).  Nearly all GCMs show slight to moderate increases in rainfall extremes (IPCC, 

2007) and (Zhang, et al., 2007).    

There are uncertainties on both projected and observed extreme precipitation.  Observed extreme 

precipitation has high variability in both temporal and spatial scales.  Florida is especially susceptible to 

these variations because of its' vast amounts of large water bodies and its' vulnerability to hydrologic storm 

events.  The water bodies found in and surrounding the state of Florida produce increased humidity and 

more likelihood of a precipitation event. This factor combined with the characteristically high landfall rate 

of tropical storms, creates a high variability for extreme rainfall through the state.     

2.6.3 Non-stationarity Issues 

Stationarity of rainfall statistical characteristics is a fundamental assumption in hydrologic 

infrastructure design that may not be valid in an era of changing climate.  Hydrologic infrastructure design 

is normally based on the concept of a design storm event, either historical or synthetic (Denault, et al., 

2002).  Typical design standards for hydrologic structures come from Intensity Duration Frequency (IDF) 

curves.  These curves commonly assume climatic stationarity in their design were mean and standard 

deviations remain constant over time.  These assumptions can greatly affect a hydraulic design as time 

passes.  

The non-stationarity of climate also generally implies non-stationarity of hydrologic extremes (Jain 

& Lall, 2001). The southeast region of the U.S is experiencing climate change effects such as rising 

temperature, sea level rise, and higher frequency of extreme precipitation.  Possible forms of non-

stationarity caused by climate change are (1)change in distribution as a whole (average value increases 

while the variability remains unchanged); (2) change in the variability while the average values remain the 

same; and  (3) changes in both the average and the variability of the variable over time (Lemmen, et al., 

2007), (Mailhot & Duchesene, 2010). These attributes of climate change have already produced real world 

damages on the economy and ecosystem.  In 2011, Texas experienced prolonged temperature rises that 

shortened the cattle season, as well as increased wildfires throughout the state (Melillo & Peterson, 2009).  

Higher storm frequencies will generate stronger storm surges, flooding the low lying coastal infrastructure 
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(Arisz & Burrell, 2006).  The existing infrastructure of local regions experiencing significant hydrologic 

changes must be updated to accommodate the changing climate. 

Previously mentioned, rainfall has increased by 10% over the past 60 years and is expected to 

continue increasing. The consequences of the effects of climate change are a decreasing level of service for 

drainage infrastructure, increased risk of flooding, and environmental damages resulting from channel 

destabilization (Arisz & Burrell, 2006). With hydrologic infrastructure both costly and time consuming to 

update and adapt to the changing climate and the existing urbanization leaving little room for expansion, 

there must be creative ideas presented to help solve the problem of aging infrastructure. There are two 

types of storm drainage systems: major and minor. The major systems convey water on a larger scale over 

land and consist of retention and detention ponds, catchments, open channels, and etc. Whereas the minor 

systems are underground pipelines and storm sewer drains. Both must be updated to consider the non-

stationarity of the climate.  An increase in research and monitoring are needed to help fill gaps in the 

advancement of water resource planning.  There will always be uncertainties associated with non-

stationarity, but these can provide improvements in understanding climate change and the effects it has on 

hydrologic design and water resources (Brekke, et al., 2009).  

2.7 Influences on hydrologic design 

Design criteria for stormwater infrastructure have strong connections to the assumption that the 

probability distribution of precipitation extremes is statistically stationary.  This makes climate and climate 

change have large influences on hydrologic design (Rosenburg, et al., 2010).  Urban drainage design should 

incorporate the climatic change that is expected to occur during the life span of the structure.  This takes 

non-stationarity into design consideration.  The translation of climate projections into planning assumptions 

such as supplies, demands, flood risks, and infrastructure safety can greatly improve the outcomes in future 

(Brekke L. , 2013).  One way is to (1) incorporating the anthropogenic assumption from local communities 

into GCM, (2) downscaling these models to local scales, (3) applying the downscaled models to hydrologic 

extremes and, (4) accepting an acceptable flood risk (Nielsen, 2011).   
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 Intensity Duration Frequency (IDF) curves are common tools in the hydrologic design fields.  

These curves allow engineers to design for expected rainfall intensities for a given storm event.  However, 

these curves in most regions have not been updated for many years, even decades.  This leads to inaccurate 

hydrologic infrastructure.  Many IDF curve users such as civil engineers, consultants, and water resource 

managers have concerns that the climate change may have presented changes in “older” curves (Mailhot & 

Duchesene, 2010).  These curves are essential for planning infrastructure safety and flood risk reduction.  

The supplementation of historical climate information into the future climate might be expected, but 

planning assumptions are instead related to projections of future precipitation; however, there is not one 

best approach yet to developing the relationship between hydrologic planning and the future climate 

projections (Brekke L. , 2013).   
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Chapter 3: Methodology 

It is known that precipitation is highly correlated to regional characteristics at a local scale. In order 

to statistically preserve precipitation data when applied to climate models, certain characteristics must be 

incorporated.  The GCMs grid size range from 150km-300km, which is not applicable for local scale 

analysis.  There are downscaled climate models, CMIP, at 1/8º or 13.89km grid size to assist local 

characteristics to become relevant in the precipitation data applied.  CMIP5 utilizes a variety of scenarios 

and initial conditions to mimic regional characteristics. The climate conditions are represented through 21 

climate models, each with four emission pathway options and multiple initial condition scenarios.  In order 

to determine which model and pathway combination is best suited for a particular region, the historic 

precipitation extremes must be compared to the project extremes.  This will allow the selection of general 

circulation models through quantitative, statistical, and visual indices, thus leading to updated local 

hydrologic infrastructure.  The proposed methodology using different indices for selection of a best model 

and resampling approach for evaluation of biases is shown in Figure 5. 
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Figure 5: Methodology for evaluation of downscaled precipitation from different climate 

change models.
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3.1 Evaluation of Precipitation Extremes 

The analysis of precipitation extremes has been conducted on historical data as well as projected 

model data, known as GCMs.  These models are climate models, CMIP5, that have accounted for highly 

probable scenarios or emission paths that are likely to occur in the future.  The objective is to determine 

which model is performing the best by producing the least error when compared to the observed historical 

data.  There have been many indices and error functions used in the climate and hydrologic fields to 

compare, quantitatively and qualitatively, models and observed data.  The most suited indices come from a 

study by the World Meteorological Organization (WMO) in 2009.  This study created 11 precipitation 

indices that will allow researchers to better understand the behavior of precipitation extremes in their region 

of study through standardized quantitative analysis.  However, in order to determine, statistically and 

visually, whether there are any biases in the climate models, there will be several bias indices applied to the 

historical data to detect them.  These bias indices were adopted from a study for the South Florida Water 

management District (SFWMD) performed by Teegavarapu  (2012).  This study defines 21 bias indices to 

detect biases in the precipitation data.  

3.1.1 WMO Precipitation Indices 

The WMO precipitation indices are based on physical characteristics of the observed and historic 

model rainfall.  These indices provide insight on the behavior of extreme rainfall at a regional scale, which 

in return can help reduce natural disaster, caused by flooding or drought, in urbanized areas.  These 

physical indices can be applied to hydrologic design criteria and planning.  Depending on the outcome of 

the indices, a best fit climate model can be determined.  The extreme precipitation indices adopted from 

WMO, (2009) are as follows: 

RX1DAY, Maximum one day precipitation: The first index, RX1DAY, is used to calculate the 

highest precipitation amount in a one-day period.  This index allows maximum daily rainfall events to be 

calculated for a given time period, whether that is a month, year, or decade.  Hydrologic designs can use 

this extreme rainfall index to determine what a maximum daily rainfall event could yield in the future.  
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Let RRij be the daily precipitation amount on day i and period j.  The maximum one-day value for 

period j is:  

                           (1)  

  

RX5DAY, Maximum five day precipitation: Similar to RX1DAY, RX5DAY calculates the highest 

precipitation amount in a five day period.  This index can lend itself to how stormwater will accumulate as 

land becomes saturated and infrastructure meets maximum capacity caused by prolonged storm events.   

Let RRkj be the daily precipitation amount for the five-day interval k and in period j, where k is 

defined by the last day.  The maximum five-day values for period j are:  

                           (2)  

 

SDII, Simple daily intensity index: SDII is a mean precipitation index that only considers wet days, 

rainfall above 1mm in depth, through a mean calculation.  The index will define the average rainfall 

experienced in a region over a given period of time, determining a baseline intensity for stormwater 

drainage design. 

Let RRij be the daily precipitation amount on wet day w (RR ≥ 1 mm) in period j.  If W represents 

the number of wet days in j then the simple precipitation intensity index:  

                

 

 
(3)  
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R10mm, Heavy precipitation days: This index is used to count the number of days were the daily 

precipitation meets or exceeds 10mm.  This stormwater threshold is considered to be a product of heavy 

precipitation.  

Let RRij be the daily precipitation amount on day i and in period j. Count the number of days where:  

                      (4)  

 

R20mm, Very heavy precipitation days: Similar to R10mm index, R20mm is a count of days that 

receive a daily precipitation of 20mm or greater.  This stormwater threshold is considered to be a product of 

very heavy precipitation. 

Let RRij be the daily precipitation amount on day i and in period j. Count the number of days where:  

                      (5)  

 

Rnnmm: Rather than having a preset threshold, Rnnmm allows the user to assign an arbitrary 

threshold value that may be relevant to the case study or area of interest. 

Let RRij be the daily precipitation amount on day i and in period j. Count the number of days where:  

                       (6)  
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CDD, Consecutive dry days: By counting the maximum length of dry spell, defined as daily rainfall 

less than 1mm, this index determines the maximum frequency of consecutive dry days. 

Let RRij be the daily precipitation amount on day i and in period j. Count the largest number of 

consecutive days where:  

                     (7)  

 

CWD, Consecutive wet days: Similar to CDD, CWD counts the maximum stretch of wet days, 

defined by having a daily rainfall greater than 1mm. 

Let RRij be the daily precipitation amount on day i and in period j. Count the largest number of 

consecutive days where: 

                     (8)  

 

R95pTOT: The 95
th

 percentile of precipitation of wet days, rainfall greater than 1mm.  This index 

will sum the precipitation of top 5% of the wettest day out of wet days. 

Let RRwj be the daily precipitation amount on a wet day w (RR ≥ 1 mm) in period j and let RRwn95 

be the 95
th

 percentile on wet days in the base period n (1961-1999). Then R95pTOTj=sum(RRwj), where:  

                      (9)  

 

R99pTOT: Similar to R95TOT, R99TOT will sum the precipitation of top 1% of the wettest days 

out of wet days. 
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Let RRwj be the daily precipitation amount on a wet day w (RR ≥ 1 mm) in period j and let RRwn99 

be the 99
th

 percentile on wet days in the base period n (1961-1999). Then R99pTOTj=sum(RRwj), where: 

                      (10)  

 

PRCPTOT: the PRCTOT index takes the total precipitation in wet days, rainfall greater than 1mm, 

within the preset period of time. 

Let RRwj be the daily precipitation amount on a wet day w (RR ≥ 1mm) in period j. Then: 

                 

 

         (11)  

 

3.1.2 Extreme Precipitation Bias Indices 

Bias within precipitation data can be evaluated through comparison of model and observed data.  A 

study performed by Teegavarapu (2012) developed and selected appropriate bias indices considering 

methods commonly used in hydrologic model evaluation.  There are three general categories of bias indices 

that have been selected: visual, error performance measures, and quantitative indices.   

3.1.2.1 Visual Bias Indices 

Visual indices will be applied in order to gain a better understanding of the behavior of both 

observed and model data sets, as well as the comparison of the two.  Time series plots are a primary visual 

aid in the understanding of any data recorded of a period of time.  By utilizing the time series plots the raw 

data will depict any outliers in extreme precipitation, positive or negative slopes in the data, and/or the 

characteristics of variability.  Box plots, along with residual error and nonexceedance plots, provide the 

evaluation of basic statistics unique to a data set, as well as, the under or over estimation of two data sets.  
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3.1.2.2 Error Performance Measures 

Mean error 

Mean error (ME) is the measure of the average magnitude of error between observed (    and 

predicted      data for each model,  , out of a total of N models, for each day, i.  This index; however, has 

limitations due to the preservation of the sign of each value. The cancellation of positive and negative 

values may occur leading to an over or underestimation of the overall error. The ME index can be useful in 

the determination of overall reliability. 

 
    

 

 
    
                        

(12)  

 

Mean absolute error 

Mean absolute error (MAE) measure the average magnitude of absolute error.  By applying the 

absolute sign to the index, the possibility of positive and negative values cancelling each other is dismissed.  

The MAE index is not sensitive to outliers and can be useful in the determination of overall accuracy. 

      
 

 
    
                              (13)  

 

Root mean square error 

Root mean square error (RMSE) measures the square root of the mean of squared residuals.  

Because the index applies a square power to the error residual, outliers will be magnified; however, this 

measure preserves the units that are seen in the observed or predicted values.   

 

       
 

 
    
            

                

(14)  
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Nash Sutcliffe Efficiency Coefficient  

Nash sutcliffe efficiency coefficient (NSEC) can be described as a qualitative measure; however, 

this index does utilize aspects of error performance measures.  NSEC is partly a qualitative measure 

because it compares the predicted values to the average value of the observed, thereby determining whether 

the predicted values are, in fact, outperforming a mean baseline model. 

 
        

    
            

  

    
           

  
             

(15)  

 

Correlation Coefficient  

Correlation coefficient (ρ) will be used to measure the linear association between observed and 

predicted data.  This measure can be generated through ordinary correlation coefficient methods, where     

and    are the observed and predicted standard deviations. 

   
 

   
    
 

          

  

          

  
         

 

 

(16)  

3.1.2.3 Contingency Measures 

 In order to understand the interaction between the observed and predicted data, a contingency 

classification method will be applied. The key assessments to be classified will be the correct predictions of 

wet days, the correct prediction of dry days, the rate of misses or false alarms by predictions, and the rate of 

agreement between observed and predicted.  A contingency table is used to classify precipitation events as 

shown in Table 5. 
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Table 5: Classification of observed and predicted precipitation events. 

Observed 

Precipitation 

Predicted Precipitation 

                                     

                                            

 

                           
            

    (17)  

                           
            

    (18)  

                           
            

    (19)  

                           
            

    (20)  

 

         
  

                    (21)  

 
        

 
 

   
              

(22)  

 
        

 
 

   
              

(23)  

 
        

 
 

   
              

(24)  

Concordance 

The concordance index that is also referred to as proportion correct (PC) gives the fraction of all 

wet days and dry days correctly estimated based on model precipitation data given observed precipitation 

data, where                      are observed and predicted contingency for wet-wet, wet-dry, dry-wet, 

and dry-dry. 
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(25)  

 

Error rate 

The error rate gives the fraction of all wet and dry events incorrectly estimated based on model 

precipitation data given observed precipitation data.  

 
           

       
               

 
(26)  

 

Sensitivity 

Sensitivity is also referred to as success rate. It provides information about what fraction of the 

wet events obtained by model precipitation estimates that were actually observed based on precipitation 

observations. 

             
   

       
 

(27)  

 

Specificity 

Specificity provides information about the fraction of dry events obtained by model precipitation 

estimates that were actually observed as dry events based on precipitation observations. 

             
   

       
 

(28)  
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3.2 Bias Correction 

The climate model data downloaded can experience a dry bias that can skew the predicted data 

values by decreasing the statistical mean.  By applying a bias correction to the overall data, the goal is to 

adjust the predicted values to better simulate the observed data.   

3.2.1 Quantile Mapping (QM) 

The quantile-based mapping methods applied to this study are adopted from a study performed by 

Teegavarapu (2013).  These methods are widely used for correcting the biases in both downscaled 

precipitation and temperature datasets obtained from general circulation model (GCM) simulations. The 

quantile-mapping method (Panofsky and Brier, 1968) is widely used in numerous hydrologic simulations 

and climate change impact studies (Wood, et al., 2002). Although this method tries to adjust all the 

moments of the estimated data, the major drawback is its dependence on a stationarity assumption for 

corrections. The method uses the observed cumulative distribution function (CDF) of data from the training 

period to correct data from the test period with an assumption that the future distribution of data follows that 

of past observed data. The correction method is expressed by equation 29,  

 
  
      

     
    

                   
(29)  

Where,    is the CDF of the observed data derived from the training dataset and   
  is the CDF from 

the testing dataset based on estimated precipitation data. The variable   
    is the bias-corrected estimate of 

precipitation for any time interval   from the testing dataset obtained by following two steps: 1) estimated 

values of precipitation are used to develop a CDF and the non-exceedence probability   
    

   is obtained 

for each value of   
  and 2) corrected estimate (  

   ) using the inverse of the observed CDF for the value of 

non-exceedence probability obtained in step 1 (Teegavarapu, 2013). 

3.2.2 Uncertainty assessment of bias using resampling techniques  

Precipitation data, especially extreme events, are likely to contain a high level of uncertainty, 

specifically related to a bias between observed and predicted data.  These uncertainties are related to 
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variations in time, space, and model selection.  In order to assess the uncertainty of the bias without 

compromising the integrity of climates non-stationarity, resampling techniques are used. 

3.2.2.1 Bootstrap sampling 

Bootstrap sampling approach, adopted from Teegavarapu, et al., (2013), describes a method of 

resampling from a single data set in order to produce multiple datasets to create a robust collection of 

samples from a relatively small sample set (Efron & Gong, 1983).  These samples contain similar 

distributions and statistics because they are generated from the same parent sample.  The purpose of 

bootstrap sampling is to ultimately generate a confidence interval to help with inferences on the sample 

data set (Efron & Tibshirani, 1993).  The notations and procedures developed by Davison & Hinkley 

(1997) were adopted for this study.  The sample values y1, y2, - . . ., yn are thought of as the outcomes of 

independent and identically distributed (    ) random variables Y1, Y2, . . . Yn whose cumulative distribution 

function (CDF) is denoted by F. The estimate of F denoted by    is obtained using data y1, y2, . . ., yn 

(Teegavarapu, et al., 2013).  In order to obtain the confidence intervals desired the following steps will be 

used:  

 Bootstrap (re) sample   
    

      
        are obtained from the original samples allowing 

repetitions. 

   , an estimator of F is obtained nonparameterically using empirical distribution function 

(EDF) of the original data, i.e, by placing a probability of       at each data value from 

sample y1, y2, - . . ., yn. 

 Sample mean statistic      is computed from bootstrap sample   
    

      
 . 

 The above steps are repeated     times, to obtain N sample means   
     

        
  .  The 

practical size     depends on the tests to be run on the data. 

A study performed by Chernick (2007) recommends a size     of 1000 and 10,000 for evaluating 

the sample statistics and confidence intervals, which will be used in this study.  After N samples are 

obtained, normally approximated confidence intervals are computed for the uncertainty assessment. If    
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(estimated mean of original data) is approximately normal, then             (Teegavarapu, et. al., 

2013). The confidence interval (CI) of   for known bias          and variance          (Davison 

and Hinkley, 1997) is given by: 

 
            

 
  

(30)  

 

 
                             

(31)  

 

 
           

 

   
  

 

   

  
            

(32)  

The variable        is the mean of   
     

        
   and   is the α quantile of the standard normal 

distribution.  If a confidence interval of 95% were to be used, the α=0.025 and         .  The 

confidence interval generated will define the uncertainty of the bias between observed and model data. 

3.3 Model Selection 

A selection procedure will be implemented to the projected model data to determine the best 

model(s).  Each model holds unique characteristics within a case study.  After applying WMO, bias, and 

contingency indices to the observed and predicted data, both raw and bias corrected data, there will be a 

best performing model; however, some models will outperform in error measures, while other models will 

achieve greater accuracy in precipitation extremes.  The goal is to find the model that is performing well in 

all categories.  A series of statistical test can be performed to rank the models.  

3.3.1 Integrated Ranking 

To begin the procedure, the model values must be converted into a standard expression in order to 

fairly judge the outcomes. By taking the absolute error (AE) of the extreme precipitation indices, WMO,  

and contingency measures, all the indices, WMO, bias, or contingency, can be seen as relevant to each 

other.   
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                     (33)  

 

Where,     , is the observed precipitation for a given model, m, after any given index is applied and 

similarly,     , for predicted precipitation.  The integrated approach in selecting or ranking the climate 

models involves the evaluation of individual indices.  By taking each index separately and determining the 

least error (LE) model, an array of best fit models can be generated. With this array of best fit models, a 

model must be selected that is outperforming overall. Given the array of best fit models, the mode of this 

array will determine the overall best model (BM). 

 
        

  
     

    
(34)  

 

Where 1 defines the lower limit of the modal class and c is the width of the class interval.  The 

frequency of class succeeding and the frequency of the class preceding the model class are define as: 

         .  This process will be repeated for each of the indices individually to determine the OM.  This 

integrated approach will allow insight on extreme precipitation, biases between observed and predicted 

values relates to space throughout Florida. Although the integrated ranking method provides insight on the 

models, there need a single model selected for future analysis. To do this a coupled ranking approach will 

be used.   

3.3.2 Coupled Ranking 

Similarly to the integrated ranking the AE, Equation 16, will be taken of each model for each index.  

However, instead of finding the LE, Equation 17, of each station and index, the AE values for each index 

will be normalized and range from 0 to 1.   
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(35)  

 

 Where, i, is defining the index being normalized. Now that the indices are relative, the 19 indices 

used can be compiled and summed into one overall index.  From this ultimate index, the mode will be taken 

to determine the overall best model(s). 

3.4 Statistical Methods 

Extreme precipitation has been used as a foundation to the understanding of general statistical 

extremes.  Many extreme distributions have been developed to capture the characteristics of extreme 

hydrologic events.  In order to determine a best fitting distribution one can use several parametric or non-

parametric statistical tests. 

3.4.1 Parametric and Non-parametric Tests 

Parametric tests require the data sets to follow a specific distribution in order for the test to produce 

accurate results. However, it is not always the case that the distribution is known for a data set.  The data 

must first undergo non-parametric tests to determine distributions and other statistical characteristics of the 

data.  

3.4.1.1 Generalized Extreme Value (GEV) Distribution  

Extreme precipitation has been found to follow GEV in many cases.  This distribution contains 

similar characteristics to extreme precipitation such as: heavy tails, temporal and spatial dependence, as 

well as, temporal cycles.  GEV is a three parameter function and as given by Equation 36.  
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  (36)  

 

The three parameters µ, σ, and γ represent location, scale, and shape.  These parameters are typically found 

through a likelihood ratio test.  Maximum Likelihood Estimator (MLE) is a parameter vector that 

maximizes the likelihood function.  The likelihood function defines the probability density function (PDF) 

that is most likely to have produced the original data through an inverse function of the data vector (x) and 

the parameter vector (MLE) (Katz, et al., 2002).  

3.4.1.2 Goodness of Fit Test: Kolmogorov-Smirnov Test: two-sample  

The two sample KS test is commonly used in the hydrologic field, due to continuous distributions, 

as a non-parametric test to measure the gap between fitted and empirical CDF curves. The two sample KS 

test can be used on two data sets as well. The null hypothesis assigned to the KS test is that the fitted and 

empirical data are of the same distribution (Wilks, 2006).  

3.5 Evaluation of Regional Precipitation Extremes 

The evaluation of precipitation extremes will provide input on the hydrologic design.  There will be 

further data collection involved in this section of the methodology.  The data range will be extended to 

1950-2099 and only the best models, selected through the ranking process mentioned earlier in this chapter, 

will be used.  Also model scenario and initial runs will be evaluated to determine variations between them. 

3.5.1 Depth Duration Frequency (DDF) 

DDF is a commonly used tool in the hydrologic field that determines the maximum depth from a 

given return period, typically 25 years, and duration.  A 25 year return period is a practical return period 

used for baseline hydrologic design standards. Of course, higher return periods will produce a more robust 
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design along with higher costs.  The DDF will use rainfall duration data sets fitted to GEV distribution 

using the parameters from MLE and two sample KS test (Overeem, et al., 2008).  Intensity Duration 

Frequency (IDF) curves can also be created through the results from the DDF values. 
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Chapter 4: Case Study Domain 

The objective of this case study application is to select the best downscaled GCMs on a regional 

scale.  In doing so the best model will be used to evaluate hydrologic planning and design for that specific 

region and determine whether or not the current hydrologic design standards will hold up to the future 

climate as it changes.  The methodology described in Chapter 3 is used to evaluate precipitation extremes at 

different sites (i.e. rain gages) in Florida.  

4.1 Study Domain and Data 

Florida, described by Carpenter & Provorse (1998), is geographically located in a highly susceptible 

region of the United States for extreme precipitation events.  Located in the south eastern region, 

specifically 79° 48' to 87° 38' west longitude 24° 30' to 31° north latitude, Florida is 500 miles long and 

160 miles wide at its most distant points. Florida is bordered by Georgia and Alabama to the north, 

Alabama and the Gulf of Mexico on the west, and surrounded by the Atlantic Ocean to the south and to the 

east.  Florida covers 65,758 square miles, making it the 22nd largest of the 50 states. The highest point in 

Florida is Britton Hill, Lakewood Park in Walton County and is only 345 feet above sea level located in the 

Florida Panhandle, with the lowest point being sea level where Florida meets the Atlantic Ocean and the 

Gulf of Mexico. Florida has more than 1260 miles of coastline-more than any other state in the continental 

United States (Riorbdan, 2008).  With the exceptionally low elevation, a high tropical storm landfall rate, 

and increased contact with both fresh and salt water, Florida is highly susceptible to extreme hydrologic 

events making it difficult to predict future climate.  National Oceanic and Atmospheric Administration 

(NOAA) and Nation Weather Service (NWS) has strategically located a cooperative network of 306 rain 

stations, both active and inactive, throughout the state of Florida. These stations can be described as rain 

gages or stations, interchangeably, throughout this thesis.   Of these stations, 31 have been selected for data 

collection and analysis for this case study. Locations of these 31 stations are shown in Figure 6 and listed in 

Table 6.

http://www.netstate.com/states/geography/ga_geography.htm
http://www.netstate.com/states/geography/al_geography.htm
http://www.netstate.com/states/geography/al_geography.htm
http://oceanographer.navy.mil/atlantic.html
http://www.netstate.com/states/tables/st_size.htm
http://www.climber.org/Feature/HighPoints1997/fl.html
http://oceanographer.navy.mil/atlantic.html
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Figure 6: Locations of the 31 NOAA/NWS cooperative network rain gages in Florida. 
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The 31 Florida rain gage stations depicted in Figure 6 are captured within a 1/8º grid created by the 

downscaled data.  Each grid contains climate data; whichever grid the rain gage is encompassed by shares 

its data with the station.  Each of the 31 stations is therefore theoretically relocated to the center of the 

encompassing grid.   

Table 6: Location of rain gages (SERCC, 2013). 

Rain gage ID Latitude Longitude 

1 26.700 -80.717 

2 30.983 -86.650 

3 30.418 -84.986 

4 26.742 -80.940 

5 28.434 -81.325 

6 30.250 -83.259 

7 30.958 -85.533 

8 25.500 -80.500 

9 29.025 -82.616 

10 30.400 -81.417 

11 28.021 -81.922 

12 29.200 -81.931 

13 28.096 -80.631 

14 25.791 -80.316 

15 26.840 -81.087 

16 30.531 -86.492 

17 26.334 -80.537 

18 28.933 -81.300 

19 26.790 -81.304 

20 27.609 -82.348 

21 25.930 -80.454 

22 26.983 -80.617 

23 30.068 -82.193 

24 28.338 -82.260 

25 27.117 -80.283 

26 27.763 -82.626 

27 30.393 -84.353 

28 25.761 -80.824 

29 27.101 -82.436 

30 27.135 -81.330 

31 26.685 -80.099 

http://www.sercc.com/climateinfo_files/
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4.2 Data Collection and Analysis 

The collection of previously bias corrected and downscaled GCM’s began at gdo-dcp.ucllnl.org, 

which is a downscaled bias corrected data archive provided by several climatological and hydrological 

organizations and groups,  where downscaled CMIP5 climate projections and historical data are archived 

for analytical and exploratory measures by the public.  The purpose these organizations provide this 

archived data is to allow the assessment of potential climate change impacts on the natural and social 

systems, local to regional projection uncertainty, and risk based exploration of planning and policy 

responses framed by potential climate changes exemplified by these projections (Maurer, et al., 2007).  For 

convenience of the case study, a unique list of model IDs is used, listed in Table 7.    

Table 7: CMIP5 BCCA RCP2.6 climate models selected for initial condition analysis. 

CMIP5 Model 
Case Study 

Model ID 

bcc-csm1-1 2 

canesm2 3 

ccsm4 4 

csiro-mk3-6-0 5 

gfdl-cm3 6 

gfdl-esm2g 7 

gfdl-esm2m 8 

ipsl-cm5a-lr 9 

ipsl-cm5a-mr 10 

miroc-esm 11 

miroc-esm-chem 12 

miroc5 13 

mpi-esm-lr 14 

mpi-esm-mr 15 

mri-cgcm3 16 

noresm1-m 17 

 

The 16 models are defined as 2 through 17 with the notion that the observed data set is defined as 

1.  These data sets will be used for initial analysis to identify the best model or models based on the ranking 

procedure described in the methodology chapter, and will use emission pathway RCP2.6 with first initial 

condition. 
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4.2.1 Data Processing 

Once data was collected, Mathworks Matlab, Microsoft Excel and Windows Notepad were used to 

generate workbooks and text file.  These files were configured in a way to allow for systematic index 

calculations to occur.  The process to select the best model will begin with the historical data and model 

data coinciding with emission pathway RCP2.6 and first initial condition.  By beginning with historical 

data, it will prevent bias models from misleading the performance of the predicted data.  The models will 

be compared through 19 indices mentioned in chapter three’s methodology.  The best model(s) will then 

continue analysis on the projected climate data from 2000-2099.  
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Chapter 5: Results and Analysis 

5.1 WMO Performance Measures 

Both the observed and predicted data have been calculated through the 9 WMO indices. The 

statistical characteristics of each of the 16 climate models have been compared to determine the 

performance of each model.  An arbitrary selection of 5 rain gage stations, 3, 8, 12, 20, and 25, has been 

made to depict the variation from the panhandle through to South Florida. A series of boxplot matrixes are 

listed where, the comparison of the observed data (labeled as 1 on the x-axis) and the predicted data 

(labeled as 2 through 17 on the x-axis) show a dry bias throughout the extreme precipitation indices.  This 

is determined by the observed median being consistently under estimated.  In order to correct this dry bias 

seen through the predicted data, the quantile mapping method of bias correction was applied to the raw 

data.  The WMO indices performance after bias correction, as expected, improved the predicted values and 

raised the median of each model and index to reduce the gap between the observed and predicted data.  

From the boxplots of the WMO measures, seen in Figure 7 through Figure 16, the model data experiences 

variations between each other but deviations are not excessive.  Between the five stations and regions 

associated with them, the highest performing models are shown in Table 8.
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Table 8: Selected models at different sites. 

Rain gage station ID Region Best Model ID 

3 Northwest (Panhandle) 15 

6 North Central  10 

12 East Central 12 

20 Tampa Bay 12 

25 South East 14 

 

 The results seen in Table 8 describe the spatial variability seen throughout Florida.  The variations 

in models throughout the regions in Florida describe that model selection for hydrologic research and 

design is an important factor for an accurate design.  This is a preliminary evaluation on site specific model 

selection, and an in depth ranking for the entire state of Florida will be performed in the sections to come.  

Any further insight on the remaining 26 rain gage stations can be met in Appendix B and Appendix C.
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Figure 7: Variability of WMO indices for different models (2-17) and observed (1) for station 3.
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Figure 8: Variability of WMO bias corrected indices for different models (2-17) and observed (1) for station 3. 
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Figure 9: Variability of WMO indices for different models (2-17) and observed (1) for station 8. 
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Figure 10: Variability of WMO bias corrected indices for different models (2-17) and observed (1) for station 8. 
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Figure 11: Variability of WMO indices for different models (2-17) and observed (1) for station 12. 
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Figure 12: Variability of WMO bias corrected indices for different models (2-17) and observed (1) for station 12. 
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Figure 13: Variability of WMO indices for different models (2-17) and observed (1) for station 20. 
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Figure 14: Variability of WMO bias corrected indices for different models (2-17) and observed (1) for station 20. 
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Figure 15: Variability of WMO indices for different models (2-17) and observed (1) for station 25. 
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Figure 16: Variability of WMO bias corrected indices for different models (2-17) and observed (1) for station 25. 
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5.2 Bias Indices performance measures 

Bias indices consist of error measures between observed and predicted, as well as, contingency 

measures, as previously mentioned in Chapter Three.  

5.2.1 Error measures performance 

The error measures were taken as a daily gross error for the entire date range, 1961 to 1999.  This 

allowed for a single value to be applied to each station and model combination.  The error measures will 

allow insight into the model with the lowest tendency for mistake.  Figure 17 and Figure 18 assist in the 

visual interpretation of error performance of the observed and predicted precipitation values.  The error 

values are significantly decreased after quantile mapping is applied to raw data.  . 

5.2.2 Contingency measure performance  

The concordance measure demonstrates an above average performance in the agreement between 

the observed and model data sets.  This is unusual due to the strong dry bias related to the model data; 

although, could be caused by similar patterns between depth values in the models and depth values in the 

observed data.  The error rate describes misses and false alarms as below average.  The sensitivity and 

specificity are describing correctly predicted wet and dry days.  The sensitivity index show 66% of actual 

positives are correctly identified, meaning the model is capturing positive rainfall correctly above average.  

The specificity index shows 55% of  zero rainfall is correctly identified.
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Figure 17: Bias indices error performance measures. 
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Figure 18: Bias indices error performance measure after quantile mapping. 
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Figure 19: Bias indices contingency measure performance. 
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5.3 Model Ranking 

The ranking of the models is based will describe the frequency analysis of each of the 16 models in 

the seven methods of ranking.  Of the seven ranking methods, mentioned in Chapter Three’s 

methodologies, a histogram matrix was used to describe the results.  Gathered from Figure 20, there are 

two prevailing models, 12 and 14.  Similarly, the bias corrected histogram matrix, seen in Figure 21, has 

model 12 and model 14 as the top two ranked models as well.  The performance of the models based on 

individual stations as demonstrated in Table 9, and for bias corrected results, Table 10.  Model 12 

represents the BCCA CMIP5 model known as MIROC_ESM_CHEM.  This model was developed by the 

Japan Agency for Marine and Earth Science Technology, Atmosphere and Ocean Research Institute and the 

National Institute for Environmental Studies.  While model 14 represents the BCCA CMIP5 model known 

as MPI-ESM-LR.  This model was developed by Max Planck Institute for Meteorology (MPI-M) Florida.  

These models share similar backgrounds as they are both Earth System Models (ESM).  These models 

relate to the study of the Earth and its interaction with the surrounding atmosphere, cryosphere, and 

hydrosphere (Claussen, 1998).  The capabilities of ESMs to incorporate the hydrosphere allow the models 

to perform well in extreme precipitation research.    
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Figure 20: Number of times a model is selected for each performance measure. 
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Table 9: Model frequencies for each station. 

Station 

ID 

Coupled Integrated 
Overall 

WMO Bias Contingency WMO Bias Contingency 

1 12 7 14 12 12 13 12 

2 12 12 11 12 12 11 12 

3 15 12 12 15 15 12 11 

4 7 7 9 5 9 9 12 

5 4 12 14 6 6 14 11 

6 14 12 7 14 11 7 14 

7 12 11 11 2 11 11 11 

8 12 12 7 14 14 7 12 

9 14 12 12 14 14 12 14 

10 12 12 3 12 14 3 12 

11 11 12 2 11 11 2 11 

12 12 12 13 11 11 13 12 

13 8 8 8 8 8 8 8 

14 7 7 14 14 14 15 14 

15 12 12 14 12 7 14 12 

16 12 14 11 12 12 11 12 

17 7 7 5 13 14 5 14 

18 12 12 3 8 8 1 12 

19 12 12 14 8 8 14 12 

20 12 12 14 12 12 16 12 

21 14 7 14 14 14 14 14 

22 12 7 14 12 17 14 14 

23 8 8 13 12 14 13 8 

24 11 12 9 11 11 9 11 

25 7 7 12 14 14 12 14 

26 12 12 4 7 7 14 12 

27 12 12 7 2 11 7 12 

28 12 12 3 13 12 3 12 

29 12 12 5 7 12 5 12 

30 8 6 4 12 8 14 7 

31 17 17 2 17 7 2 7 
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Figure 21: Number of times a model is selected for each performance measure after quantile mapping.
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Table 10: Bias Corrected model frequencies for each station. 

Station 

ID 

Coupled  Integrated  
Overall 

WMO Bias Contingency WMO Bias Contingency 

1 14 7 14 11 13 13 14 

2 16 14 11 6 8 11 16 

3 16 2 12 16 4 12 16 

4 2 16 9 2 9 9 2 

5 14 12 14 12 3 14 14 

6 10 14 7 16 5 7 10 

7 16 14 11 16 10 11 16 

8 13 2 7 13 2 7 13 

9 14 12 12 14 9 12 14 

10 14 10 3 14 10 3 14 

11 16 12 2 16 9 2 16 

12 14 12 13 2 9 13 14 

13 14 2 8 14 5 8 14 

14 14 12 15 14 9 15 14 

15 16 16 14 16 9 14 16 

16 16 14 11 16 7 11 16 

17 16 7 5 16 5 5 16 

18 16 12 3 14 6 3 16 

19 14 13 14 11 3 14 14 

20 14 12 16 14 11 16 14 

21 14 2 14 14 16 14 14 

22 14 2 14 14 4 14 14 

23 14 14 13 14 8 13 14 

24 11 12 9 11 2 9 14 

25 13 2 12 16 3 12 13 

26 14 12 4 14 17 4 14 

27 10 12 7 10 13 7 6 

28 13 16 3 13 4 3 13 

29 13 2 5 11 17 5 13 

30 16 7 3 16 10 14 16 

31 14 2 2 14 13 2 14 
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5.4 Long-term analysis of best models 

With the two best models selected for Florida, the extended projections of predicted daily 

precipitation were collected from 1950 to 2099.  These extended data sets will be collected for 11 stations 

randomly selected throughout the state.  The stations will act as representatives for the remaining 20 

stations.  By collecting an extended date range, the models will be able to depict trends and variations on a 

long-term climate forecast.  The 11 stations are described in Table 11. 

Table 11: Stations selected for long-term analysis 

Rain gage ID Latitude Longitude 

3 30.418 -84.986 

6 30.250 -83.259 

8 25.500 -80.500 

12 29.200 -81.931 

13 28.096 -80.631 

16 30.531 -86.492 

19 26.79 -81.304 

20 27.609 -82.348 

23 30.068 -82.193 

25 27.117 -80.283 

28 25.761 -80.824 

 

From these 11 stations, where the case study IDs are used for convenience of the extended analysis, 

there are variations in regional long-term trends.  The trends are mixed and do show variations throughout 

the state.  There are specific stations that are reacting consistently to extreme precipitation intensity, 

frequency, or duration.  Station 3, 16, and 23 are all located in the panhandle region of Florida and all 

experience similar increases in extreme precipitation events.  Oppositely the stations located in the central 

and southern regions are experiencing decreasing or stable trends.  The resulting trends as described by 

Figure 22 to Figure 30.  These trends are known to have a dry bias related to them; however, there is no 

bias correction associated to these results due to non-stationarity.
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Figure 22: Variability of CDD index and long-term trends in extreme precipitation. 
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Figure 23: Variability of CWD index and long-term trends in extreme precipitation. 
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Figure 24: Variability of RX1DAY index and long-term trends in extreme precipitation. 
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Figure 25: Variability of RX5DAY index and long-term trends in extreme precipitation. 
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Figure 26: Variability of R10 index and long-term trends in extreme precipitation. 
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Figure 27: Variability of R20 index and long-term trends in extreme precipitation. 
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Figure 28: Variability of SDII index and long-term trends in extreme precipitation. 
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Figure 29: Variability of PRCPTOT index and long-term trends in extreme precipitation. 
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Figure 30: Variability of R254 index and long-term trends in extreme precipitation.
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5.4.1 Spatial variations of future precipitation trends  

Of the 11 stations, the overall performance indicates that there is a steady decrease in precipitation 

totals and extremes throughout Florida in the next 100 year.  There are; however, regional variations in 

trends and their characteristics.  For the extreme intensity indices, RX1DAY and RX5DAY, the trends 

show the panhandle region increasing during extreme rainfall, RX1DAY, as well as a prolonged extreme 

rainfall event, RX5DAY.  Although increases were seen in the panhandle for both indices, RX5DAY 

showed a milder slope indicating less deviation from present conditions in extended extreme rainfall 

events, seen in Figure 24 and Figure 25. 

Precipitation indices R10, R20, and R254 are used to depict the models reaction to future 

frequencies.  The frequency of rainfall events is generally decreasing, but the models do deviate in certain 

regions and stations as the threshold precipitation depth is increased.  By doing so the models show that 

higher intensity events, R254, will be more common in the panhandle region and parts of south Florida, but 

there will decreases in the number of moderate to mild, R10 and R20, rainfall events in the next 100 years, 

seen in Figure 26, Figure 27, and Figure 30.   

5.4.2 Incremental variations in extreme precipitation  

The 150 year period, 1950-2099, taken for this study is defining a declining trend.  There is 

uncertainty on how and when this trend is occurring.  By splitting the time period into three 50 year periods 

the behavior of the projections can be understood.  Table 12 defines the three time periods used. 

Table 12: Incremental 50 year period. 

Period Dates 

1 1950-1999 

2 2000-2049 

3 2050-2099 
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Figure 31: Variability of CDD index for long-term statistical changes in period 1(1950-1999), period 2 (2000-2049), 

 and period 3 (2050-2099). 
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Figure 32: Variability of CWD index for long-term statistical changes in period 1(1950-1999), period 2 (2000-2049),  

and period 3 (2050-2099). 
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Figure 33: Variability of RX1DAY index for long-term statistical changes in period 1(1950-1999), period 2 (2000-2049),  

and period 3 (2050-2099). 
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Figure 34: Variability of RX5DAY index for long-term statistical changes in period 1(1950-1999), period 2 (2000-2049),  

and period 3 (2050-2099). 

100

200

300

1 2 3
Time Period

Station : 3

P
re

c
ip

it
a
ti
o
n
 D

e
p
th

 (
m

m
)

50

100

150

200

1 2 3
Time Period

Station : 6

P
re

c
ip

it
a
ti
o
n
 D

e
p
th

 (
m

m
)

50

100

150

200

1 2 3
Time Period

Station : 8

P
re

c
ip

it
a
ti
o
n
 D

e
p
th

 (
m

m
)

50

100

150

200

1 2 3
Time Period

Station : 12

P
re

c
ip

it
a
ti
o
n
 D

e
p
th

 (
m

m
)

50

100

150

1 2 3
Time Period

Station : 13

P
re

c
ip

it
a
ti
o
n
 D

e
p
th

 (
m

m
)

50

100

150

200

1 2 3
Time Period

Station : 16

P
re

c
ip

it
a
ti
o
n
 D

e
p
th

 (
m

m
)

50

100

150

1 2 3
Time Period

Station : 19

P
re

c
ip

it
a
ti
o
n
 D

e
p
th

 (
m

m
)

50

100

150

1 2 3
Time Period

Station : 20

P
re

c
ip

it
a
ti
o
n
 D

e
p
th

 (
m

m
)

50

100

150

200

1 2 3
Time Period

Station : 23

P
re

c
ip

it
a
ti
o
n
 D

e
p
th

 (
m

m
)

50

100

150

1 2 3
Time Period

Station : 25

P
re

c
ip

it
a
ti
o
n
 D

e
p
th

 (
m

m
)

50

100

150

200

1 2 3
Time Period

Station : 28

P
re

c
ip

it
a
ti
o
n
 D

e
p
th

 (
m

m
)



 

 

8
0 

 

Figure 35: Variability of R10 index for long-term statistical changes in period 1(1950-1999), period 2 (2000-2049),  

and period 3 (2050-2099). 
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Figure 36: Variability of R20 index for long-term statistical changes in period 1(1950-1999), period 2 (2000-2049),  

and period 3 (2050-2099). 
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Figure 37: Variability of SDII index for long-term statistical changes in period 1(1950-1999), period 2 (2000-2049),  

and period 3 (2050-2099). 
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Figure 38: Variability of PRCPTOT index for long-term statistical changes in period 1(1950-1999), period 2 (2000-2049), 

 and period 3 (2050-2099). 
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Figure 39: Variability of R254 index for long-term statistical changes in period 1(1950-1999), period 2 (2000-2049),  

and period 3 (2050-2099).
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Larger deviations are observed in extremes during the final period, 3.  Uncertainties caused by non-

stationarity can be the source of these increased deviations.  The trends show the panhandle region along 

with parts of South Florida experiencing slight increases in extreme precipitation events and their 

frequencies. These shifts in regional extreme precipitation trends are caused by a split in climate zones over 

Florida, where the panhandle, northern, and central regions are described by continental climate zone: 

humid subtropical. The remaining regions, Southern, south east, and south west are described by Equatorial 

climate zones: Rainforest, Monsoon, and Savannah which are adopted from Kӧppen-Geiger climate zones. 

5.4.3 Model Variation between stations 

There were a total of 13 variations between model 12 and model 14.  These variations involve 

different scenarios and initial condition selected for the two models.  A list of model variations is given in 

Table 13.  The deviations between each of the 13 variations can be misleading if the incorrect scenario is 

selected.  The user must recognize the band of uncertainty between the model and scenario combinations 

and determine which is useful to the case study.   

There temporal variations that have been applied to show if the models are more or less variable 

during certain periods compared to an overall variation.  The four temporal scales of DDF variations are (1) 

24 hour duration at a 25 year return period from data ranging from 1950-2099, (2) 24 hour duration at a 25 

year return period from data in three 50 year increments, (3) 120 hour duration at a 25 year return period 

from data ranging from 1950-2099, (4) 120 hour duration at a 25 year return period from data in three 50 

year increments.  The band of uncertainty based on 13 variations of models is described for each station by 

Figure 40 to Figure 47.  
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Table 13: Projected models scenario and run variations. 

Model ID CMIP5 Model RCP Run 

12.1 miroc-esm-chem 2.6 1 

12.2 miroc-esm-chem 4.5 1 

12.3 miroc-esm-chem 6.0 1 

12.4 miroc-esm-chem 8.5 1 

14.5.1 mpi-esm-lr 2.6 1 

14.5.2 mpi-esm-lr 2.6 2 

14.5.3 mpi-esm-lr 2.6 3 

14.6.1 mpi-esm-lr 4.5 1 

14.6.2 mpi-esm-lr 4.5 2 

14.6.3 mpi-esm-lr 4.5 3 

14.7.1 mpi-esm-lr 8.5 1 

14.7.2 mpi-esm-lr 8.5 2 

14.7.3 mpi-esm-lr 8.5 3 

  

Models 12 and 14 consist of all available scenarios and runs for the given model.  The use of all 

available scenarios and runs will allow for the assessment of uncertainty related to multiple models, 

multiple scenarios, and multiple runs.
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Figure 40: Variations of precipitation depths between 11 stations for 24 hour rainfall depths of a 25 year return period during 1950-

1999. 
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Figure 41: Variations of precipitation depths between 11 stations for 24 hour rainfall depths of a 25 year return period during 2000-

2049. 
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Figure 42: Variations of precipitation depths between 11 stations for 24 hour rainfall depths of a 25 year return period during 2050-

2099. 
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Figure 43: Variations of precipitation depths between 11 stations for 24 hour rainfall depths of a 25 year return period during 1950-

2099. 
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Figure 44: Variations of precipitation depths between 11 stations for 120 hour rainfall depths of a 25 year return period during 1950-

1999. 
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Figure 45: Variations of precipitation depths between 11 stations for 120 hour rainfall depths of a 25 year return period during 2000-

2049. 
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Figure 46: Variations of precipitation depths between 11 stations for 120 hour rainfall depths of a 25 year return period during 2050-2099. 
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Figure 47: Variations of precipitation depths between 11 stations for 120 hour rainfall depths of a 25 year return period during 1950-2099. 
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5.4.3.1 24 hour duration rainfall model variations between space and time 

The variations in models range both in time and space.  The two durations, 24 hour and 120 hour, 

were split into three 50 year periods to determine if the models increase in deviation as time progress.  

Form Figure 48 and Figure 49, the 24 hour duration rainfall depths experience the largest gaps between the 

highest or most robust model and the lowest or most conservative model during the latter two periods, 

2000-2049 and 2050-2099.  This is expected due to increasing uncertainties the farther into the future the 

models predict.  The highest model variations according to space is seen in station 13, which is located in 

the central east region, and the lowest variations seen in station 6, which is located in panhandle region.  

This means that the panhandle will be affected most by poor model selection due to its smaller performance 

range, while the central east region will experience a more drastic change between model selections. 

5.4.3.2 120 hour duration rainfall model variations between space and time 

Similarly to the 24 hour duration models, the 120 hour duration experiences the largest deviations 

between the most robust and most conservation models as the models predict further into the future.  

However, the 120 hour duration experiences several decreases from period 2, 2000-2049, to period 3, 2050-

2099.  These decreases are seen in station 8, 12, 13, 19, 23, and 25.  These stations are located throughout 

Florida excluding the panhandle.  The highest model variations according to space is seen in station 16, 

which is located in the panhandle, and the lowest variation is seen in station 8, which is located in the south 

east.  This means that as durations increase the model variability shifts in space.  The panhandle will be 

more sensitive to model selection in higher durations and the south east will be less susceptible to poor 

model selection in higher durations. 

5.4.4 DDF variations with periodic time windows 

The projected data extends from 1950-2099.  A moving window was taken for the DDF to 

determine whether the depths experience periodic trends over three 50 year periods.  From Figure 48, there 

are spatial variations in the trends that the DDFs are experiencing.  Several stations, 12, 13, and 19, 

experience decreasing mean precipitation depths between the three 50 year periods.  These stations are 

located in the central and central east regions of the state.  Stations 25 and 28 experience a peak and decline 
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scenario in the mean precipitation depths, meaning the near future may produce increased depths but will 

decrease thereafter.  As for the extremes, all stations experience increases in depths over the three periods.  

This describes an overall increase in precipitation intensities for the State of Florida.  Several outliers where 

captured in the plots having mixed results.   

5.4.5 DDF variations with expanding time window 

The expanding window acts as a cumulative sum over three periods: (1) 1950-2000, (2) 1950-2050, 

and (3) 1950-2099.  These three windows will act as a real world trend analysis by incorporating the 

historic data. With the inclusion of the historic data into the last two periods, there were slight changes in 

the trends.  The extreme depths were the most affected by the inclusion of historic data.  Where previously, 

the extreme depth were all increasing, now there are several with decreases or a peak and decline scenario.  

Stations 12, 13, and 20 show decreases in extreme depths, however; stations 3 and 19 show a peak and 

decline scenario for the extreme depths. These trends are given by Figure 49.



 

 

9
7 

 

Figure 48: Variability of precipitation depths for a given 25 year return period for three 50 year intervals. 
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Figure 49: Variability of precipitation depths for a given 25 year return period for three expanding windows.
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5.4.6 Band of uncertainty between model based DDF  

The band of uncertainty defines the range that occurs between the upper and lower bounds, most 

robust and most conservative models.  The band of uncertainty for the 13 model variations are described 

for each station by Figure 50.  There are two durations plotted, 24 hour and 120 hour for 25 year depths.  

The band of uncertainty increases as the duration increases from 24 hours to 120 hours. This demonstrates 

the higher uncertainty with longer durations of precipitation events.  This increase in uncertainty as 

duration increases is seen over most of the state excluding station 8, located in South Florida, which has a 

tight grouping in both durations.   

When the 13 models are plotted against the observed data from 1961-1999, there is an 

overwhelming dry bias.  A method known as bootstrap sampling is used to determine an average factor that 

the stations are under performing.  This factor value was found to have varying ranges, depending on the 

station location.  Figure 51 shows the dry bias before the bootstrap correction factors were applied. These 

correction factors are listed  in Table 14.    

Table 14: Correction factors based on bootstrap resampling approach. 

 
24 hour 120 hour 

Stations 
Mean 

factor 

Lower 

bound 

Upper 

bound 

Mean 

factor 

Lower 

bound 

Upper 

bound 

3 1.51 1.39 1.63 1.57 1.47 1.68 

6 1.42 1.31 1.54 1.53 1.40 1.66 

8 2.33 2.15 2.51 2.02 1.88 2.17 

12 1.78 1.59 1.97 1.56 1.45 1.67 

13 2.43 2.24 2.62 2.00 1.86 2.15 

16 1.80 1.67 1.94 1.88 1.72 2.04 

19 1.54 1.46 1.62 1.53 1.45 1.61 

20 1.80 1.69 1.91 1.80 1.67 1.94 

23 1.49 1.38 1.60 1.49 1.39 1.59 

25 1.75 1.60 1.90 1.73 1.60 1.86 

28 1.91 1.76 2.06 1.83 1.71 1.95 
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Figure 50: Band of uncertainty between CMIP5 model variations. 
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Figure 51: Band of uncertainty with comparison between observed (black) and model variations (grey). 
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Figure 52: Bias factor uncertainty for 24 hour duration. 
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Figure 53: Bias factor uncertainty for 120 hour duration.
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After the bootstrap sampling correction factors were applied to the model data, the DDF curve was 

recreated seen in Figure 54 through Figure 59.  The bootstrap factor significantly raised the model data to 

relate to the observed data; however, there is uncertainty associated between the lower, mean, and upper 

bound factors.  The simultaneous plotting of observed and model data allows the user to use the observed 

data as a reference point when viewing the behavior of the models.  Uncertainty between time intervals and 

bias corrected models is listed in Table 15. 

Table 15: Precipitation depths for different durations based on different factors. 

2000-2049 

Duration 
Mean 

factor 

Lower 

bound 

Upper 

bound 

24 133.5971 123.0589 144.2782 

120 196.2588 181.2877 211.2349 

2050-2099 

24 135.7833 123.4598 148.3419 

120 204.4398 179.163 228.521 

 

There is more uncertainty associated to the far future, 2050-2099, as opposed to the near future, 

200-2049.  The uncertainty experiences more variations in when the upper bound correction factor is 

applied, with a 3.9% increase between 2000-2049 and 2050-2099 for the 120 hour duration and 1.4% 

increase in 24 hour duration.  These increases are expected due to the variability characteristics related to 

precipitation and time.   There are also spatial uncertainties associated with the depths.  The Because of 

poor spatial resolution, point scale, it is difficult to target regional design criteria that need improvement.  

These uncertainties between time intervals and between space are described by Table 16. 
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Figure 54:  Variability of precipitation depths for two durations for a return period of 25 years for observed data and model data (2000-

2049) using different bias correction factors (mean factor).  
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Figure 55: Variability of precipitation depths for two durations for a return period of 25 years for observed data and model data (2000-

2049) using different bias correction factors (lower bound factor). 
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Figure 56: Variability of precipitation depths for two durations for a return period of 25 years for observed data and model data (2000-

2049) using different bias correction factors (upper bound factor). 
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Figure 57: Variability of precipitation depths for two durations for a return period of 25 years for observed data and model data (2050-

2099) using different bias correction factors (mean factor). 
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Figure 58: Variability of precipitation depths for two durations for a return period of 25 years for observed data and model data (2050-

2099) using different bias correction factors (lower bound factor). 
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Figure 59: Variability of precipitation depths for two durations for a return period of 25 years for observed data and model data (2050-

2099) using different bias correction factors (upper bound factor). 
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Table 16: Band of uncertainty variations between time periods and space. 

 2000-2049 

Durations 
 

Mean factor 
Lower 

bound 

Upper 

bound 

24 
 

42.25716 38.909 45.55996 

120 
 

92.30651 86.27233 98.37325 

 2050-2099 

24 
 

44.80363 41.25371 48.30546 

120 
 

125.6439 117.4304 133.9017 

 

 There is a spatial uncertainty of 15% related to the 120 hour duration throughout Florida.  The 

uncertainty is constant throughout the State because the stations are cooperative.  This uncertainty is 

expected due to the high variability of precipitation over the State of Florida.  The large amounts of water 

bodies, tropical climate, and low topography along with a varying climate, allows precipitation to obtain a 

spontaneous nature in return causing more spatial uncertainties.
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Chapter 6: Conclusions 

 The study utilized a total of 16 GCMs and experienced a significant variation between the models.  

The variability of the models is highly correlated to the site selection.  Each of the 31 rain gage stations 

used in the study achieved a best fitting model.  There were; however, reoccurring models over several 

stations.  The model(s) with the highest reoccurrence were chosen to represent Florida as a whole.  The 

models observed through the case study to be the most likely to represent Florida’s future extreme were 

miroc-esm-chem and mpi-esm-lr.  

The study revealed significant dry biases through the climate models predictions.  As mentioned 

throughout the thesis, it is believed that the climate is non-stationary.  This assumption presents difficulties 

in a proper bias correction procedure.  Currently bias correction that incorporate non-stationarity into their 

algorithms are hard to develop and almost nonexistent.  Due to the lack of appropriate bias correction 

methods, the study was forced to use corrections based on the observed data using quantile mapping and 

bootstrap resampling methods.  These methods helped remove the dry bias, but there is uncertainties related 

to them because the future climate is unknown due to non-stationarity. 

To determine whether the future extremes are increasing or decreasing, an extended projection of 

extreme rainfall depths was assembled.  These depths, before bias correction, experienced significant 

decreasing trends.  However, after bias correction, the future extremes did experience increases from the 

observed historical data depending on the model, scenario, and station combination.  The major contributor 

to the variations was the model scenario and location selection.  DDF analysis, based on these future 

extremes, was performed and a band of uncertainty was described for each station.  Depending on a robust 

or conservative selection, hydrologic design may not match current standards.
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6.1 Contribution of this study 

Climate change is an important variable in the analysis of extreme precipitation.  Precipitation 

extreme can be studied through climate models, one of which being GCMs.  These models are low 

resolution models that can be downscaled into higher resolution, or local scale, models known as Region 

Climate Models (RCMs).  The models are developed using varying initial conditions and emission 

scenarios.  These variations can affect the performance of the models differently as time and space change 

and in return create uncertainties in model results.  These uncertainties result in misleading future 

hydrologic extremes which are generally used in the development of hydrologic design standards.    

Along with uncertainties from model selection, there is growing concern over non-stationarity issues 

related to climate and climate change.  Hydrologic design is strongly based on the belief that the climate is 

stationary.  With the increased realization and eye witness accounts of real world events caused by climate 

change, water resource managers, civil engineers, hydrologists, and consultants alike are expressing 

concern that the current design standards will be or are now outdated.  There is little to no large scale recall 

on hydrologic design standards on a local scale. 

In this study, site specific precipitation depths have been collected from multiple downscaled 

climate models.  The essential downscaled BCCA CMIP5 models have been compared and analyzed 

through a series of extreme precipitation, contingency, and error measure indices.  This comparison was 

against historical observed precipitation data to help distinguish the best model(s) by a least error method.  

The methodology was applied to the case study domain, Florida, and ultimately determined the best climate 

model for site specific locations.  The model(s) then were used to determine the effects of climate change 

and non-stationarity on a point scale.  Any trends experienced by precipitation extremes were applied to the 

development of updated DDF curves to help improve the accuracy of hydrologic design standards.   

6.2 Limitations of the Study  

The case study applied to the methodologies produced a specific set of results; however, the 

methodology is generalized in order to apply to a variety of case studies.   There are several limitations in 

techniques of data collection, spatial resolution, data processing, and data analysis.   
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 Climate model: The study used a single type of downscaled climate modeling known as 

CMIP5.  These models are statically downscaled GCMs to a 1/8
th

 degree grid resolution.  

From the CMIP5 models, 16 BCCA, daily time scale, models were selected.  These models 

are variations of the GCMs after downscaling.  By only using one type of climate model 

downscaling it presents higher uncertainty of true model trends for future projections.  

 Temporal resolution:  Extreme precipitation increases in variability as the temporal 

window increases.  This study used a daily temporal scale throughout the analysis.  Daily 

values allow for decadal projection but are too large for detailed hydrologic design 

analysis.   

 Spatial resolution:  A point scale spatial resolutions limits the study by increasing 

uncertainties in spatial variation of intensities.  Rainfall is highly variable throughout space.  

The assumption that the point scale data can represent a large area, such as Florida, can 

present uncertainties in the results.  Point scale also has trouble representing the large 

amount of water bodies, tropical storm landfall, and minimal topography present in Florida.  

 Bias corrections: The bias correction, quantile mapping, used in this case study proved to 

be a useful method of correction, but there remain uncertainties in the analysis of existing 

bias.  Different bias correction techniques can be applied to help understand the existing 

bias.  Because the climate is non-stationary, the bias correction factors developed from the 

comparison of observed and predicted data will have a level of uncertainty due to the 

unknown future.  Historical distributions cannot be expected to represent the future 

distributions if the future climate is expected to change. 

6.3 Recommendations for Future Research 

If the application of the developed methodology is requested for another case study, the following 

recommendations should be considered due to limitations mentioned previously in this section.  The 

expansion of available climate models is recommended to help evaluate uncertainty in the models. These 

models could apply finer resolutions in temporal scales.  The study utilized a daily time scale and was 

limited to 24 hour increments for DDF analysis.  By using hourly, or finer, temporal scale a better 
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understanding of the short term intensities and frequencies will be better met. Finer resolution time scales 

could help evaluate variability in the results and, the data could achieve a higher correlation and lower 

uncertainty in the evaluation of hydrologic design durations. Bias correction techniques that account for 

non-stationarity issues would be significant in the evaluation of future extremes. When these bias 

corrections become more assessable and readily available for the public, it would be a great addition in 

the analysis.  Also future studies intended on using the methodology, the study recommends a grid scale.  

A grid scale will better capture the variability of precipitation and allow for interpolations of large areas.  
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Apendix A: Acronyms 

 

ENSO El Niño/La Niña Southern Oscillation 

PDO Pacific Decadal Oscillation 

NAO North Atlantic Oscillation 

AMO Atlantic Multidecadal Oscillation 

NOAA National Oceanic and Atmospheric Administration 

IPCC Intergovernmental Panel on Climate Change 

SFWMD South Florida Water Management District 

IDF Intensity Duration Frequency  

GCM General Circulation Model 

SRES Special Report on Emissions Scenarios 

BCCA Bias-Corrected and Constructed Analog 

BCSD Bias Corrected and Spatial Disaggregation 

USGS United States Geological Survey 

CIMAS Cooperative Institute for Marine and Atmospheric Studies 

CDF Cumulative Distribution Function 

PC Positive Correct 

DDF Depth Duration Frequency 

BM Best Model 

CMIP Coupled Model Intercomparison Project 

RCP Representative Concentration Pathway 
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GEV Generalized Extreme Value 

QM Quantile Mapping 

KS-TEST Kolmogorov–Smirnov test  

MLE Maximum Likelihood Estimator 

ME Mean Error 

MAE Mean Absolute Error 

MB Multiplicative Bias 

RMSE Root Mean Square Error 

NSEC Nash Sutcliffe Efficiency Coefficient  

COR Correlation Coefficient 

LE Least Error 

AE Absolute Error 

CDD Consecutive Dry Days 

CWD Consecutive Wet Days 

RX1DAY Maximum One Day Precipitation 

RX5DAY Maximum Five Day Precipitation 

R10 Precipitation Exceeding 10mm Threshold 

R20 Precipitation Exceeding 20mm Threshold 

R254 Precipitation Exceeding 25.4mm Threshold 

PRCPTOT Total Precipitation 

SDII Standard Daily Intensity Index 

CMSE Contingency Measure for Sensitivity 

CMSP Contingency Measure for Specificity 

CMC Contingency Measure for Conductivity 

CMER Contingency Measure for Error 

SST Sea Surface Temperature 

 



 

118 

 

Appendix B: WMO indices performance measures
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Figure 60: Station 1 WMO indices bias evaluation. 

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
C

W
D

(D
a
y
s
)

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 1011 121314151617

C
D

D
(D

a
y
s
)

20

40

60

80

1 2 3 4 5 6 7 8 9 1011 121314151617

R
X

1
d
a
y
(m

m
)

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

R
X

5
d
a
y
(m

m
)

10

20

30

40

50

1 2 3 4 5 6 7 8 9 1011 121314151617

R
1
0
m

m
(D

a
y
s
)

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 1011 121314151617

R
2
0
m

m
(D

a
y
s
)

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S
D

II
(m

m
)

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 1011121314 151617

P
R

C
P

T
O

T
(m

m
)

0

5

10

15

1 2 3 4 5 6 7 8 9 1011 121314151617

R
n
n
m

m
(D

a
y
s
)



 

 

1
2

0 

 

Figure 61: Station 2 WMO indices bias evaluation. 
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Figure 62: Station 4 WMO indices bias evaluation. 
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Figure 63: Station 5 WMO indices bias evaluation. 
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Figure 64: Station 6 WMO indices bias evaluation. 
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Figure 65: Station 7 WMO indices bias evaluation. 
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Figure 66: Station 9 WMO indices bias evaluation. 
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Figure 67: Station 10 WMO indices bias evaluation. 
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Figure 68: Station 11 WMO indices bias evaluation. 
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Figure 69: Station 13 WMO indices bias evaluation. 
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Figure 70: Station 14 WMO indices bias evaluation. 
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Figure 71: Station 15 WMO indices bias evaluation. 
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Figure 72: Station 16 WMO indices bias evaluation. 
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Figure 73: Station 17 WMO indices bias evaluation. 

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C
W

D
(D

a
y
s
)

10

20

30

40

50

1 2 3 4 5 6 7 8 9 1011 121314151617

C
D

D
(D

a
y
s
)

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 1011121314151617

R
X

1
d
a
y
(m

m
)

100

200

300

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

R
X

5
d
a
y
(m

m
)

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 1011 121314151617

R
1
0
m

m
(D

a
y
s
)

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 1011 121314151617

R
2
0
m

m
(D

a
y
s
)

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S
D

II
(m

m
)

1000

1200

1400

1600

1800

2000

2200

1 2 3 4 5 6 7 8 9 1011121314 151617

P
R

C
P

T
O

T
(m

m
)

0

5

10

15

20

1 2 3 4 5 6 7 8 9 1011 121314151617

R
n
n
m

m
(D

a
y
s
)



 

 

1
3

3 

 

Figure 74: Station 18 WMO indices bias evaluation. 
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Figure 75: Station 19 WMO indices bias evaluation. 
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Figure 76: Station 21 WMO indices bias evaluation. 
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Figure 77: Station 22 WMO indices bias evaluation. 
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Figure 78: Station 23 WMO indices bias evaluation. 
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Figure 79: Station 24 WMO indices bias evaluation. 
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Figure 80: Station 26 WMO indices bias evaluation. 
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Figure 81: Station 27 WMO indices bias evaluation. 
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Figure 82: Station 28 WMO indices bias evaluation. 
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Figure 83: Station 29 WMO indices bias evaluation. 
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Figure 84: Station 30 WMO indices bias evaluation. 
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Figure 85: Station 31 WMO indices bias evaluation.
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Appendix C: WMO bias corrected indices performance measures 
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Figure 86: Station 1 WMO indices bias evaluation after quantile mapping. 
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Figure 87: Station 2 WMO indices bias evaluation after quantile mapping. 
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Figure 88: Station 4 WMO indices bias evaluation after quantile mapping. 
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Figure 89: Station 5 WMO indices bias evaluation after quantile mapping. 
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Figure 90: Station 6 WMO indices bias evaluation after quantile mapping. 
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Figure 91: Station 7 WMO indices bias evaluation after quantile mapping. 
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Figure 92: Station 9 WMO indices bias evaluation after quantile mapping. 
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Figure 93: Station 10 WMO indices bias evaluation after quantile mapping. 
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Figure 94: Station 11 WMO indices bias evaluation after quantile mapping. 
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Figure 95: Station 13 WMO indices bias evaluation after quantile mapping. 
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Figure 96: Station 14 WMO indices bias evaluation after quantile mapping. 
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Figure 97: Station 15 WMO indices bias evaluation after quantile mapping. 
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Figure 98: Station 16 WMO indices bias evaluation after quantile mapping. 
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Figure 99: Station 17 WMO indices bias evaluation after quantile mapping. 
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Figure 100: Station 18 WMO indices bias evaluation after quantile mapping. 
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Figure 101: Station 19 WMO indices bias evaluation after quantile mapping. 
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Figure 102: Station 21 WMO indices bias evaluation after quantile mapping. 
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Figure 103: Station 22 WMO indices bias evaluation after quantile mapping. 
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Figure 104: Station 23 WMO indices bias evaluation after quantile mapping. 
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Figure 105: Station 24 WMO indices bias evaluation after quantile mapping. 
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Figure 106: Station 26 WMO indices bias evaluation after quantile mapping. 
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Figure 107: Station 27 WMO indices bias evaluation after quantile mapping. 
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Figure 108: Station 28 WMO indices bias evaluation after quantile mapping. 
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Figure 109: Station 29 WMO indices bias evaluation after quantile mapping. 
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Figure 110: Station 30 WMO indices bias evaluation after quantile mapping. 
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Figure 111: Station 31 WMO indices bias evaluation after quantile mapping.
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