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Fault tolerant programming methods improve software reliability using the principles of 
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1.1 Motivation 

CHAPTER I 

INTRODUCTION 

In certain critical areas such as air traffic control [Aviz87], nuclear plants 

monitoring, financial management applications [Sims87], and in military applications, for 

instance in the so called "star wars" (Strategic Defense Initiative - SDI) project 

[Myer86], the reliability of the computer systems is of utmost concern. Fault-tolerant 

computer systems are capable of recovering from failures of their hardware or software 

components to provide uninterrupted service [Kimk89]. Due to the continuous decline of 

the cost of computer hardware, the reliability of computer systems can be improved by 

using redundant components. This redundancy can be static or dynamic [Aviz75]. Most 

of previous studies have concentrated on hardware redundance mechanisms as the means 

to improve the computer system's reliability. However, it is the software reliability 

problem that has become more and more critical to the total reliability of the computer 

system. Any study of fault-tolerant systems must consider in a balanced way both 

hardware and software fault tolerance [Fem90]. 

Software fault tolerance is the study of design approaches to provide 

correct outputs in the presence of design faults. Two important issues which are related 
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to the design and analysis of software fault-tolerant systems are the reliability and the 

cost associated with various fault-tolerant mechanisms, and we concentrate on these 

issues in this thesis. Fault-tolerant software systems considered in this study are the two 

most commonly adopted schemes, Recovery Block (RB) [Rand75] and N-Version 

Programming (NVP) [Aviz77], [Chen78]. 

1.2 Basic Concepts 

1.2.1 Software Fault Tolerance 

It has been noticed that to completely remove all software defects is not 

possible for a complicated software system. In order to prevent the failure of a software 

system due to some unpredicted conditions, different programs (alternative programs) are 

developed separately, preferably based on different logic and/or algorithms (design 

diversity) . The fault-tolerant program so obtained should be able to function correctly in 

the presence of most software design faults. 

1. 2. 2 Recovery Blocks 

The Recovery Block (RB) scheme [Rand75], is one of the basic fault

tolerant programming structures. In aRB system, a programming function is realized by 

n alternative programs. The computational result generated by an alternative program is 

checked by an acceptance test. If the result is rejected, another alternative program is 

then executed. The program will be repeated until an acceptable result is generated by 

one of the n alternatives or there are no more alternatives available. 
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1.2.3 N-Version Programming 

TheN-Version Programming (NVP) scheme [Chen78] also consists of n 

alternative programs and a decision algorithm, usually, a voting mechanism. Differently 

from the RB approach, all then alternative programs are usually executed simultaneously 

and their results are sent to the decision algorithm which selects the final output. 

1.2.4 Hybrid Fault-Tolerant Scheme and Cost Constraints 

The hybrid fault-tolerant system considered in this study is a software 

system which combines the RB and NVP schemes for a given functional task. In the 

hybrid system RB and NVP are blended together by different arrangements of the n 

alternatives. The idea here is to take advantage of the fact that the reliability of RB and 

NVP fault-tolerant systems depend on the reliability of the components which form the 

system. Those components include the program module, the acceptance test module for 

RB and the decision module for NVP. For instance, when a voting mechanism cannot 

select a correct result from n alternative results due to lack of similar results, a recovery 

block can be applied in this case since an acceptance test could test individual results. 

In general, the reliability of the fault-tolerant system is enhanced by using 

more redundant program modules and by selecting the right fault-tolerant strategies. If 

there is a limitation on the total cost of the fault-tolerant system, the complexity of 

selecting the right components and the right structure to achieve the best system 

reliability is substantial. 
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1.2.5 Hierarchical N-Version Programming 

The original N-Version Programming method implies to develop redundant 

modules for the entire programming task. In other words, one needs to write n (n~2) 

programs to solve a particular problem. However, normally a problem can be divided 

into several distinct modules, and the reliability of the system can then be improved by 

applying fault-tolerant programming to some or all of the modules instead of the entire 

system. The hierarchical N-Version Programming is based on the perception that 

software reliability can be improved by applying N-Version Programming on the 

subsystems rather than the entire system. 

1.3 Contributions of the Thesis 

Fault-tolerant programming methods improve software reliability using the 

principles of design diversity and redundancy. Design diversity and redundancy, on the 

other hand, escalate the cost of the software design and development. Therefore, the -
objective of this study is to analyze the reliability and cost of RB, NVP and hybrid 

schemes of those two original strategies. 

Probability models based on fault trees are developed for the RB, NVP and 

hybrid schemes. Two heuristic methods are developed to construct hybrid fault-tolerant 

systems with total cost constraints. Mathematical programming methods, such as linear 

and nonlinear programming methods, are used in those proposed methods. Those 

heuristic methods provide a systematic approach to the design of hybrid fault-tolerant 

systems. 
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[Bell90], [Scot83] proposed various probability models to calculate the 

reliability of NVP and RB fault-tolerant systems. [Bell91] introduced an optimization 

model to design the RB and NVP schemes with total cost constraints. The model 

introduced in [Bell90] and [Bel191] is rather complicated and the optimal solution is 

obtained by using exhaustive searching. Extensive amount of calculations made this 

model not practical. Additional assumptions are introduced in this study to simplify the 

mathematical calculations. Using probability models and fault tree to study the hybrid 

fault-tolerant schemes and utilizing heuristic algorithms to design hybrid scheme with cost 

constraints are the unique contribution of the study. 

1.4 Thesis Overview 

Some basic concepts and previous research related to this study are 

presented in Chapter 2. The discussion includes a review of software failure behavior, 

RB and NVP, as well as methods for modeling fault-tolerant system such as fault trees 

and probability models. 

Chapter 3 deals with mathematical models for the RB, NVP and hybrid 

schemes. Fault tree and probability models are developed to study the reliability of the 

RB, NVP as well as the hybrid fault-tolerant systems. Examples are given to analyze the 

general behavior of the different schemes under various input data. 

The cost issues of hybrid fault-tolerant software systems are considered in 

Chapter 4. Two heuristic algorithms used for the design of hybrid fault-tolerant systems 

are presented. Algorithm I is for a symmetrical balanced hybrid structure. In a 
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symmetrical balanced system, the reliability of program modules are all identical, and 

the same as the reliability of acceptance test modules and decision making modules. A 

nonlinear program model is developed to optimize the design of the structure of the 

hybrid fault-tolerant system. Examples are constructed under various system structures 

and software failure conditions. Method II addresses a more general condition, in which 

the system structure is not necessarily balanced and the program version failure rates 

vary. The reliability of the testing and voting modules also vary. Heuristic methods are 

developed for the design of the system under cost constraints. 

A hierarchical N-version fault-tolerant system is presented in Chapter 5. 

The ARIES 82 software system was used here to evaluate the reliability of different 

schemes. 

Finally, some thoughts on the limitations of this study and future research 

are presented in Chapter 6. 



CHAPTER IT 

BACKGROUND AND REVIEW 

This chapter reviews basic fault tolerance concepts and recent 

developments in software fault tolerance. 

2.1 Fault-tolerant Software 

Hardware fault tolerance has been extensively studied [Siew82], [John89]. 

We concentrate here in software fault tolerance which is the objective of this thesis. We 

consider software failure behavior, the two basic constructs for fault tolerance: Recovery 

Blocks and N-Version Programming, and we present the use of fault trees for the 

evaluation of software. 

2.1.1 Software Failure Behavior 

. 
In order to study software failure behavior we need to understand the life 

cycle of software development. Software development can be divided into three stages 

as shown in Figure 2-1: 

(1) Functional requirement specifications stage; 

(2) Logic/algorithm design stage; and 

(3) Programming/coding stage. 

7 
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I I 
I I I 

Function !- ----1 Logic/Aigorithm 
I I 

Specification 1 ! Design 

~----------~~ I 

Programming 
I 

Coding I -
I - --------------

Fig. 2-1 Three Stages of Software Development Cycle. 
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Usually, the human errors/faults occur in all three stages. Errors in the 

functional specifications can be reduced by careful planning and supervision. Using 

modern computer aided software engineering systems programming faults can be largely 

reduced. Most of the software failures come from the design stage. Design faults could 

be produced by the following reasons: 

(1) Misinterpretation of the specifications; or 

(2) Faults on design and selection of the logic and/or algorithms. 

Most of the misinterpretations of the functional specifications are caused 

by inaccurate and/or incomplete specifications. This should be resolved by better 

planning and administration. Fault tolerant programming, therefore, should be addressed 

specifically to faults in the logic/algorithm design stage. 

The logic/algorithm design faults imply more than just errors in themselves 

but faults usually occur with unpredicted input combinations or unpredicted data 

exchanges with other functional programs. Because of the complexity of software -
systems, complete testing of all the input combinations for a particular program is not 

possible. Using fault tolerance programming, n different versions will be cod~ for the 

same functional requirements. We hope that not all of the n different versions of the 

programs will fail under a particular input condition. 

A general conceptual diagram of software fault tolerance is shown in 

Figure 2-2 [Lapr84]. Let us use I for input, 0 for output, V for program versions, 

subscript e for error set, and c for correct set. Then the notation lei will be the input 

subset of those points which will cause V(i) to fail. Failures are produced whenever 
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v (1) 

v (2) 

---------. ~ "" . \ 
I , I 

! ei \ i : 
I . . . ~A~-1--L v (') 

- • ' ( ---~-... I ... I I 
,.--------/ ! . · · !---· v m i r 

· ~~j/~ . ~---l~) 
. I ~ 

I v (n) I \,~~-
~L------------'· 

___ .. 

, I 

f 0. ! ---t--+---- , ~. e1 · 

r 
I 
I 
I 

Input v Version 0 Output 

Fig. 2-2 Conceptual Diagram of Software Failure 
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inputs are selected from the subset ~i within input space I, processed by program version 

V(i), and an erroneous result in O ei is generated. The input error sets overlap as shown 

by ~i U ~j · This type of errors, correlated errors, are an important source of failure for 

fault-tolerant software [Dhi189], [Eckh85]. 

2.1.2 Software Fault Tolerance 

As said earlier, software fault tolerance is based on redundant diversity. 

In general, program redundancy can be applied under three major aspects [Horn74]: 

(1) Acceptance test or error checks; 

(2) Alternate try routines; and 

(3) Restoration routines. 

In the acceptance test approach, the intermediate results of the program 

are tested for reasonableness or acceptability during program execution. Alternate try 

routines use different approaches for the same objective. Restoration routines return the 

system to a previously determined state when the acceptance test rejects a result. Recent 

developments on fault tolerant system design are primarily focused on two approaches, 

Recovery Blocks (RB) and N-Version Programming (MVP) methods. 

2.2 Recovery Blocks and N-Version Programming 

Two of the most popular software fault tolerant programming methods, 

Recovery Blocks and N-Version Programming are discussed. The system reliability is 

used as quality criteria. Comparisons of RB and NVP are made. 
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2. 2. 1 Recovery Blocks 

The general structure of the RB is shown in Figure 2-3 while Figure 2-4 

shows its conceptual diagram where AT indicates the Acceptance Test, Restore is the 

program function which restores the input states (state i) of the RB. The Ai, (i = 1, 2, 

... , n) are the Alternative Programs. If the AT rejects an output produced by program 

Ai then the alternative Ai+t is activated. This process continues until a result is accepted 

or until all outputs are rejected. In the later case, an error signal will be generated. 

Primary Alternative and Secondary Alternatives 

The RB contains n alternative programs which are developed from the 

same set of specifications. They are arranged in a serial fashion comparable to the 

standby sparing technique used in hardware redundancy. Usually, the first alternative in 

the series is called the primary alternative which is the most reliable or most efficient 

program. The other alternatives are known as the secondary alternatives. The secondary 

alternatives could be degraded program modules; i.e., they can be simpler than the 

primary program and could generate degraded but acceptable service. (A reduction in the 

number of design faults should be expected by designing less complicated alternative 

programs.) 

Acce.ptance Test 

The Acceptance test applies some known conditions that the result should 

satisfy for error detection. It is invoked at the exit point of the alternatives. The 

acceptance test should be as simple as possible such that itself does not contain any 
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ensure acceptance test 
by alternative1 
else by alternative2 

else by alternativen · 
else error 

Fig. 2-3 General Structure of the Recovery Block 
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Restore I ' 
...... 

i 

i 
I 
I 
I 

I No I 
I 
I A1 I 
I A2 

. Yes 
-State I . A.T. State o ' . .. 

l . 
I An I 

RP I :. · 

I 
A.B. 

i 

Fig. 2-4 Conceptual Diagram of the Recovery Block 
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design faults. In case the acceptance test contains design faults , it could then produce 

a failure by: 

(1) Rejecting an acceptable result, or 

(2) Accepting an unacceptable result. (This is really the most 

serious failure.) 

Limitations of RB 

The most important limitation of RB is in finding good acceptance tests. 

If there are not adequate their lack of coverage reduces the reliability of the system. 

It is expected that by using different programmers, computer languages, 

and algorithms to produce several functional comparable programs from the same initial 

specification, the alternatives should not contain design faults. However, this expectation 

is not guaranteed, because of the possibility of correlated errors. However, in aRB those 

errors are not so significant as inN-Version Programming. 

2.2.2 N-Version Programming (NVP) 

The NVP method consists of n program versions and a voting mechanism. 

Figure 2-5 shows the conceptual structure of the NVP approach. State I and State 0 are 

the input state and the output state of the NVP module. A i ( i = 1 , 2 , ... , n) are the 

alternative program modules. Decision selects the best solution out of n alternative 

solutions. Usually, a voter is used as the decision mechanism. 
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I 
A1 k 
A2 

I "'"' i I 

I~ I 

.l I 

State I I Voter State Q. 
I I I ! I 

I ~/ I 
I An 

Fig. 2-5 Conceptual Structure of theN-Version Programming 
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Votine Mechanisms 

Usually a voting mechanism is used to select the correct result from the 

n results generated by the n program versions. However, some applications generate 

identical results and some can produce slightly different but correct results. In the case 

that the versions generate identical results then a majority voting can select the correct 

result [Andt81]. For results which are slightly different due to precision voting can be 

done after a range check and correction. 

Limitations of NVP 

Similar to the RB, the NVP requires more design and programming work, 

and needs additional hardware to run those n program versions. Its effectiveness depends 

directly on the independence of the programs. Recent study reveals that the independently 

developed programs do not fail independently [Voum85], i.e., there are correlated errors 

among independently developed n programs. Because the versions must execute 

concurrently the effect of correlated errors is much more serious than for RBs. N

Version Programming is also wasteful of resources since the n versions must execute 

concurrently. 

2.2.3 Methods 

Various probability models have been developed for RB and NVP 

[Gma80a], [Gma80b], [Scor83]. Assumptions are used in developing those models. 

[Bell91] proposed a model for designing these fault tolerant schemes with a total cost 

limit. The fault tolerant schemes considered were simple RB or NVP schemes. 
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2.3 Fault Tree for Analyzing Fault Tolerant Systems 

Many modeling techniques have been adopted to study the reliability of 

fault tolerance systems. In this section we describe the fault tree method since it is the 

only one we will use in this thesis. See [Leus90] for a discussion of several other 

methods. 

Fault Trees 

The fault tree is a modeling tool represents the conditions that result in a 

system or subsystem failure. It displays the possible events which cause the system 

failure. The fault tree is obtained from the system structure and functional requirements. 

Sometimes, the system reliability is calculated based on the tree representation but it 

cannot describe common failures. 

A TMR system is used here to demonstrate the construction of fault tree 

and develop the system reliability from it [John88]. Figure 2-6 is the fault tree for a 

TMR system. Two type of logical gates are shown in the figure, the "OR" gate and the 

"AND" gate. The OR gate indicates that the output event will exist if one or more of the 

input events is present. The AND gate defines the situation when the coexistence of all 

input events is required to produce the output event. Additional discussions about fault 

trees can be found in [Arse80], [Barl75], and [Dhil78]. Some reliability modeling 

program packages · use the fault tree as one of their input tools [Stit79], [Sahn87]. 
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2.4 Cost Analysis of Fault-tolerant Systems 

In general, more redundancy in the computer program modules will 

increase the reliability of the software in both RB and NVP schemes (if these modules 

are carefully tested). However, additional program modules increase the software 

development cost. Extra programs also requires more computational power on the 

computer, especially for the NVP. A balance on reliability and cost should be achieved. 

[Bell91] seems to be the only work which addresses the relationship between cost and 

reliability of a fault tolerant system. 

2.5 Summary 

This chapter introduced the basic concepts of software fault tolerance and 

reviewed previous research in this field. The fault tree method will be applied in this 

thesis for analyzing hybrid fault tolerant systems and has been discussed here in some 

detail. 



CHAPTER ill 

RELIABILITY ANALYSIS OF 

HYBRID FAULT-TOLERANT SYSTEMS 

In this chapter two of the most common approaches for fault tolerance, the 

Recovery Block (RB) and the N-Version Programming (NVP) method are evaluated. 

Then the reliability of a hybrid fault-tolerant system combining the RB and NVP is 

explored. 

The analysis consists of two parts: First, reliability models of RB and 

NVP are developed in the form of fault-trees and analytical modeling. Then, a reliability 

expression for the hybrid mechanisms is developed. A program containing six modules 

alld a number of testing and voting modules is used to demonstrate the proposed 

reliability analysis method. Numerical calculations are analyzed to give a general 

understanding of the hybrid approach. 

3.1 Recovery Block and N-Version Programming Models 

Recovery Block 

A generalized RB structure with nRB modules is described in Figure 3-1. 

We assume one acceptance test module Tis used for all the versions. If the acceptance 

21 
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test detects an erroneous output in module i then the input state is recovered and module 

(i + 1) is activated. This procedure is repeated until success or lack of versions. 

A fault tree for this RB model is shown in Figure 3-2 [Bell90]. The reliability of the 

fault-tolerant system depends on the reliability of program modules p . as well as on the 
~ 

reliability of the acceptance test T . The test module can fail in two modes, type 1 

failure ( t
1

) and type 2 failure ( t
2

) described below. The following parameters are used 

in the analysis: 

e . = 
~ 

n = 

n = RB 

follows: 

where: 

Probability of failure for program module i ( i =1, 2 1 . .. In) . 

Number of program modules. 

Number of RB modules in a scheme. 

Probability of failure in RB when acceptance test i judges an incorrect 

result as correct. 

Probability of failure in RB when acceptance test i judges a correct result 

as incorrect. 

The probability model of the generalized RB scheme is calculated as 

(3-1) 

p RB = Probability of failure of the RB scheme. 
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There are two parts in equation 3-1. The first part reflects the situation 

when program versions fail or when the acceptance test erroneously judges correct results 

as failures. The second part represents the situation when the test accepts an incorrect 

result. Both conditions cause the fault-tolerant system failure. 

N-Version Pro~rammin~ 

Figure 3-3 shows a generalized NVP structure. The decision algorithm 

may itself fail by not being able to select the correct result. Figure 3-4 is the fault tree 

for a generalized NVP [Bell90]. [Scot83] described that there are three types of errors 

related to NVP: 

( 1) all of the n versions disagree 

(2) more than one version has an incorrect result 

(3) voting procedure has error. 

Assuming that the correlated errors among program versions and the error of type (2) 

are ignored, the probability of system failure pNV is obtained from the fault tree as: 

where: 

nNV 

PNV = IT ei + d 
ial 

(3-2) 

ei = Probability of failure for program module i (i = 1, 2, ... n). In 

NVP, the program module failure is defined as producing no 

output. 



26 

I 

I p n-1 ~ p1 p 2 I 'P 
I nNV I 

~~ 

I 

I 
I 
i 

t I 
i 

I 

1 
v 

Fig. 3-3 Generalized NVP Structure 



27 

System Failure 

I I L-------------~ 6 I 

I, .,\ / \ ) / \ / . \ 

\ .. e 1 / · · · \ e n-t · · · \ e 2 ) · · · \ e n ! 
/ '.._ / ', / " .-' ... _____ ./ ·..._____.-· ·.....___.- .....___.-· 

Fig. 3-4 Fault Tree for Generalized NVP [Bell90] 



28 

d = Probability in NVP that the decision algorithm cannot select the 

n = NV 

result out of at least 2 correct results 

Number of NVP versions in a scheme. 

3.2 Hybrid RB and NVP Fault-Tolerant Systems and Their Mathematical Models 

A hybrid fault-tolerant system combines the RB and NVP schemes. The 

idea here is to take advantage of good aspects of both RB and NVP. In general, a hybrid 

fault-tolerant system consists of many small subsystems. Each subsystem may include 

even smaller subsystems. To simplify the discussion, we consider here hybrid fault-

tolerant systems with only two levels: RB embedded in NVP or NVP embedded in RB. 

Figure 3-5 shows the basic structure of a hybrid RB and NVP fault-tolerant system. The 

first level consists of p basic program modules which form the second level program 
n1 

versions p , 1 s: i s:m. If RB (or NVP) is used at the first level, NVP (or RB) is used 
V1 

at the second level. Failure rates for the basic program modules and program versions 

are e . and e respectively. The program versions failure rates e are calculated 
1 ~ I ~ 

based on the structure of the version and the failure rates of the program modules (e .), 
1 

acceptance test error probabilities ( t
1

, t
2
), and decision error probability (d). The total 

hybrid fault-tolerant scheme's reliability is obtained by first calculating the reliability of 

the lower level program versions, and then use the lower level program versions 

reliability as the input to the higher level versions. This process is repeated until the total 

system reliability is obtained. Mathematically, the hybrid system' s reliability is calculated 
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by using equations (3-1) and (3-2) where the program module's failure rates e i is 

substituted by e . We have: 
vi 

nNV 

PNV = II evi + d 
i=l 

The following definitions are defined for hybrid fault-tolerant scheme: 

e . = 
~ 

m= 

Ti = 

vi = 

pi = 

Probability of failure for program module i (i = 1, 2, ... n) 

Probability of failure for version i. 

Number of hybrid versions. 

Test module i in the RB scheme. 

Voting module i in the NVP scheme. 

Program module i ( i =1 I 2 I ... In) · 

(3-3) 

(3-4) 

ni = Number of program modules in version i (n
1 
+n

2 
+ .•. +nm = n) 

pvi = Hybrid program version i ( i = 1 1 2 1 ••• 
1

m) . 

The probability of system failure p F : 

(3-5) 
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The function f defines the approach used in the higher level of the 

system, which is given by equation (3-3) for RB or equation (3-4) for NVP. 

3.3 Static Modeling of the Hybrid Systems 

In this section, a fault-tolerant scheme with six (6) program modules which 

represent the same function in different ways is used to study different fault tolerance 

characteristics. The RB, NVP as well as the hybrid RB and NVP schemes are studied. 

The following simplifications are used: 

(1) All program module's failure rates are same 

( e . == e e . == e ) . The probabilities of failure for hybrid 
~ ' v~ v 

program versions are also the same since we assume the number 

of program versions and their structure (RB or NVP) in hybrid 

versions are the same. 

(2) The two types of errors t
1 

and t
2 

are the same ( t
1 

== t
2 

) in 

a Recovery Block structure. 

(3) The probabilities of acceptance test error t
1 

and t
2 

are greater 

than the decision error d in a NVP. 

3.3.1 Recovery Block Structure 

Scheme 1: 6A1 RB (6-modules, !-acceptance test RB scheme, Figure 3-6) 

With six program modules and one acceptance test, several Recovery 

Block schemes can be formed. Figure 3-6 shows its system structure and its fault tree 
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form. According to equation (3-3) the probability of system failure p for the 6 .... 1 RB 
F 

scheme is as follows: 

P F = ~ ( e i + t2 ) + t1 ~ ( e i + t2 ) i I e i = e 
~=1 ~ -1 

= (e+t2) 6 + t 1 "t (e+t2) 6 
i • 1 

3.3.2 N-Version Programming Structure 

Scheme 2: 6 .... 1 NVP (Six modules, one voter NVP scheme, Figure 3-7) 

(3-6) 

In this NVP scheme the system is unable to produce an output under two 

condit~ons: either all six program modules fail or the decision (voter) mechanism fails. 

Figure 3-7 displays the scheme and its corresponding fault tree. From the equation (3-4) , 

the probability model is as follows: 

(3-7) 

3.3.3 Hybrid Structure 

The hybrid structure combines both RB and NVP concepts. With six 

modules, four combinations are possible. Figures 3-8, 3-9, 3-10, and 3-11 are the 

schemes and fault trees for the schemes 3, 4, 5 and 6 relatively. The probability models 

are the following: 
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Scheme 3: 2Al RB 3Al NVP (Figure 3-8) 

= ii: ( e i + t2) + tl t ( e i + t2) i I ~ 
isl i=l ei e 

= ( e+ t 2 ) 2 + t 1 t ( e+ t 2 ) i 
i=l 

(3-8) 

(3-9) 

Where: 

p F = Total system failure rate 

e = Program version failure rate 
vi 

e . = Program module failure rate 
~ 

Scheme 4: 2Al NVP 3Al RB (Figure 3-9) 

(3-10) 
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PF= Il(ev+t2)+tlt(ev+t2)ila • a i •1 23 
i=l 1 i=l 1 vi v• ' ' 

= (ev+t2) 3+t1 t (ev+t2 ) i 
i • l 

Scheme 5: 3A1 RB 2A1 NVP (Figure 3-10) 

ev=TI (ei+t2) +tlt (ei+t2)ila •a 
i•l i•l 1 

= ( e+ t 2 ) 3 + t 1 t ( e+ t 2 ) i 
i•l 

Scheme 6: 3A1 NVP 2A1 RB (Figure 3-11) 

=(e+t) 2 + v 2 

(3-11) 

(3-12) 

(3-13) 

(3-14) 

(3-15) 
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3.3.4 Simulation Models and Modeling Results 

There are many different types of simulation techniques [John88]. 

Simulation involves conducting experiments with a model in order to understand how a 

system will behave and obtaining numerical evaluations of the various operational 

strategies. In this study, all six schemes are simulated under different failure rates of the 

program modules, the acceptance tests, and the decision (voting) mechanisms. The 

calculation program was developed under the Lotus 123 environment. 

The simulation results for the schemes shown in Figures 3-6 to 3-11 are 

presented in Figures 3-12 to 3-17. Test data ranges are chosen as: 

e = 1% to 6% 

t = 1% to 6% 

d = 0.0001% to 0.0006% 

We assume that the decision module has a higher reliability than the testing module. 

Some observations that can be obtained by analyzing the output are the following: 

Scheme 1 (Figure 3-12): 6A1 RB 

Under the given test ranges of e, t, and d, the scheme failure rate Pp = 

0% to 1.3% (Max. when e = 6%, t = 6%). 

The 6A 1 scheme is a pure RB scheme and ·its reliability is used as the 

reference for the other schemes. The 6A 1 RB scheme is fairly reliable. If the average 

program module failure rate (e) is 1% and the test error rate is 1% then the system 

reliability is better than 99.95%. If the computer program module reliability dropped to 
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94% (6% failure rates) and the test error rate increased to 6% , the system reliability is 

still better than 98.6%. The system is not very sensitive to the program module failure 

rate and test failure rate: with a 6% difference in failure rates the system reliability 

decreases by 1.1%. 

Scheme 2 (Figure 3-13): 6A1 NVP 

The probability of system failure for the 6A 1 NVP scheme depends 

strongly on the reliability of the voting mechanism. When the program module failure 

rate e varies from 1 % to 6% , there is no clear effect on the system reliability. However, 

there is a clear relation between the system failure Pp and the voter error rate d. In other 

words, the NVP can tolerate not so reliable modules as far as it has a reliable decision 

mechanism. 

Scheme 3 (Figure 3-14): 2A1 RB 3A1 NVP 

Similar to the 6Al NVP scheme, the system's failure rate is related to the 

decision failure rate d. Lower level redundancy is not necessary if a decision module 

with failure rate d is going to be used as a final determination of the scheme. 

Scheme 4 (Figure 3-15): 2A1 NVP 3A1 RB 

This scheme takes the advantages of both NVP and RB. Under the same 

testing data, the system's failure rate pF is between 0.01% to 0.45%. The system's 

reliability is not very sensitive to the program module failure rates e. 
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Scheme 5 (Figure 3-16): 3"' 1 RB 2"' 1 NVP 

When a decision/voting module is used as the final judgement of the 

scheme, it resembles the characteristics of NVP. In other words, the system's failure rate 

is strongly dependent on decision failure rate d. 

Scheme 6 (Figure 3-17): 3"' 1 NVP 2"' 1 RB 

The system reliability is very much independent of the program module 

failure rate e. It can be discovered from the plot that the system failure is related to 

decision or testing failure rates exponentially. 

3. 3. 5 Discussion 

Figures 3-18 and 3-19 show the comparisons of the six schemes when the 

program failure rates are e=2% and e=6%. The testing failure rate tis set between 1% 

to 6% and the decision/testing failure rate d is assigned from 0.1% to 0.6%. The 

following are some observations from Figure 3-18 and 3-19. 

(1) Scheme 4 2"'1NVP3"'1RB has the best system reliability under the given testing 

data. 

(2) A pure RB or NVP scheme has higher system failure rates than most of the 

hybrid schemes. 

(3) Under the assumption that d = o . 1 t, the schemes 2, 3, and 5 generate better 

system reliability than other three schemes when t > 4% and d > 0.4% 

approximately. 
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Comparisons 
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Comparisons 
Module Failure Rate e=6% 
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Fig. 3-19 Comparison of System Failure Rates (e=6% d=O.l% to 0.6%) 
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Figures 3-20 and 3-21 show the comparison of system failure rates of the 

six hybrid schemes with decision failure rated= 1% to 6% (Figure 3-20) and d=0.01% 

to 0.06% (Figure 3-21). It can be clearly seen that the system's reliability for a NVP 

dominated scheme, such as schemes 2, 3 and 5, will have a better system's reliability if 

d < 0.1 tor worse reliability if d > 0.1 t when compared with a RB dominated scheme. 

[Scot87] proposed a reliability model to calculate the NVP system's 

reliability, as well as other mechanisms. The assumptions used in his model are: 

(1) The only type of error considered is that when all outputs disagree (called 

type one error by them). 

(2) Type two and type three errors, that is, when an incorrect output appears 

more than once (type 2) and errors in the voting procedure (type 3) are 

ignored. 

Under those assumptions, the system failure rate pF becomes: 

n~ -
PNV = 1 -RNV= 1 - :E ( n7) ( 1-e) i e~~-i 

.I=2 

. (3-16) 

Figure 3-22 shows the system failure rate when e = 1 % to 6%. Under Scott's model the 

NVP system reliability does not increase very large by using fault tolerance especially 

when e increases. According to Scott's model using the same way to define the type of 

errors, we have equation (3-17) from [Be1190]: 
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Fig. 3-20 Comparison of System Failure Rates (e=6%, d=l% to 6%) 
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Comparisons 
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6"" 1 NVP (Scott's Model: d =0) 

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 
Module Failure Rate e = 1 to 6% 

1--- 6"~ NVP 

Fig. 3-22 NVP System Reliability by Using Scott's Model 
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nRB 

PRB =IT ( ev1+t2i) 
i•l 

t
1 

= o and t
2 

is the only type of error of the acceptance test in RB. 

(3-17) 

Figure 3-23 shows the system failure rate when e= 1% to 6% under the pure RB. 

Figures 3-24 and 3-25 show the comparisons of the system failure rates for all six hybrid 

schemes when Scott's model is used to calculate the failure rates of NVP modules. 

Except for the 6A 1 NVP scheme, the other schemes yield similar system failure rates to 

the ones calculated by the mathematical model developed in this study. 

[Scot83] proposed a consensus RB model which starts with an NVP scheme and 

if there is no output result an RB scheme is applied. That is also a combined NVP and 

RB scheme of the type used in this study. The difference is that the consensus RB 

combines NVP and RB within one level of redundancy and the hybrid scheme in this 

study applies these methods in two levels. The hybrid fault-tolerant systems proposed in 

this study generate better system reliability than the pure RB or NVP systems. The 

hybrid fault-tolerant scheme could be extended to more than two levels but the high 

number of versions makes this idea impractical. 

3.4 Summary 

A simulation model has been used to study the behavior of hybrid fault-

tolerant schemes. Six fault-tolerant programs were constructed using Recovery Block 
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6 /'-. 1 RB (Scott's Model: t1 =0) 

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 
Acceptance Test Failure (x1 00%) 

--- 9=1%-+- 9=2% ~ 9=3% 

~ 9=4% """*""" 9=5% --...... 9=6% ... 

Fig. 3-23 RB System Reliability with Error Type t1 =0 
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System Failure (Scott's Model) 
Module Failure Rate e=2% Error t1 =0 

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 
Decision Failure t2 (x1 00%) 

--- 6~ 1RB -+- 6~ 1NVP ~ 2~ 1R83~ 1NVP 

--t:r 2 ~ 1 NVP3 ~ 1 RB --*- 3 ~ 1 RB2 ~ 1 NVP "'*'" 3 ~ 1 NVP2 ~ 1 RB 

Fig. 3-24 Comparisons of System Failure Rates Using Scott's Model (e=2%) 
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System Failure (Scott's Model) 
Module Failure Rate e=6% Error t1 =0 

~ 
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1.5 2 2.5 3 3.5 4 4.5 5 5.5 
Decision Failure t2 (x1 00%) 
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dll. 
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Fig. 3-25 Comparisons of System Failure Rates Using Scott's Model (e=6%) 
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and N-Version Programming including their combinations. The study contains four main 

parts: development of the fault-tolerant schemes, fault tree for these schemes, probability 

models, and simulation. 

A sample fault-tolerant system which consists of six redundant versions 

was utilized for building the various schemes and for numerical testing. Four hybrid 

configurations of the basic RB and NVP were compared with the original RB and NVP 

design. The results show that the combined schemes can produce better system 

reliability than that of the original RB and NVP methods. Also studied were the system 

reliability under different .schemes and different probabilities of program failure, 

acceptance testing failure and decision failure. Guidance to select the best system 

configurations was also presented. 



CHAPTER IV 

HYBRID FAULT-TOLERANT SYSTEM DESIGN 

WITH COST CONSTRAINTS 

4.1 Hybrid Fault-tolerant System 

Two important issues which are related to the design and analysis of fault-

tolerant software are the reliability and the cost associated with various fault-tolerant 

mechanisms. This chapter presents two heuristic methods for the design of hybrid 

Recovery Block (RB) and/or N-Version Programming (NVP) systems under cost 

constraints. The first one is an homogeneous model where all program module's failure 

rates, acceptance test or voter's failure rates and costs are the same. The second 

algorithm deals with a general model in which all failure rates and costs are variable. As 
• 

we saw in Chapter III, hybrid RB and NVP schemes, can further improve reliability. 

Design diversity and redundancy, on the other hand, escalate the cost of softw_are design 

and development. [Bel190] proposed an optimization algorithm to design RB and NVP 

systems under total cost constraints. In this chapter, we propose two heuristic methods 

for the design of fault-tolerant software using two levels of hybrid RB and NVP schemes 

under cost constraints. 
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The cost of fault- tolerant software includes design, implementation, testing, 

and operation costs. In general, the reliability of software can be increased by adding 

more redundant programs or units. However, in practice cost limits are usually imposed 

in designing such a system. [Bel191] reported optimization models for systems using 

separated RB and NVP systems under constraints on the total cost. 

System Failure Rates of the Hybrid System 

In general, using the notation of Chapter III, the failure rates for the RB 

and NV module can be written as (Equations 3-3 and 3-4): 

nRB 

( evi + t2) + tl L ( evi + t2) i 
i•l 

The probability of system failure pF is: 

(4-1) 

(4-2) 

(4-3) 

In this equation, pF is a function f defined by the configuration of the 

hybrid system. 
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Since p F is the probability of system failure, then ( 1 - p F ) is equal 

to the system reliability. The cost models of the proposed schemes are then a nonlinear 

function as follows: 

Objective: 

Max (1-PF) 
jeS J 

Subject to: 

where: 

p = failure rates of the scheme j 
FJ 

c = the total resources available 

C = resources needed for program module i 
ei 

C = resources needed for voting module i vi 

c ti = resources needed for testing module i 

s = the complete set of possible schemes can be constructed 

s = the scheme that gives the optimal system reliability 

j = scheme index 

(4-4) 

(4-5) 
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The configuration which generates the best system reliability within the 

total resource limits will be the optimal solution. 

Two methods are presented here which will generate optimal fault-tolerant 

system structure under given cost limits. The first method developed is for homogeneous 

fault-tolerant systems in which all the program modules have the same reliability and 

cost. A more general method applied to systems in which the program modules as well 

as the voting and acceptance test all have dissimilar reliability and associated costs. Both 

algorithms are based on two results from our previous study (Chapter III). The relevant 

facts are the following: 

(1) A fault-tolerant system which consists of more program modules has higher 

reliability. This is true for both RB and NVP schemes if the modules have been 

carefully tested. Since the probabilities of the program failures are less than one 

( e i I t I d < 1 ) , more multiplication of them will generates a smaller number. 

(2) In general, software system reliability is improved by using more test and vote 

program modules. As our previous study shows that for a system consist of same 

number of functional redundant programs, the systems with least testing and 

voting programs have lowest reliability. The system's reliability can be improved 

by using more testing and voting modules. 

4.2 Fault-Tolerant System Design with Equal Program Reliability and 

Costs 

Based on the observations stated above, the algorithm calculates possible 

system configurations under the cost limit. It first confines the maximum number of 
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redundant programs supported by the cost limit. The system reliability will be used as 

the lower bound. Then more voting and testing modules are added into the scheme. 

Program modules will be traded for the testing and voting modules if necessary. The 

configuration with the highest reliability will be selected. Following is a step by step 

description of the method. 

4.2.1 Method I: Symmetrical Balanced Fault-Tolerant System Design 

Step 1: 

Step 2: 

Calculate the total number of program modules, n . 
p 

n = max integer (Total cost I cost for each program module) 
p 

= max int [C/ Ci] 

(The assumption used here is that all the program modules have the same 

cost c .=c .). 
e~ ~ 

Calculate the remaining resources c' 

c' = ( c - c . · n ) 
~ p 

c' represents the resources remaining for the voting and testing programs 

when a number np of programs are utilized. 

Select hybrid scheme 

If c' ~ I • c or c' ~ I • c , go to step 4. This indicates that there t v 

are enough resources remaining for the testing and voting programs after 

the resources have been committed to the n number of functional 
p 

programs. (Here I is the iteration number which in initially 1). 



Step 4: 

Step 5: 

Step 6: 
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Else, n = n - 1 , repeat step three. 
p p 

If there are not enough resources left for the voting and/ or testing 

programming, then one of the functional programs has to be traded for the 

testing/voting programs. 

Calculate the system reliability 

Calculate the system reliability under the given number of testing and 

voting modules. This is accomplished by using equations (1), (2), and (3). 

There could be several different configurations under a given number of 

program modules, acceptance test and voting modules. 

Stopping Rule 

If, r < .! · n + 1 , then, r = r + 1, go to step 3; 
2 p 

else, go to step 6. 

The stopping rule is used to decide when to continue or terminate the 

iteration procedure. It is obvious that in the hybrid system, the number of 

testing and voting programs should not exceed half of the number of 

functional programs. This assumes that there should be at least two 

functional programs in a RB or NVP structure. 

Select the scheme with the maximum system reliability. 
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4.2.2 Illustration of Method I 

The following example illustrates this method. It is assumed that all 

programs and their testing modules have the same reliability and costs. The input data 

are: 

Iteration 1 : 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Cost of the program module C
9 

= 15 (thousand dollars) 

Cost of the testing module ct = 85% · C
9 

= 12.75 (thousand dollars) 

Cost of the voting module c = 10% · c = 1.50 (thousand dollars) 
v 9 

Total amount of resources available C = 120 (thousand dollars) 

Probability of program module failure e = 5% 

Probability of testing module failure t = 2% 

Probability of voting module failure d = 0.2% 

Total number of program modules nP = [C/ C
9

] = [ 120/15 ] = 8 

(modules) 

if nP = 8 , remaining c' = 0, 

There are no resources for testing and voting, we have to adJust then 
p 

and R as follows: 

n = n -1 = 7 (modules) 
p p 

c' = ( c - c · n ) = 120 - 15-7 = 15 (unit $) 
9 p 

Calculate the reliability for this number of modules. 

Reliability for 7A1 RB (Scheme 1) 

Reliability for 7A 1 NVP (Scheme 2) 



Step 5: 

Iteration 2: 

Step 3: 

Step 4: 

Step 5: 
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r = 1 < 1 · n P + 1 = 4. 5, go to step 3. 
2 

n =n -1 = 7-1 = 6 p p 

c' = 120 - (6·15) = 30 (unit $) 

Calculate the systems reliability under the possible system configurations. 

There are: 

2A1 NVP 3A1 RB (n = 6, n = 1, n = 3) (Scheme 4) 
p t v 

3A1 RB 2A1 NVP (n = 6, n = 2, n = 1) (Scheme 5) 
p t v 

3A1 NVP 2A1 RB (n = 6, n = 1, n = 2) (Scheme 6) 
p t v 

Note: Scheme 3 (2A1 RB 3A1 NVP) is not feasible. 

Go to step 3 until n;.! ·nP+1 . 
2 

The final systems reliability and their costs are as shown in Table 4-1. 

Step 6: Select the system structure with the least failure probability. Scheme 4 

will be selected. The scheme consists of three NVP versions each of 

which has two functional programs and a voting mechanism. Then those 

three NVP versions are combined using a RB testing module. The 

reliability of the system is 99.95% under the given conditions. Figure 4-1 



Table 4-1: System Reliability of Different Hybrid Fault-Tolerant Systems 

Schemes Total Cost System Reliability 

1 117.75 99.78 

2 106.50 299.80 

4 109.50 99.95 

5 116.50 99.80 

6 111.00 99.91 
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Fig. 4-1 Homogenous Hybrid Fault Tolerant Software Scheme 
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shows the structure of the . hybrid design and Table 4-1 shows the result 

of the variable schemes ( those scheme numbers related with same method 

in Chapter III ) . 

4.3 Hybrid Fault-Tolerant System Design with Cost Constraints: General 

Model 

The previous method assumes that all modules have the same reliability 

and cost. We now show a generalization of the previous algorithm which handles the 

situation when costs and reliability are variable. 

4. 3.1 Fault-Tolerant System Design with Different Program Reliability and Costs 

The two assumptions used in the previous method are still valid. They 

allow us to simplify the method into two stages, one to design the best system structure 

using an iterative procedure and the second is select the best combinations of program 

modules. This method selects tests and voters first, then the program versions, while 

method I selects version first followed by the selection of tests and voters. 

Step 1: Initialization: 

The procedure starts with one voter or one test module. According to the 

observation that the reliability of the voting and testing has the biggest 

influence on the system reliability , one should select the voting or testing 

module with the highest reliability to start the procedure. 

Initially, nt or n v = 1 



Step 2: 

Step 3: 
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Remaining Resources for program modules: 

n£ nE 
C'=c- c c ti - vi 

i•l i•l 

Program Module Selection Rules: 

Assume there are n P program modules and that the costs of the program 

modules c . are different. Each program module can be used only once. 
e~ 

The procedure of selecting the program modules is given by the following 

integer program module: 

min II e . . ~ 
~es 

Subject to: 

The program modules i can now be selected so as to give the best system 

reliability under the cost constraints. 

This is a nonlinear programming problem. In this particular case, it can 

be converted into a linear programming problem by the following 

procedure. 



Since: 

Then: 
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ln ( ft eJ = ln e1 + ln e2 + ... + ln en 
i•l 

min II ei 
ies 

is equivalent to: 

Letting: 

~ 
min L ln ei 

i=l 

the original problem becomes a linear problem: 

subject to: 

min :E xi 
ies 



Step 4: 
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Hybrid Rules: 

It can be proved that the system reliability is maximized by building a 

balanced hybrid structure. In other words, the hybrid system should have 

versions (RB or NVP or a combination of them) with similar reliabilities. 

Mathematical Model: 

Given: 

e i = the probability of failure for the individual program module 

1 . 

0 s; ei s; 1, i e s. 

ti = failure rates of the testing module 

di = failure rates of the voting module 

The system failure rate is minimized by: 

Where: 

m = p 

1flp 

min E (P,.; - P,.;_1) 
i=l 

number of versions in the hybrid system 

failure rates of the version i , p . is calculated according 
m~ 

to the equations 1 , 2, and 3 given before. 

Step 5: Calculate the system reliability accordingly. 
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Step 6: Stopping Rule: 

if 

1 
r s; 

2 
· nP + 1 

then go to step 7 else go to step 8. 

Step 7: Adding Rules: 

When the remaining c' is less than the cost for adding a test or a vote 

module, one program module will be selected to be deleted from the 

system. In order to do so, two ratios are considered here, the cost 

efficiency ratios for program module and the testing/voting module. 

In general, since the reliability of the testing and voting module are vital 

to the system reliability, a testing/voting module with the highest 

reliability usually will be added to the system. The choice of adding a 

testing or voting module depends on the initial selection of the type of 

decision module. We assume that in a two layer structure, if one layer is 

RB then the other layer is NVP, i.e. one voter is always combined with 

a number of acceptance tests to form a hybrid system; and one acceptance 

test is always combined with number of voters to form a hybrid system. 

The program module with the least cost efficiency and enough cost to 

cover the added testing or voting module will be removed from the 

previous design. 

Program cost efficiency: 
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Testing/Voting efficiency: 

or 

E =(1-v.)/C · 
V1 ~ V1 

Addition Rules: 

max (1 - tJ , or 

max (1 - vJ for all i, i is the testing/voting module index. 

i e (remaining testing or voting modules) 

Deletion Rule: 

fori that c ~ cc or cv 
8j !I !I 

Go to step 2. 

Step 8: Select the design with the maximum system reliability. 

4.3.2 Illustration of Method II 

The following example illustrates the proposed method. Table 4-2 shows 

the failure rates and costs of the modules. It is assumed that the voter has higher 

reliability and less cost when compared with the acceptance test. 

The procedure to solve the problem is quite lengthy, only the final results 

are presented here. Four iterations generate four system designs according to the given 



Table 4-2: Input Data for Illustration II 

Data for the Illustration Example II 

1 2 3 4 5 6 

Cost of Program Module 10 12 14 16 18 20 

Failure Rates of Program Module .06 .05 .04 .03 .02 .01 

Cost of Testing Module 10 12 14 

Failure Rates of Testing Module .05 .03 .01 

Cost of Voting Module 1 2 3 

.. 
Reliability of Voting Module .005 .003 .001 
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data. Figures 4-2 through 4-5 show the system structure. The first design is a pure NVP 

design with a system failure rate of 5.01% . Design number two is a hybrid scheme. 

Three program modules with a testing module form aRB version. Two of such versions 

are then connected with a voter to form a NVP scheme. This design gives a failure rate 

of 5.22%. A third design is generated in the form of a hybrid NVP with RB. Three 

program modules with a voter form an NVP. Two of those NVPs form a RB scheme. 

The best design consists of three voters and a test. Each two of the six programs with 

a voter forms an NVP. Three of those NVPs are then linked using an RB scheme. This 

design yields the lowest failure rate of 1. 69%. Considering the average program failure 

rate is 3% to 4%, the hybrid design made a big impact in terms of improving the system 

reliability. Table 4-3 summarizes these results. 

4.4 DISCUSSION 

The mathematical form of the hybrid fault-tolerant system design is in a 

rather complicated nonlinear programming form. It may be very difficult to obtain an 

analytical optimal solution. Therefore, using approximate methods are a practical and 

more efficient approach. 

In a realistic environment, method II might be more useful than method 

I since the assumption of equal cost and reliability for all the modules is not realistic. 

However, it does supply a simple approach to design the hybrid system. 

Method II is a more complex procedure. The method applies several linear 

and nonlinear programming methods to achieve some local optimization goals. It should 

be brought to our attention that comparing the two examples used in this thesis , method 
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Fig. 4-2 Hybrid Fault Tolerant Software Scheme (1) 
System Reliability = 94.99 % 

Total Cost = 91 (unit of dollars) 
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Fig. 4-4 Hybrid Fault Tolerant System Scheme (3) 
System Reliability = 94.48 % 

Total Cost = 103 (unit of dollars) 
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Fig. 4-5 Hybrid Fault Tolerant System Scheme (4) 
System Reliability = 98.3 % 

Total Cost = 106 (unit of dollars) 
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Table 4-3: Feasible Solutions of Illustration II 

Feasible Solutions for Illustration II 

Solution No. Hybrid Structures System Reliability Cost 

1 6"1 NVP 0.9499 91 

2 3"1 RB & 2"1 NVP 0.9478 113 

3 3"1 NVP & 2"1 RB 0.9448 103 

4 2"1 NVP & 3"1 RB 0.9831 106 
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II generates a better hybrid system compared to method I under similar circumstances. 

This heuristic method does not necessarily generate a system with maximum possible 

reliability. An analytical explanation for this result requires for further study. 

[Bell91] proposed an approach to optimize system reliability with cost 

constraints. In his approach, system reliability is calculated through a nonlinear program 

and the optimal solutions obtained through exhaustive searching. Under our different 

assumptions, the method proposed in this study is much simpler. 

4.5 SUMMARY 

In this study, we proposed two algorithms for design hybrid RB and NVP 

fault- tolerant systems. Both procedures were executed in an spreadsheet environment. 

Provided with input data such as the reliability and cost of program modules as well as 

testing and voting modules, these procedures will determine the hybrid structures with 

nighest system reliability within the cost constraints. In this thesis we showed examples 

with two layer hybrid configurations. In fact the number of layers could be more than 

two, although in general this is not a practical approach because of the high number of 

versions required. 



CHAPfERV 

MODELING OF HIERARCIDCAL N-VERSION 

SOFfWARE FAULT-TOLERANT SYSTEMS 

Wu [WuJi91] presented a hierarchical N-Version method where a problem is 

viewed as a set of objects which can be hierarchically organized into several levels. The 

reliability of hierarchical N-Version fault-tolerant software is now studied using a reliability 

modeling software called ARIES 82 [ARIE91]. Simulation models are used here to test the 

system reliability and performance of that approach. The system behavior under various failure 

patterns is also analyzed. 

5.1 Hierarchical N-Version Programming 

In general, a software system can be modeled as the superposition of four levels: 

Level 1 application software 

Level 2 

Level 3 

Level4 

module 

procedure 

data structure 

The reliability of the whole application depends on the reliability of the 

subsystems at each level. Reliable subsystems can enhance the reliability of the whole system. 

By implementing hierarchical NVP, it is also possible that the cost of the software development 
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can be reduced. One can spend more resources on the subsystems which have the least reliability 

rather than on the entire system. 

5.2 ARIES 82 Reliability Modeling Software 

The ARIES (Automated Reliability Interactive Estimation System) 82 [ARIES91] 

was developed to assist designers of fault-tolerant systems. ARIES 82 provides a general 

mathematical framework of analysis which allows extensions to new models and new classes of 

systems. 

ARIES 82 is a set of more than 100 C:-language procedures developed by a 

research group at the Department of Computer Science, UCLA. The system is capable to model 

transient fault recovery, graceful degradation, off-line repair, periodic renewal, as well as user 

defined subsystems. The system supports seven types of systems: 

( 1) Closed FT systems 

(2) Closed FT systems with transient fault recovery 

(3) Mission-oriented repairable systems 

( 4) Repairable systems with transient fault recovery 

(5) Repairable systems with restart 

(6) Periodically renewed closed FT systems 

(7) User defined systems 

The functions of ARIES 82 include three groups: system/subsystem configuration 

functions, reliability analysis functions, and system utility commands. The notation used in 

building system models and output analysis is as follows: 
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y [ o] Initial number of active program modules in NVP 

y [ 1] Minimum number of faultfree program modules 

D Number of degradations allowed 

A Probability of failure for program module 

5.3 Simulation Models 

As said earlier, a software system (whole application) can be divided into three 

levels: the data structure level, the procedure level, and the module level. The systems reliability 

can be improved by utilizing N-Version Programming at one, two, or all three levels, and these 

simulation studies intend to evaluate this using three models. 

Model one uses NVP on all three levels; model two applies NVP on two levels; 

and model three applies NVP to one of the three levels. The simulation type specified by ARIES 

has been selected as type 7 systems which corresponds to closed fault-tolerant systems. In this 

particular case spare module recovery is not considered. The descriptions of those .models are 

given below. 

Model One: N-Version Programming on all three levels 

Assume there are three program modules at each level (number of initial active 

program modules Y[O] =3). Only of the three program modules can fail at a time 

(D= 1). The minimum number of faultfree program modules Y[l] is equal to 

Y[O] - D = 2. The failure rates A are between 1% to 25%. The failure rates are 

too high for practical usages. They have been exaggerated here to show the trends 

of the model. The input parameters are as follows: 



D = 1 

Y[O] = 3 

Y[1] = 2 

A = 1% to 25% 
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Model Two: N-Version Programming on two of three levels 

The two NVP sublevels have the following input parameters: 

Y[O] = 3 

Y[1] = 2 

D= 1 

The level without redundant programming has the following parameters: 

D = 0 

Y[O] = 1 

Y[1] = 1 

Model Three: N-Version Programming on one of the three levels 

This model studies the hierarchical NVP by applying NVP on one of the three 

levels. For instance, NVP is only applied to the data structure level, while the 

procedure and module levels do not use any fault-tolerant programming. 

The system is configured as having three (n=3) NVPs at one level and the other 

two have one program each. The failure rate of an active module, A , is set from 

1% to 25%. The maximum number of failed modules is set to one. 
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Using the ARIES 82, the system reliability for all three models is obtained. Figure 

5-l, 5-2. and 5-3 show the input and output values of the models one, two and three, 

respectively. 

5.4 Analysis of Results 

Figure 5-4 shows the system reliability for all three models. As we can see from 

the figure the systems reliability follows closely a linear pattern, i.e. when program module 

failure probability {}.) increases, the system reliability decreases. 

Figures 5-4 also shows the quantitative relations of the hierarchical NVP vs. 

regular NVP. It is interesting to notice that the effect of implementing one more level NVP is 

similar to reduce the model failure rates by half. For instance, in Figure 5-4, the system 

reliability is equal to 85% when probability of module failure is equal to 25% and all three 

levels are implemented using NVP; the value is about the same if the failure rates are reduced 

to 12.5% and only one level is using NVP. This gives us an quantitative indicator for NVP 

software design. The effect of reducing the module failure rates can be compared with the use 

of program redundancy. 

5.5 Summary 

Hierarchical NVP has simulated on ARIES82 and was studied under three basic 

models: NVP on one level, two levels, and all three levels. The results show that the effect of 

hierarchical NVP can improve system reliability. It also indicates the quantitative relationship 
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(1) Redundant at All Three Levels 

Input: 

}.. = J-' 

0.01 

0.05 

0.10 

0.15 

0.20 

0.25 

}.. = J-' 

0.01 

0.05 

0. 10 

0.15 

0:20 

0.25 

Y[O] = 3 
Y[l] = 2 
D = 1 

System Reliability T = 0.6 

0.999679 

0.992313 

0.970949 ' 

0.938462 

0.897322 

0.849812 

System MTIF 

38.6825 

7.9365 

3.9684 

2.6457 

1.9841 

1.5873 

System Reliability T = 1. 0 

0.999115 

0.979432 

0.925593 

0.849812 

0.761891 

0.669598 

MTIF tot 

83.3333 

16.6667 

8.3333 
' 

5.5556 

4.1667 

3.3333 

Fig. 5-l Modell -Three Level Redundancy 



(2) Redundant at Two Levels 

Input: 
Level without redundancy: 

D = 0 
Y[O] = 1 

Levels with redundancy: 
Y[O] = 3 
Y[1] = 2 
D = 1 
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A = JJ System Reliability T = 0.6 System Reliability T = 1. 0 

0.01 0.993805 0.989466 

0.05 0.965466 0.938141 

0.10 0.923435 0.859378 

0.15 0.876042 0.772214 

0.20 0.825155 0.682972 

0.25 0.772214 0.596077 

A = J.' System MTIF 

0.01 37.1429 

0.05 7.4286 

0.10 3.7142 

0.15 2.4726 

0.20 1.8571 

0.25 1.4857 

Fig. 5-2 Model 2- Two Level Redundancy 



(3) One Level Redundant 

Input: 
Level without redundancy: 

D = 0 
Y[O] = 1 

Levels with redundancy: 
Y[O] = 3 
Y[1] = 2 
D = 1 
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A = /J System Reliability T = 0.6 System Reliability T = 1. 0 

0.01 0.987966 0.979907 

0.05 0.939345 0.898591 

0.10 0.878247 0.797899 

0. 15 0.817773 0.701702 

0.20 0.758727 0.612228 

0.25 0.701702 0.530629 

A = /J System MTTF 

0.01 35.0000 

0.05 7.0000 

0.10 3.5000 

0.15 2.3333 

0.20 1.7500 

0.25 1.4000 

Fig. 5-3 Model 3- One Level Redundancy 
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Comparison of System Reliability 

1 

0.95 
~ 
~ 0.9 
.~ 
a; 

0.85 a: 
E 
Q) 

- 0.8 -(J) 
~ 

(/} 

0.75 

0.7 
0 0.05 0.1 0.15 0.2 0.25 

Failure Rates 

--- 1-Level Redundant -+- 2-Level Redundant ~ 3-Level Redundant 

Fig. 5-4 Comparison of System Reliability 
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between the redundancy and the probability of program module failure. We believe that this 

information can be used to design hierarchical fault-tolerant software systems. 

Future study should extend the proposed work by testing more combinations of 

failure rates on different levels, increase the number of program versions (increase n in NVP), 

and probably to explore further the quantitative relationship among the number of program 

modules, the system reliability, the software development cost, and the execution time. 



6.1 Conclusions 

CHAPTER VI 

CONCLUSIONS AND FUTURE STUDY 

The objective of this study was to analyze the reliability of hybrid fault-tolerant 

software systems as well as to design such systems with total resource cost limitations. 

Mathematical models for the hybrid RB and NVP were developed. ARIES 82 

software was used to model the hierarchical NVP. Simulation results reveals that the reliability 

of a hybrid software system depends on the parameters of the system, such as the program 

module failure rates, as well as the failure rates of acceptance test and voting modules. The 

numerical results show that the reliability of the acceptance test in the RB model and the voter 

in the NVP model have much larger influence in the reliability of a hybrid system. The results 

also show that the relationship between cost and system reliability is not a linear relation, i.e. 

the system reliability does not increase when more program modules (alternates, voter, and 

testing module) are added into the system. 

Two heuristic methods were developed to supply a step by step approach to design 

hybrid fault-tolerant software systems. These procedures can be easily converted into computer 

programs. 

95 
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6.2 Limitations and Future Study 

There are several limitations which could be the topic of future study. 

(1) The probability model used in the study is a simplified version of the general 

probability model [Bel191]. The reliability of the hybrid system could be further 

investigated based on an more generic probability model. 

(2) The design methods proposed in this study do not necessary generate the optimal 

solution for hybrid fault-tolerant system design. They do produce a standard 

approach to the problem. Searching for an optimal or suboptimal solution to the 

problem should continue. 

(3) We assumed that the cost and reliability of the software modules are known. 

However, in most cases estimating the development cost and predicting the 

reliability of software is difficult. 

(4) Hardware cost is not taken into consideration in this study. N-Version 

Programming utilizes more hardware resources than RB due . to the parallel 

processing nature of the NVP. The hardware cost should be taken into 

consideration. 

(5) Since the timing factor (calculation time and the distribution of the faults) is not 

considered in this study, the hybrid schemes generate better system reliability than 

that of pure RB and NVP systems. However, if the timing is a factor especially 

in real time situations, the results need to be reconsidered. 

(6) The static simulation does not handle the statistical (dynamical) features of a fault

tolerant system. Most of the simulation studies have assumed that the failures in 
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the output will follow a Poisson process [Leus90] [Musa87] . The theoretical 

foundation of this assumption is that the times between failures are assumed to be 

exponentially distributed. In fact the faults of the software should follow a 

binomial distribution. It is necessary to study fault-tolerant systems using a 

general statistical modeling environment. 

(7) Correlated faults are not concerned in this study. Coorelated faults could have big 

effects on the system reliability, especially the NVP systems. 

(8) Other analytical methods, such as Markov chain and Petri Nets, can be applied 

to analyze the hybrid fault-tolerant systems. 
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