You are here
Non-equilibrium transport phenomena in low-dimensional quantum systems
- Date Issued:
- 1993
- Summary:
- In this thesis we have introduced and extensively studied a model for describing some essential non-equilibrium transport properties of a quantum system with reduced dimensionality. The problem of finding some of the kinetic characteristics of such a model system is formulated as that of finding a solution of a tunneling Hamiltonian with a Hubbard term. To solve this Hamiltonian we first make use of the path integral formalism, generalized for systems far from equilibrium, to perform the quantum-statistical average. The spectral function for the electrons in the well is calculated for different relevant sets of parameters. The possible presence of a Kondo peak in the interacting density of states is discussed. We calculate the frequency-driven conductance and energy losses in the linear response approximation. Numerical simulations of the general expressions show that for a given set of parameters consistent with the particular physical situation of interest, a resonant behavior is obtained for both the conductance and energy absorption for external frequencies equal to the Coulomb repulsion energy E(C).
Title: | Non-equilibrium transport phenomena in low-dimensional quantum systems. |
152 views
102 downloads |
---|---|---|
Name(s): |
Valtchinov, Vladimir Ivanov. Florida Atlantic University, Degree grantor Wille, Luc T., Thesis advisor |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 1993 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 129 p. | |
Language(s): | English | |
Summary: | In this thesis we have introduced and extensively studied a model for describing some essential non-equilibrium transport properties of a quantum system with reduced dimensionality. The problem of finding some of the kinetic characteristics of such a model system is formulated as that of finding a solution of a tunneling Hamiltonian with a Hubbard term. To solve this Hamiltonian we first make use of the path integral formalism, generalized for systems far from equilibrium, to perform the quantum-statistical average. The spectral function for the electrons in the well is calculated for different relevant sets of parameters. The possible presence of a Kondo peak in the interacting density of states is discussed. We calculate the frequency-driven conductance and energy losses in the linear response approximation. Numerical simulations of the general expressions show that for a given set of parameters consistent with the particular physical situation of interest, a resonant behavior is obtained for both the conductance and energy absorption for external frequencies equal to the Coulomb repulsion energy E(C). | |
Identifier: | 14938 (digitool), FADT14938 (IID), fau:12710 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
Thesis (M.S.)--Florida Atlantic University, 1993. Charles E. Schmidt College of Science |
|
Subject(s): |
Statistical mechanics Quantum theory Green's functions Equilibrium |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/14938 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |