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The main objective of this thesis was to find the full automorphism groups of

finite Desarguesian planes. A set of homologies were used to generate the automor-

phism group when the order of the plane was prime. When the order was a prime

power pa, a 6= 1, the Frobenius automorphism was added to the set of homologies,

and then the full automorphism group was generated. The Frobenius automorphism

was found by using the planar ternary ring derived from a coordinatization of the

plane.
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Chapter 1

Introduction

1.1 HISTORY

The subject of geometry found its first rigorous text in Euclid’s Elements. Euclid

tied together the major geometric results of his day, and proved them from a handful

of axioms. In particular, he assumed the following: Given a line ` and a point P not

on that line, there exists one and only one line going through P that is parallel to

`. As mathematics developed, geometry began to split up into several different areas

of study. The first results relating to projective geometry are credited to Pappus of

Alexandria during the third century B.C.E. [3, p. 3]. Centuries later, Renaissance

artists, including da Vinci and Dürer, used perspective to give depth to their artwork

[2, p. 3]. For example, if an artist were to paint railroad tracks going off into the

distance, then she would paint it so that the rails would gradually approach each

other. Eventually the rails would appear to meet each other. The astronomer Johann

Kepler, who lived from 1571 to 1630, built off of this idea when he suggested that

the Euclidean plane could be modified so that parallel lines would meet at points at

infinity [6, p. 29]. Next there was Victor Poncelot (1788 to 1867) who wrote the first

text on projective geometry [6, p. 30]. It was K. G. C. von Staudt (1798-1867) who

began to treat these points at infinity like ordinary points of the plane [3, p. 4]. ”But
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we are not really working in projective geometry until we are prepared to forget the

inferior status of such points and admit them into the community as full members

having the same privileges as ordinary points,” according to Coxeter. [3, p. 3]. The

foundations of the projective geometry were formalized during the nineteenth century,

and the subject continued to grow during the twentieth century [6, p. 30].

1.2 FUNDAMENTAL DEFINITIONS

The modern conception of a projective plane can be stated using incidence, without

explicitly using the idea of points at infinity.

Definition 1.2.1. A projective plane Π = (P ,L) is a set of points P and lines L,

called the elements of Π, together with an incidence relation I ⊂ P × L between

the points and lines such that:

(i) Any two distinct points are incident with a unique line.

(ii) Any two distinct lines are incident with a unique point.

(iii) There exist four points in P no three of which are incident with one line.

[8, p. 77].

If (P, `) ∈ I, i.e. if point P is incident with line `, we will write PI`, or even

P ∈ `, motivated by the intuitive notion that line ` is the set of all points incident

with it.

A projective plane Π = (P ,L) is said to be finite if and only if P is a finite set.

Definition 1.2.2. Any set of points incident with a common line are said to be

collinear [8, p. 77].
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If A and B are two distinct points in the plane, then the line incident with these

two points will be denoted AB.

Definition 1.2.3. A set of three distinct non-collinear points A, B, C, together with

the lines AB, BC, CA is called a triangle (denoted 4ABC ) [8, p. 77].

We now present some elementary propositions about finite projective planes. For

proof see the text by Hughes [8] on page 79.

Lemma 1.2.1. If Π is a finite projective plane, then the number of points on any

line is the same as the number of points on any other line.

If we denote the above number by n+ 1 , we say that Π is of order n.

Lemma 1.2.2. If Π is a plane of order n, then the number of lines on any point is

n+ 1. Dually, the number of points on any line is n+ 1.

Lemma 1.2.3. If Π = (P ,L) is a finite projective plane of order n, then |P| = |L| =

n2 + n+ 1.

Definition 1.2.4. Let Π be a finite projective plane of order n. Let P1, P2, ..., Pm be a

labeling of the points and `1, `2, ..., `m be a labeling of the lines, where m = n2+n+1.

The incidence matrix A of Π is an m×m matrix of zeros and ones such that aij = 1

if and only if Pj is on `i [8, p. 85].

It is easy to see that if A is the incidence matrix of a projective plane of order n, then

AAT = ATA = J + nI

where J is the m × m matrix of all 1’s, and I the m × m identity matrix, with

m = n2 + n+ 1.
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Definition 1.2.5. Let Π = (P ,L) be a projective plane. A subspace Π′ = (P ′,L′) is

a subset of Π ( so P ′ ⊂ P and L′ ⊂ L) such that the elements of Π′ form a projective

plane under the incidence relation of Π [8, p. 81].

Definition 1.2.6. An isomorphism from projective plane Π1 = (P1,L1) to Π2 =

(P2,L2) is a bijective mapping α : P1 → P2 which maps all subspaces of Π1 to

subspaces of Π2, that is :

E ⊆ F in Π1 if and only if Eα ⊆ Fα in Π2 [8, p. 21].

In particular, an isomorphism α : P1 → P2 will map the lines of L1 to those of

L2 where a line ` is identified with the set of points incident with `.

Definition 1.2.7. An automorphism (or collineation) of a projective plane Π is an

isomorphism from Π to Π [8, p. 21].

Definition 1.2.8. Let Π = (P ,L) be a projective plane, and suppose that V ∈ P

and ` ∈ L. A perspectivity (or (V, `)-perspectivity) is an automorphism α that fixes

` pointwise and V linewise [8, p. 95].

In the above definition, point V is called the center, and line ` the axis of α [8,

p. 95].

Definition 1.2.9. Let α be a (V, `) − perspectivity. If V ∈ `, then α is called an

elation [8, p. 95].

Definition 1.2.10. Let α be a (V, `) − perspectivity. If V /∈ `, then α is called a

homology [8, p. 95].

1.3 DESARGUES’ THEOREM IN EUCLIDEAN GEOMETRY

In this section, we temporarily consider the case of Euclidean geometry. However,

we maintain the terms collinear and triangle analogously to the corresponding notions
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in Definitions 1.2.2 and 1.2.3. Also, given two lines `1 and `2, we denote the point

incident with these two lines as `1 ∩ `2.

Definition 1.3.1. Two triangles 4A1A2A3 and 4B1B2B3 are said to be perspective

with respect to a point P if P is incident with each line AiBi for i ∈ {1, 2, 3} [1,

p. 14].

Similarly,

Definition 1.3.2. Two triangles 4A1A2A3 and 4B1B2B3 are said to be perspective

with respect to a line ` if the 3 points ((AiAj)∩ (BiBj)), for i, j ∈ {1, 2, 3}, i 6= j,

are collinear [1, p. 14].
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In Euclidean plane geometry, the concept of perspective triangles leads to the

following theorem (which we present without proof):

Theorem 1.3.1. (Desargues’ Theorem) Two triangles are perspective with re-

spect to a point if and only if they are perspective with respect to a line [6, p. 46].

Now, let us consider the case of projective planes again. In general, Desargues’

theorem does not always hold with respect to projective planes. [6, p. 176]. In fact,

there are projective planes with order as small as 9 that do not satisfy Desargues’

theorem [1, p. 88]. This directs us to the following definition:

Definition 1.3.3. A projective plane Π is said to be Desarguesian if, whenever two

triangles in Π are perspective with respect to a point of Π, they are also perspective

with respect to some line of Π (and conversely) [1, p. 14].

So Desarguesian planes are ones that satisfy Desargues’ theorem. It is known

that any finite plane of order n ≤ 8 must be Desarguesian [1, p. 88]. However, there

are non-Desarguesian planes with order as small as 9. In this thesis we will focus on

planes that are Desarguesian.
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1.4 KNOWN PLANES OF CERTAIN ORDERS

For n ≤ 15 the following table provides us with what is known about the number

of planes ν(n) of each order up to isomorphism :

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ν(n) 1 1 1 1 0 1 1 4 0 ≥ 1 ? ≥ 1 0 ?

1.5 A CRUCIAL THEOREM

The following theorem attributed to Richard H. Bruck and Herbert John Ryser

is a remarkable result connecting the existence of a projective plane of order n to

number theory. Actually, the Bruck-Ryser theorem is often used to prove the non-

existence of projective planes of a particular order n. Even though the conditions

of the theorem are easy to state and check, the proof of the theorem is rather non-

trivial. The theorem was proved by Bruck and Ryser in 1949 for projective planes,

and a more general result, known as the Bruck-Ryser-Chowla theorem was proved for

symmetric (v, b, r, k, λ) combinatorial designs in 1950.

Theorem 1.5.1. (The Bruck-Ryser) If n ≡ 1 or 2 (mod 4) and there is a projec-

tive plane of order n, then n can be expressed as the sum of two squares (of integers)

[8, p. 80].

Note that the Bruck Ryser theorem says nothing in the case where n ≡ 0 or 3

(mod 4), for example, since 12 ≡ 0 (mod 4), the Bruck-Ryser theorem cannot be of

any use for n = 12. However, since 14 ≡ 2 (mod 4) and 14 cannot be written as the

sum of two squares, projective planes of order 14 cannot exist.
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1.6 THE FIELD PLANE OF ORDER pa

Here we assume the existence of the unique (up to isomorphism) Galois field of

order pa, F = Fpa , where p is a prime and a is a positive integer.

Definition 1.6.1. Let X = (F⊕F⊕F)−{(0, 0, 0)}. We define a relation ∼ on X as

follows: (x1, x2, x3) ∼ (y1, y2, y3) ⇐⇒ ∃k ∈ F∗ such that (x1, x2, x3) = k(y1, y2, y3).

Let V = X/ ∼ be the set of equivalence classes of X with respect to ∼. (Note that if

|F| = q, then |V | = q3−1
q−1 = q2 + q+ 1.) Let P be a set of distinct representatives of V

under ∼. So |P| = |V | = q2+q+1. Also, P = {(xi, yi, zi)| i ∈ {1, 2, 3, . . . , q2+q+1}}.

Let L = {[x, y, z] | (x, y, z) ∈ P}. The field plane Π = (P ,L) is an incidence structure,

with incidence relation I defined by:

(x1, x2, x3) I [y1, y2, y3] ⇐⇒
3∑
i=1

xiyi = 0

for (x1, x2, x3) ∈ P and [y1, y2, y3] ∈ L.

It is easy to show that the field plane is in fact a finite projective plane of order

pa. Since there is always a Galois field of order pa we can construct a field plane of

order pa for any prime p and positive integer a. We can immediately conclude that

there are an infinite number of projective planes.

There are still substantial open questions with regards to the orders of projective

planes. As we saw above, for each prime power n = pa there is a plane of order n.

However, does there exist a plane of order not a prime power? The only known result

that gives insight into the possible orders of projective planes is the Bruck-Ryser

Theorem 1.5.1 . It is possible to find a number n that satisfies this theorem which

is not of the from pa. For example, n = 10 is not a power of a prime, but it satisfies

the theorem since 10 ≡ 2 (mod 4) and 10 = 12 + 32 [1, p. 93]. However, it has been

shown using an exhaustive computer search that there are no projective planes of
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order 10 [10]. As of today, no one has found a projective plane of order other than

pa [12].

There is a special relationship between Desarguesian and field planes.

Theorem 1.6.1. Let Π be a finite projective plane. Then Π is Desarguesian if and

only if it is a field plane [1, p. 77].

1.7 LATIN SQUARES AND PROJECTIVE PLANES

1.7.1 Latin Squares

Definition 1.7.1. Let R be a set of n distinct elements, which we take to be

{1, 2, . . . , n}. A latin square of order n is an n × n matrix with entries from R such

that each row and each column contains every element of R exactly once [8, p. 121].

For example, for n = 1 the following 1 × 1 matrix is a latin square: 1 . If we

look at the case when n = 3, one example of a latin square is the following:

Example 1.7.1.

3 1 2

2 3 1

1 2 3

Note that without loss of generality, any latin square can be renamed so that the

top row is in ascending order (so 1 2 3 . . . n). Latin squares can be found by brute

force, but we can use algebraic concepts to find them as well. Cayley showed that the

multiplication tables, or Cayley tables, of groups give a special form of latin squares

[4, p. 15]. To generalize this result, we need the following definition:

Definition 1.7.2. Let S be a set, and (·) be a binary operation. (S, ·) is a quasigroup

if ∀ a, b ∈ S, ∃ x, y ∈ S such that each of the following equations have exactly one

solution: ax = b and ya = b [4, p. 16].
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This leads to the following useful theorem:

Theorem 1.7.1. The multiplication table of a quasigroup is a latin square [4, p. 16].

Let us take a look at a particular example of a quasigroup.

Example 1.7.2. Let S be the set of integers modulo 3, and define the binary oper-

ation (·) on S, by a · b = 2a+ b+ 1. We get the following multiplication table:

(·) 0 1 2

0 1 2 0

1 0 1 2

2 2 0 1

−→

1 2 0

0 1 2

2 0 1

Where the multiplication table is indeed a latin square with its set being R =

{0, 1, 2} [4, p. 17].

In general, if we want to find one of the quasigroups (S, ·) of order n, then we can

consider the set S of the integers modulo n with operation defined by a·b = ha+kb+l

(mod n) with h, k, and l fixed integers where h and k are relatively prime to n [4,

p. 17]

1.7.2 Orthogonal Latin Squares

Definition 1.7.3. Let A = A(i, j) and B = B(i, j) be two latin squares on the

symbols X = {1, 2, . . . , n}. We say that A and B are orthogonal if and only if when

A and B are superimposed (one is placed on top of the other) all possible pairs of

X×X will appear, which means {( A(i, j), B(i, j) ) | 1 ≤ i ≤ n, 1 ≤ j ≤ n} = X×X.

If A and B are orthogonal latin squares, we denote this condition by A ⊥ B.
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Example 1.7.3. For X = {1, 2, 3} the following two latin squares are orthogonal:

A =


1 2 3

2 3 1

3 1 2

 B =


1 2 3

3 1 2

2 3 1


It is possible to have a set of several latin squares, say k of them, of order n which

are mutually orthogonal where for each pair of latin squares A,B from the set, A ⊥ B.

Example 1.7.4. For X = {1, 2, 3, 4, 5}, and k = 3 consider:

A =



1 2 3 4 5

2 3 4 5 1

3 4 5 1 2

4 5 1 2 3

5 1 2 3 4


B =



1 2 3 4 5

3 4 5 1 2

5 1 2 3 4

2 3 4 5 1

4 5 1 2 3


C =



1 2 3 4 5

4 5 1 2 3

2 3 4 5 1

5 1 2 3 4

3 4 5 1 2


Suppose that A is a latin square on the symbols X = {1, 2, . . . , n}, and suppose

that π is a permutation in Sn. We denote by π(A) the result of renaming the symbols

in A by their images under π. It is clear that π(A) will also be a latin square.

Moreover, if A and B are two orthogonal latin squares, then from A ⊥ B follows that

A ⊥ π(B) and π(A) ⊥ B. An easy consequence of this fact is that if A1, A2, . . . , Ak

is a set of mutually orthogonal latin squares (MOLS), we can select permutations

π1, π2, . . . , πk so that π1(A1), π2(A2), . . . , πk(Ak) are mutually orthogonal, and all have

their first rows precisely the sequence (1, 2, 3, . . . , n) . So, without loss of generality,

we write MOLS in this form. The question now becomes, what is the maximum

number of n× n MOLS that can be found?

Definition 1.7.4. Let G be a set of n× n mutually orthogonal latin squares. G is a

complete set of mutually orthogonal latin squares if the size of G is n− 1 [4, p. 161].
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A complete set gives an upper bound on the number of MOLS, which is seen in

the next proposition.

Proposition 1.7.1. Any set of mutually orthogonal n× n latin squares has at most

n− 1 matrices [8, p. 122].

So we see that Example 1.7.3 is a complete set of 3× 3 MOLS. However, Example

1.7.4 is not a complete set, since a complete set would need one more matrix. A set

of MOLS is a maximal set of mutually orthogonal latin squares if it is not a proper

subset of a larger set of MOLS of that order. It is worth mentioning that there are

integers k, n, with k < n− 1 for which there is a maximal set of k MOLS of order n.

We will see that projective planes can be derived from certain sets of MOLS. In

the mean time, we look at the tableau corresponding to a set of mutually orthogonal

latin squares. For a set of k MOLS where each matrix is n× n, we will get a tableau

(or matrix) of dimension (n2)×(2+k). If X = {1, 2, . . . , n} is the set of elements that

form the MOLS, then in the first two columns we input all possible ordered pairs of

X ×X in ascending order. Next, for the remaining columns, if (i, j) was the ordered

pair (coordinate) in the first two columns of row t, then for each of the k MOLS

A1, A2, . . . , Ak we would input Ami,j in row t, column m+ 2.

1 1 A1
1,1 A2

1,1 . . . Ak
1,1

1 2 A1
1,2 A2

1,2 . . . Ak
1,2

...
...

...
...

...

1 n A1
1,n A2

1,n . . . Ak
1,n

2 1 A1
2,1 A2

2,1 . . . Ak
2,1

2 2 A1
2,2 A2

2,2 . . . Ak
2,2

...
...

...
...

...

2 n A1
2,n A2

2,n . . . Ak
2,n

...
...

...
...

...

n 1 A1
n,1 A2

n,1 . . . Ak
n,1

...
...

...
...

...

n n A1
n,n A2

n,n . . . Ak
n,n
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Example 1.7.5. We find the tableau of the MOLS from Example 1.7.4 above.

1 1 1 1 1
1 2 2 2 2
1 3 3 3 3
1 4 4 4 4
1 5 5 5 5
2 1 2 3 4
2 2 3 4 5
2 3 4 5 1
2 4 5 1 2
2 5 1 2 3
3 1 3 5 2
3 2 4 1 3
3 3 5 2 4
3 4 1 3 5
3 5 2 4 1
4 1 4 2 5
4 2 5 3 1
4 3 1 4 2
4 4 2 5 3
4 5 3 1 4
5 1 5 4 3
5 2 1 5 4
5 3 2 1 5
5 4 3 2 1
5 5 4 3 2

As we will see, tableaux are useful in forming projective planes, but we can notice

something else with regards to mutually orthogonal latin squares.

Proposition 1.7.2. If any two columns of the tableau T corresponding to a set of k

MOLS are used as coordinates, then the remaining columns of T yield k MOLS [7,

p. 190].

In Example 1.7.5 we had 3 MOLS, where each matrix is 5× 5. We can now look

at what happens if we have a complete set of mutually orthogonal latin squares.

Theorem 1.7.2. There exists a finite projective plane of order n if and only if there

exists a complete set of n− 1 mutually orthogonal n× n latin squares. [8, p. 122].

13



Specifically, if we form a tableau from a complete set of mutually orthogonal latin

squares, then we will be able to use the tableau to find a finite projective plane.

Complete sets of MOLS are key in studying projective plane. If for a certain number

n there is not a complete set of n × n MOLS, then there will not be a projective

plane of order n. As we mentioned earlier, so far only projective planes of order pa

have been found, where p is a prime. In 1779, Leonhard Euler pondered whether

there was a set of 2 mutually orthogonal latin squares of order n = 6, and he made

the claim that there would not be such a pair of MOLS. [4, p. 11]. This question

went unanswered until G.R. Tarry proved Euler correct in 1900 [4, p. 160]. In fact,

Euler conjectured that if n ≡ 2 mod 4, that there would not exist a pair of n × n

orthogonal latin squares. However, this time Euler was disproved when R. C. Bose

and S. S. Shrikhande found a pair of orthogonal latin squares of order 22, which is

congruent to 2 (mod 4) [4, p. 397]. Actually, it has been shown that Euler’s conjecture

is wrong for all n > 6 [4, p. 416].

We will now use a set of mutually orthogonal latin squares to construct a finite

projective plane. First, we will find the tableau from the orthogonal latin squares in

Example 1.7.3.

A =


1 2 3

2 3 1

3 1 2

 B =


1 2 3

3 1 2

2 3 1



Example 1.7.6. The tableau we get is

1 1 1 1
1 2 2 2
1 3 3 3
2 1 2 3
2 2 3 1
2 3 1 2
3 1 3 2
3 2 1 3
3 3 2 1
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Since we started with a complete set of 2 MOLS of order 3, we will get a plane of

order 3. Our plane will therefore have 32 + 3 + 1 = 13 points and 13 lines. To get the

plane, we begin by choosing four numbers less than or equal to 13, which will be the

points on a line l. In this example, we use l = 1 2 5 7. We adjoin l to the top of our

tableau. Along the left side we fill in the rest of the numbers that we did not choose

from {1, 2, . . . , n} . This modified tableau appears below to the left. Now that we

have the modified tableau, we can get the plane. In the first row, we write the line

l. In the modified tableau we look underneath the first point of l for any rows that

contain the number 1. We see that the rows corresponding to the numbers 3, 4, and 6

contain ones, so the second line of the plane will be the first point of l with 3, 4, and

6, namely 1 3 4 6. Similarly, we search for all of the rows that contain the number

2 in the first column, and we get the line 1 8 9 10. We do the same for 3, and get

1 11 12 13. Next, we look at the second column (the column underneath the second

point of l) and repeat the process. We see that the rows corresponding to 3, 8, and

11 have ones, and so the next line will be the second point of l with 3, 8, and 11. We

repeat this process for each column, and for each of the numbers 1, 2, and 3.

1 2 5 7

3 1 1 1 1
4 1 2 2 2
6 1 3 3 3
8 2 1 2 3
9 2 2 3 1
10 2 3 1 2
11 3 1 3 2
12 3 2 1 3
13 3 3 2 1

−→ P =

1 2 5 7
1 3 4 6
1 8 9 10
1 11 12 13
2 3 8 11
2 4 9 12
2 6 10 13
5 3 10 12
5 4 8 13
5 6 9 11
7 3 9 13
7 4 10 11
7 6 8 12

We started with a complete set of order 3 orthogonal latin squares and got the
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plane P . The indices in the matrix correspond to a numbering of the points in the

plane. Each row of P corresponds to a line of the plane. For example, the fifth row

down would correspond to the fifth line in the plane l5 = 2 3 8 11 where 2, 3, 8, and

11 are the points on the line.
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Chapter 2

Approach

2.1 THE KSIMS ALGORITHM

In 1968, Professor Charles Sims published a remarkable algorithm which facili-

tates computation with finite permutation groups. Various improved versions were

developed since then [13, 9, 11]. These algorithms are of polynomial time complexity,

and have the following properties in common: i) the input is a set of generators for

a permutation group G, and the output consists of a structure of permutations called

a set of strong generators for the group [13] , ii) given any element x ∈ Sn there is an

efficient algorithm to decide whether x ∈ G, iii) there is an efficiently computable

bijective mapping from Z|G| to G. Using this map, one can run through the elements

of the group without duplication. The current version of the algorithm ksims used in

this thesis was developed by Leo Chouinard, Jr. and Spyros Magliveras in the late

1970’s at the University of Nebraska, Lincoln, and is based on a non-deterministic

procedure. The algorithm is called ksims in honor of Donald Knuth and Charlie Sims.

We use ksims often to recursively generate automorphism groups of projective planes.

The input for ksims is a matrix (aij), where each row i represents a single permu-

tation with j mapping to aij. At its termination, the program returns the order of

the group, and stores three objects in a predefined variable ’G’ : 1) the prescribed

name of the group, 2) the set of generators of the group, and 3) the logarithmic
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signature of the group.

Definition 2.1.1. Let G be a finite group and A1, A2, . . . , As ⊂ G. The ordered

sequence α = [A1, A2, . . . , As] is a logarithmic signature of G if and only if every

element of g ∈ G can be represented uniquely in the form:

g = x1 · x2 · · ·xs where xi ∈ Ai.

In the following example, ksims is used to generate the alternating group A5.

Example 2.1.1. It is easy to show that A5 = 〈 (1 2 3 4 5), (1)(2)(3 4 5) 〉 where

the above generating permutations are in cycle form. The input for ksims is the

matrix gens =
[
[2 3 4 5 1]
[1 2 4 5 3]

]
, where each row corresponds to the bottom row of a

permutation written in the standard Cartesian form. So, the first row of the input

matrix corresponds to permutation (1 2 3 4 5) = ( 1 2 3 4 5
2 3 4 5 1 ) = [2 3 4 5 1] and the

second row to (1)(2)(3 4 5) = ( 1 2 3 4 5
1 2 4 5 3 ) = [1 2 4 5 3]. The program ksims is run

by typing G← ‘A5‘ ksims gens, where G is the computed structure of the group.

The program returns |G| = 60, while it stores the group name (A5) , gens, and the

logarithmic signature of G. The computed output structure is:

A5
2 3 4 5 1
1 2 4 5 3

3 8 12 15 15
5 4 3 1 1
1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4
1 2 3 4 5
1 3 4 2 5
1 4 5 2 3
1 5 3 2 4
1 2 3 4 5
1 2 4 5 3
1 2 5 3 4
1 2 3 4 5
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The logarithmic signature of G is the 12 × 5 matrix found by taking the third

object and removing the first, second, and last rows (the top two rows are present to

facilitate computations using the logarithmic signature).

2.2 COMPUTING

In this project, we are interested in finding the full automorphism group of finite

projective planes, and we use a specific type of perspectivity to generate these groups.

We use perspectivities that fix a line l pointwise and fix a point V linewise where V

is not on l, which as we saw in Definition 1.2.10 is called a homology. We want to

be able to find a homology α given any finite projective plane Π = (P ,L). The

program fixpl does this, and the following is a description of this program.

The incidence matrix A of Π needs to be obtained before fixpl is run. The program

is run by inputting a point V and a line l. The program checks to see if V is on l, and

if it is then an error code is returned. From here on, we assume that V is not on l. If

n is the order of Π, then fixpl stores n2 + n + 1 as r (which is the number of points

and the number of lines in Π). Next, the program forms two 1× r vectors pperm and

lperm which will represent the point and line permutations for α, respectively. These

two vectors are initially filled with 0′s, and as computation proceeds new entries are

determined. Fixpl finds the points {S1, S2, . . . , Sn+1} on line l using the program

ptset and stores the points under the name of set. Next, program lnon determines

the line l1 between V and the first point S1 in set. As previously mentioned, our

perspectivity α will be fixing point V and the points Si of l. However, there are still

points on l1 that are free to “move around”. We call these points qset, and they can

be found by getting the set of points on l1 and removing V and S.
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We are now able to start filling elements into pperm and lperm. Since V and the

points of set are fixed by α, the program fixes their corresponding points in pperm.

For example, if our point V was point number 4, then the fourth element of pperm

would be set to 4. Even so, the elements from qset are free to move around. The

program chooses to map the first element Q1 of qset to the second element Q2 of qset,

so this means that pperm[Q1] is set to Q2. Peculiarly enough, the information that

we have specified in pperm is enough to determine the homology α completely. Since

we have fixed certain points and mapped one element from qset to another, there will

already be lines that get fixed, namely {l, V S1, V S2, . . . , V Sn+1}, while other lines

are permuted, for example S1Q1 moves to S2Q2. There will be other lines that can

be determined from pperm, but we will not necessarily be able to determine all of

lperm yet. We have a program pimplies that finds all line permutations that can be

determined from current pperm information. Similarly, limplies is a program that

inputs lperm and pperm, and finds all of the point permutations that are determined

by lperm. The program fixpl uses pimplies to find more of lperm, and then uses

limplies to fill in more of pperm. Fixpl now goes back and forth between pimplies
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and limplies, creating an avalanche of point and line implications that will not stop

until both pperm and lperm are completely determined. Once there are no more

entries in pperm to be filled, fixpl outputs pperm.

2.3 FINDING A HOMOLOGY FOR THE PLANE OF ORDER 4

In this section, we present an example where the fixpl process will be used to find

a homology for the finite projective plane of order 4. The plane will be described

using its incidence matrix A below. You should recall that each row represents a line

of the plane, where 1′s indicate which points are on the line. For example, the first

row is the first line, and it contains the points 1 2 3 4 5 since there are 1′s in the first,

second, third, fourth, and fifth columns.

A =

1 1 1 1 1 . . . . . . . . . . . . . . . .
1 . . . . 1 1 1 1 . . . . . . . . . . . .
1 . . . . . . . . 1 1 1 1 . . . . . . . .
1 . . . . . . . . . . . . 1 1 1 1 . . . .
1 . . . . . . . . . . . . . . . . 1 1 1 1
. 1 . . . 1 . . . 1 . . . 1 . . . 1 . . .
. 1 . . . . 1 . . . 1 . . . 1 . . . 1 . .
. 1 . . . . . 1 . . . 1 . . . 1 . . . 1 .
. 1 . . . . . . 1 . . . 1 . . . 1 . . . 1
. . 1 . . 1 . . . . . . 1 . . 1 . . 1 . .
. . 1 . . . 1 . . . . 1 . . . . 1 1 . . .
. . 1 . . . . 1 . . 1 . . 1 . . . . . . 1
. . 1 . . . . . 1 1 . . . . 1 . . . . 1 .
. . . 1 . 1 . . . . 1 . . . . . 1 . . 1 .
. . . 1 . . 1 . . 1 . . . . . 1 . . . . 1
. . . 1 . . . 1 . . . . 1 . 1 . . 1 . . .
. . . 1 . . . . 1 . . 1 . 1 . . . . 1 . .
. . . . 1 . . 1 . 1 . . . . . . 1 . 1 . .
. . . . 1 . 1 . . . . . 1 1 . . . . . 1 .
. . . . 1 1 . . . . . 1 . . 1 . . . . . 1
. . . . 1 . . . 1 . 1 . . . . 1 . 1 . . .

If you look at A, you can notice that the sixth line of the plane does not contain

the point 5. We will choose to use this line and this point to find a homology, so we

set l = 6 and V = 5. Since the order of the plane is 4, r = 21, which is the number of
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points and the number of lines in the plane. Next, we form two 1 × 21 permutation

vectors, which start as pperm = lperm = (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0).

Line 6 contains the points (2 6 10 14 18), so set is defined to be these points. The

first point of l is 2, so using the program lnon the line l1, the line through the points

2 and 5, is determined to be the line 1. The points on l1 are (1 2 3 4 5), so the

points 2 and 5 are removed to get qset = (1 3 4). The points of l and the point

V are fixed, so pperm = (0 2 0 0 5 6 0 0 0 10 0 0 0 14 0 0 0 18 0 0 0). The first

point from qset will be mapped to the second point from qset, so point 1 gets sent to

point 3. This means that the first element of pperm is set to be 3, so pperm becomes

(3 2 0 0 5 6 0 0 0 10 0 0 0 14 0 0 0 18 0 0 0). Now the programs pimplies and limplies

will be used repeatedly until all of pperm is determined.

In the first iteration, pimplies sets lperm to be equal to

(1 10 13 12 11 6 0 0 0 0 0 0 0 0 0 0 0 18 19 20 21). Also, it uses limplies to change

pperm to (3 2 0 0 5 6 13 19 16 10 9 15 20 14 21 11 8 18 17 7 12).

In the second iteration, pimplies causes lperm to become

(1 10 13 12 11 6 9 7 8 14 16 17 15 2 3 5 4 18 19 20 21). Finally, limplies modifies

pperm to be (3 2 4 1 5 6 13 19 16 10 9 15 20 14 21 11 8 18 17 7 12).

After only two iterations, fixpl is able to determine a homology from the point

V = 5 and the line l = 6. The program would return pperm. If this permutation was

written in cycle notation, it would be

(1 3 4)(2)(5)(6)(7 13 20)(8 19 17)(9 16 11)(10)(12 15 21)(14)(18).

2.4 OLDAUTGENS

The program fixpl is able to find homologies for a Desarguesian plane. Another

program, oldautgens, calls fixpl repeatedly in an attempt to generate the full auto-
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morphism group of the plane. The input for oldautgens is an incidence matrix A of a

finite projective plane. Oldautgens begins by finding a random point V and a random

line ` in the plane, such that V is not on `. Next, fixpl is used to find a homology

from V and `. This homology is added into a set of generators gens, which in turn is

used to create a group G using the programs ksims. The process begins again with

another homology α found from a new random point and line. If α is a new homology

that is not in G, then it is added to gens, and the group G is regenerated. This cycle

continues on. What if the homology α is already in G? Perhaps, the process needs to

be repeated a few times before a new homology α /∈ G is found. We stipulate that if

for 20 consecutive iterations each random homology α we find satifies α ∈ G, then we

can safely assume that the group G is probably as large as it will get. The program

then stops, and stores the group under the variable G.

We will check to see if oldautgens is accurately generating the full automorphism

group of planes. We use oldautgens on finite projective planes of various orders, and

compare the results to the actual known order of the full automorphism group of the

planes.

Results from running oldautgens

Order of Plane Order of Automorphism

Group Generated by oldaut-

gens

Actual Order of Auto-

morphism Group

3 5616 5616

4 60480 120960

5 372000 372000

8 16482816 49448448

9 (field plane) 42456960 84913920

11 212427600 212427600

16 (field plane) 4277145600 17108582400
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Notice that oldautgens accurately finds the full automorphism group for planes

of prime order. However, the program does not succeed for planes of order pa, p a

prime, a > 1. For example, the group generated for the plane of order 4 is half of

what it should be, and similarly for the field plane of order 9. Further for the plane

of order 8, the group is one-third of what it should be, and the field plane of order 16

yields a group one-fourth of the correct size. It would appear that if the order of the

plane is pa, then autgens is generating an automorphism group that is 1/a of the size

of the actual group. It seems that in order to get the full automorphism group the

collineation induced by the Frobenius automorphism of the field needs to be added

to the set of generators.

Definition 2.4.1. Let F be a field of characteristic p. The Frobenius automorphism

is the function φ : F→ F defined such that ∀ a ∈ F, φ(a) = ap [5, p. 549].

For a, b, c, x, y, z ∈ F if ax+ by+ cz = 0, then under the Frobenius automorphism

apxp + bpyp + cpzp = 0. This means that the Frobenius automorphism preserves

incidences between points and lines. Therefore, the Frobenius automorphism induces

a collineation of the plane. In the next chapter, a method for finding the Frobenius

automorphism is discussed and utilized.
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2.5 PROGRAMS

fixpl

[0] pperm ← fixpl u; pt; ln; r; lperm; qset; set; t; k1; k2

[1] pt← u[1] � ln← u[2]

[2] v ← 1 ↑ ρA � pperm← lperm← vρ0

[3] set← ptset ln

[4] → er × ι 1 = pt ∈ ptset ln

[5] qset← ptset lnon pt, set[1]

[6] t← ∼ qset ∈ pt, set � qset← t/qset

[7] pperm[pt, set]← pt, set

[8] pperm[qset[1]]← qset[2]

[9] a1 : k1← +/pperm 6= 0

[10] lperm← lperm pimplies pperm

[11] pperm← pperm limplies lperm

[12] k2← +/pperm 6= 0

[13] → a1× ιk2 6= k1

[14] → 0

[15] er : ′pt on line error.′
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oldautgens

[0] G← autgens A; v; count; pt; ln;x;niterat;w; gens

[1] v ← (ρA)[2] � w ← (1, v)ρ 0

[2] gens← (0, v)ρ ι v � count← 0 � niterat← 20

[3] G← ′G′ ksims gens

[4] a1 : pt←?v � ln←?v

[5] → a1× ι pt ∈ ptset ln

[6] x← fixpl pt, ln

[7] → a2× ι ′−′ ∈ x In G

[8] count← count+ 1

[9] → end× ι count > niterat

[10] → a1

[11] a2 : gens← gens, [1]x

[12] ′ −−−−′

[13] G← ′G′ ksims gens

[14] → a1

[15] end : order G
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Chapter 3

Coordinatization of the Plane and the

Frobenius Map

3.1 COORDINATIZATION OF THE PLANE

When discussing planes in elementary mathematics, the Cartesian coordinate sys-

tem is often used. This coordinate system allows for each point in the plane to be

uniquely named using an ordered pair of real numbers. Therefore, the set of all of the

points in the plane can be written {(x, y) | x ∈ R and y ∈ R}. This system depends

on two axes named the x − axis and y − axis. The x − axis is a line consisting of

the points {(x, 0) | x ∈ R}, and similarly the y− axis is {(0, y) | y ∈ R}. Hughes and

Piper give a method for coordinatizing finite projective planes [8, p. 111-112]. In this

section, this method is explained.

For the Cartesian coordinate system, the set of real numbers are used for the

ordered pairs labeling points. The set of numbers that will be used for the finite

projective plane system is R = {0, 1, 2, . . . , n − 1} where n is the order of the

plane. The first step in defining the coordinates is to pick picking three distinct lines

that are not concurrent, and labeling them `1, `2, and `∞. For the coordinatization,

the line `1 will play a role similar to that of the y−axis, and `2 to that of the x−axis.

The line `∞ is the line at infinity. Second, the points incident with each pair of these
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lines is labeled: so X = `2 ∩ `∞, Y = `∞ ∩ `1, and O = `1 ∩ `2. Third, an arbitrary

point, not incident with `1, `2, or `∞, is chosen and labeled I. Fourth, the following

points are defined: C = (XI) ∩ `1, B = (Y I) ∩ `2, and J = (CB) ∩ `∞.

Now that these points and lines are defined, the process of assigning coordinates

to the points can begin. The point O will act like the origin, and will be labeled (0, 0).

The point C is labeled (0, 1). Recall that both O and C are on `1. The remaining

points on `1 are arbitrarily labeled (0, 2), (0, 3), . . . , (0, n − 1) with the exception of

the point Y , which will be given a special label later. The points on `2 will now be

labeled. For all points D on the line `2, such that D 6= X, if D′ = (JD) ∩ `1 where

D′ = (0, d), then label D as (d, 0).
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The axes `1 and `2 will now be used to label the remaining points in the plane,

with the exception of the points on `∞ which will be christened last. For all points

E that are not on `∞, if (XE) ∩ `1 = (0, q) and (Y E) ∩ `2 = (f, 0), then E is set to

be (f, q).

Finally, the points on `∞ will be labeled. If M is a point on `∞ and if the line

incident with the points M and (1, 0) meet the line `1 at (0,m), then M = (m). The

point Y is set to be (∞). All of the points of the finite projective plane have now

been coordinatized.
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Hughes and Piper also describe a method for coordinatizing the lines of the plane

using the coordinatization of points [8, p. 112]. For any line ` that does not contain

the point Y if ` ∩ `∞ = (m) and ` ∩ `1 = (0, k), then ` = [m, k]. If Y is on ` and

` ∩ `2 = (b, 0), then ` = [b]. The line `∞ is set equal to [∞].

Definition 3.1.1. A ternary ring is a nonempty set S together with a ternary opera-

tion T such that ∀ a, b, c ∈ S there exists a unique element k ∈ S where T (a, b, c) = k

[8, p. 113].

In particular, there is a ternary ring that can be defined using the underlying

incidence structure of a projective plane, along with a coordinatization of its points

and lines.

Definition 3.1.2. Let Π be a projective plane coordinatized (using the method de-

scribed above) by a set R. A planar ternary ring (R, T ) with T defined such that

∀ a, b, c ∈ R, T (a, b, c) = k if and only if the point (b, c) is on [a, k] [8, p. 113].

It is not difficult to show that when defined this way T is a ternary operation.

Theorem 3.1.1. Let Π be a projective plane coordinatized by a set R. If T is defined

as above, then the following properties hold:

(A) T (a, 0, c) = T (0, b, c) = c for all a, b, c ∈ R

(B) T (a, 1, 0) = T (1, a, 0) = a for all a ∈ R

(C) If a, b, c, d ∈ R, a 6= c, then there is a unique x ∈ R such that T (x, a, b) =

T (x, c, d).

(D) If a, b, c ∈ R then there is a unique x ∈ R such that T (a, b, x) = c

(E) If a, b, c, d ∈ R, a 6= c, then there is a unique ordered pair x, y ∈ R such that

T (a, x, y) = b and T (c, x, y) = d [8, p. 113].
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Planar Ternary Rings (PTRs) will provide a method of finding the underlying field

of a finite Desarguesian plane. Given a PTR (R, T ), we define two binary operations

as follows:

(i) (R,+) where ∀ a, b ∈ R, a+ b = T (1, a, b)

(ii) (R∗, ·) where ∀ a, b ∈ R, a · b = T (a, b, 0)

[8, p. 117].

When defined this way, (R,+) and (R∗, ·) are loops [8, p. 117]. As seen before

in Theorem 1.6.1, every finite Desarguesian plane is also a field plane. Therefore,

each finite Desarguesian plane of order n has a corresponding field of order n. If

R is a coordinatizing set of a finite Desarguesian plane Π, where |Π| = |R| = n,

then the addition (R,+) and multiplication (R∗, ·) defined above are the addition

and multiplication of the field F = R of order n [8, p. 120]. Consequently, if we

coordinatize a finite Desarguesian plane, then we have a way of finding its underlying

field. This gives us the ability to find the Frobenius automorphism.

This coordinatization method was implemented into our program coord. The input

for coord is the incidence matrix A of a finite Desarguesian plane of order n. The

program uses the above technique to coordinatize the plane. It also uses the planar

ternary ring to find the addition and multiplication of the plane’s field. Finally, the

program stores three objects in a predefined variable z: 1) the addition table of the

field pl, 2) the multiplication table of the field mu, and 3) the coordinatization of

the points crds. The coordinatization crds is a (n2 + n + 1) × 2 matrix where each

row corresponds to a point written as an ordered pair. Also for the points on `∞, if

the point was coordinatized as (m), then in crds the point is stored as (−1,m). The

point (∞) is stored as (−1,−1). We use coord on the plane of order 4 from Section

2.3.
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Example 3.1.1. Given the incidence matrix A from Section 2.3, we type z ← coord A

in APL. The program stores the following under z

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

0 0 0 0
0 1 2 3
0 2 3 1
0 3 1 2

0 0
0 1
0 2
0 3
−1 −1
−1 0
2 0
1 0
3 0
1 1
3 3
−1 1
2 2
2 1
−1 3
3 2
1 3
3 1
1 2
2 3
−1 2

where

+ 0 1 2 3

0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

· 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

The third item of z is the coordinatization of the points. In the third row we see

(0, 2), so the coordinatization of the third point is (0, 2). We have a program decoord

that when given coordinates will return the original point. For example, decoord (0, 2)

would return 3.
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3.1.1 Program

coord

[0] z ← coord A;n;m; k;w; z;u; l1; l2; o; inf ; li;x; y; i; c; b; j; l1r; l2r; v;D;D1;h; epts;

e; q; f ; lir;M ;m1

[1] n← (ρA)[2] � m← (+/A[1; ])− 2 � k ← h← w ← z ← u← 1 � epts← ι n

[2] crds← n 2ρ 0 � l1← ptset 1 � l2← ptset 2 � o← pton 1 2

[3] a1 : inf ←?n � li← ptset inf

[4] → a1× ι o ∈ li

[5] x← pton 2 inf � y ← pton inf 1

[6] a2 : i←?n

[7] → a2× ι i ∈ l1, l2, li

[8] c← pton (lnon x i) 1 � b← pton (lnon y i) 2

[9] j ← pton (lnon c b) inf � crds[o; 2]← 0 � crds[c; 2]← 1

[10] l1r ← (o 6= l1)/l1 � l1r ← (c 6= l1r)/l1r � l1r ← (y 6= l1r)/l1r

[11] a3 : crds[l1r[k]; 2]← (k + 1)

[12] → a3× ι m > k ← k + 1

[13] l2r ← (x 6= l2)/l2 � v ← ρ l2r

[14] a4 : D ← l2r[h] � D1← pton (lnon j D) 1

[15] crds[D; 1]← crds[D1; 2]

[16] → a4× ι v ≥ h← h+ 1

[17] a5 : epts← (li[w] 6= epts)/epts

[18] → a5× ι (m+ 2) ≥ w ← w + 1

[19] a6 : e← epts[z]

[20] q ← crds[(pton (lnon x e) 1); 2] � f ← crds[(pton (lnon y e) 2); 1]

[21] crds[e; ]← f q

[22] → a6× ι (ρ epts) ≥ z ← z + 1

[23] crds[y; ]← (−1 − 1) � lir ← (y 6= li)/li

[24] a7 : M ← lir[u] � m1← crds[(pton (lnon M b) 1); 2]

[25] crds[M ; ]← −1 m1

[26] → a7× ι (ρ lir) ≥ u← u+ 1

[27] pl← fplus crds � mu← ftimes crds

[28] z ← (⊂ pl), (⊂ mu), (⊂ crds)

33



3.2 IMPLEMENTING THE FROBENIUS AUTOMORPHISM INTO

AUTGENS

As mentioned previously, the underlying field operations, (F,+) and (F∗, ·), of a

finite Desarguesian projective plane can be found when the plane is coordinatized.

The program coord finds the addition table pl, the multiplication table mu, and the

coordinatization of the points crds. Another program frob uses the multiplication

table mu determined by coord to apply the Frobenius automorphism to elements of

the coordinatizing set R = F.

The program oldautgens will now be amended to become autgens. The new pro-

gram autgens starts exactly like oldautgens. It uses homologies to find a set of genera-

tors gens, which in turn is used to find the group G. Now come the changes. Autgens

finds the Frobenius automorphism α by applying frob to each of the points of the

plane. The automorphism α is then added to gens. Finally, the group G is generated

one last time, and autgens stores G as its result. The following table lists the size of

the automorphism group generated by autgens from planes of various sizes.

Results from running autgens

Order of Plane Time to Run Order of Automorphism

Group Generated by autgens

Actual Order of Auto-

morphism Group

3 1.951s 5616 5616

4 2.1s 120960 120960

5 20.917s 372000 372000

8 2m 1.046s 49448448 49448448

9 (field plane) 2m 40.496s 84913920 84913920

11 9m 33.818s 212427600 212427600

16 (field plane) 2h 29m 3.103s 17108582400 17108582400

The program autgens is able to successfully generate the full automorphism group

34



for the listed planes. Clearly, as the order of the plane gets larger, the time it takes

autgens to finish increases. Is there a way to decrease the run time? Recall that in

the program there was a constant named niterat. During the first phase of autgens,

if the program finds a new homology α which is not in the group generated by the

earlier (non-redundant) homologies in gens, then it adds α to the set of generators

gens. However, if α is already in the group generated by gens, then autgens does

not add α. If the program is unable to find a new homology niterat = 20 times,

then it goes onto the “Frobenius” phase. We set niterat to 20 so that autgens would

safely generate the full automorphism group. If we decrease the value of niterat, then

the program will speed up. However, if we set niterat too low, there is a danger of

generating only a proper subgroup of the automorphism group.

Probability of autgens finding the full automorphism group

for different values of niterat (80 trials)

niterat Plane of Order 3 Plane of Order 4 Plane of Order 5

0 75 % 96.25 % 90 %

1 93.75 % 96.25% 97.5 %

2 98.75 % 100 % 100 %

3 100 % 100 % 100 %

Notice that when niterat was set to be 3, autgens was completely successfully in

generating the full automorphism group for the three planes. In general, it appears

that as the order of the plane increases, the probability of success for any individual

value of niterat goes up (with the exception of niterat = 0 for the plane of order 5).

We will now set niterat = 3 and check to see how quickly autgens finishes for planes

of various orders.
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Time for autgens to finish

Order of Plane Time to Run niterat = 3 Time to Run niterat = 20

3 0.723s 1.951s

4 2.028s 2.1s

5 6.618s 20.917s

8 1m 9.975s 2m 1.046s

9 (field plane) 1m 16.680s 2m 40.496s

11 2m 44.484s 9m 33.818s

16 (field plane) 23m 19.975s 2h 29m 3.103s

Note that the full automorphism group was successfully generated in each of the

cases. When niterat was set to be equal to 3 the time went down significantly. For

example, autgens was more than five times faster for the field plane of order 16 when

niterat = 3. It would appear that when niterat = 3, autgens is able to safely, but

quickly, calculate the full automorphism group.
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3.2.1 Program

autgens

[0] G← autgens A; v; count; pt; ln;x;niterat;w; z; q;h; gens

[1] v ← (ρA)[2] � w ← (1, v)ρ 0 � z ← coord A � q ← 1

[2] gens← (0, v)ρ ι v � count← 0 � niterat← 20

[3] G← ′G′ ksims gens

[4] a1 : pt←?v � ln←?v

[5] → a1× ι pt ∈ ptset ln

[6] x← fixpl pt, ln

[7] → a2× ι ′−′ ∈ x In G

[8] count← count+ 1

[9] → end× ι count > niterat

[10] → a1

[11] a2 : gens← gens, [1]x

[12] ′ −−−−′

[13] G← ′G′ ksims gens

[14] → a1

[15] end : order G

[16] a4 : h← crds[q; ]

[17] → a5× ι h[1] = −1

[18] h[1]← frob h[1]

[19] a5 : → a6× ι h[2] = −1

[20] h[2]← frob h[2]

[21] a6 : w[1; q]← decoord h

[22] q ← q + 1

[23] → a4× ι q ≤ v

[24] gens← gens, [1]w

[25] ′ −−−−−′

[26] G← ′G′ ksims gens

[27] order G
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Chapter 4

Conclusion

In this thesis, we wanted to generate the full automorphism group of finite pro-

jective Desarguesian planes. The main product of our work was the program autgens

within the APL package named AUTPPS. The program autgens made extensive use

of another program fixpl, which finds homologies in the plane, and the program ksims

which generates a logarithmic signature of a permutation group from a set of gener-

ators. When we attempted to use autgens on non-Desarguesian planes, the program

was unsuccessful. It would appear that our process for finding homologies does not

work consistently on non-Desarguesian planes. As an example, for the Hall plane of

order 9, fixpl was able to find only one (V, 1)-homology (fixing the line 1 and any

point V not on line 1). However, when fixpl was used on Desarguesian planes, it was

successful in finding homologies for any point V and line ` where V is not on `. This

is why we restricted our focus to the case of Desarguesian planes. The program aut-

gens successfully generates the full automorphism group of each Desarguesian plane

we apply it too. We were able to speed up the program by tweaking certain things

within the code, for example the constant niterat.

The question now becomes this: Would autgens be able to find the full automor-

phism group for any finite projective Desarguesian plane? More specifically, can we

generate the full automorphism group using nothing but homologies and the Frobe-
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nius automorphism? We suspect so, but we cannot say for certain. After a search

of the literature, we were unable to find a theorem to this effect. It seems that if

the order of the plane is p1, p a prime, then homologies can be used to generate

the full automorphism group. Further, it would seem if the order of the plane is pa,

where a is not equal to 1, then the automorphism group can be generated by the

Frobenius automorphism along with homologies. Additionally, we have seen evidence

that the full automorphism group of a plane can be generated by as few as 4 gener-

ators: the Frobenius automorphism and three homologies. These could be topics for

further study. Additionally, one could investigate how to modify autgens to work on

non-Desarguesian planes.
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Appendix A

Programs in AUTPPS

autgens

Input: An incidence matrix for a finite projective Desarguesian plane.

Output: The automorphism group.

coord

Input: An incidence matrix.

Output: Stores the following three things: pl - the addition table of the under-

lying skewfield, mu - the multiplication table of the underlying skewfield, crds - the

coordinatization of the points.

decoord

Preset: A coordinatization of points needs to stored under the variable crds.

Input: A point written as an ordered pair from the coordinatization of the points.

Output: The point V . It is written according to the corresponding incidence

matrix, where V is the column corresponding to the point.

fixpl

Preset: An incidence matrix needs to be stored under the variable A.

Input: A point and a line. The point V and line ` are entered as the integers

corresponding to the desired point and line from the incidence matrix A.

Output: A permutation of points.
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frob

Preset: A multiplication table needs to be stored under the variable mu. If the

program coord is run beforehand, mu will already be set.

Input: A point V .

Output: A point V ′, where V ′ is the result of applying the Frobenius automor-

phism to V .

getinc

Input: A design. If n is the order of the matrix, then the design is entered in as

a v × (n+ 1) matrix where v = n2 + n+ 1. Each row of the matrix represents a line,

with the points as the entries of the row.

Output: An incidence matrix.

limplies

Preset: An incidence matrix needs to be stored under the variable A.

Input: A permutation of lines.

Output: The permutation of points that occur as a result of the permutation of

lines.

lnon

Preset: An incidence matrix needs to be stored under the variable A.

Input: Two points. The points are entered in as integers p and q, where p and q

corresponds to the pth and qth columns of an incidence matrix.

Output: The line that is incident with the two points.

lnset

Preset: An incidence matrix needs to be stored under the variable A.

Input: A point. The point is entered in as an integer n, where n corresponds to
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the nth column of an incidence matrix (so n is the point).

Output: The set of lines incident with the point. It is returned as a vector of

integers.

pimplies

Preset: An incidence matrix needs to be stored under the variable A.

Input: A permutation of points.

Output: The permutation of lines that occur as a result of the permutation of

points.

pton

Preset: An incidence matrix needs to be stored under the variable A.

Input: Two lines. The lines are entered in as integers p and q, where p and q

corresponds to the pth and qth rows of an incidence matrix.

Output: The point that is incident with the two lines.

ptset

Preset: An incidence matrix needs to be stored under the variable A.

Input: A line. The line is entered in as an integer m, where m corresponds to the

mth row of an incidence matrix (which is a line).

Output: The set of points incident with the line. It is returned as a vector of

integers.
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