

DESIGN AND MODELING OF

HYBRID SOFTWARE FAULT-TOLERANT SYSTEMS

by

Man-Xia Zhang

A Thesis Submitted to the Faculty of the

College of Engineering

in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Engineering

Florida Atlantic University

Boca Raton, Florida

April 1992

DESIGN AND MODELING OF HYBRID SOFTWARE
FAULT-TOLERANT SYSTEMS

by

Man-xia (Maria) Zhang

This thesis was prepared under the direction of the candidate's thesis advisor Dr. Jie Wu,
Department of Computer Science and Engineering and has been approved by the
members of her supervisory committee. It was submitted to the faculty of the College of
Engineering and was accepted in partial fulfillment of the requirements for the degree of
Master of Science in Computer Engineering.

Chairperson, Department of Computer
Science and Engineering

SUPERVISORY COMMITTEE:

Thesis Advisor
Dr. Jie Wu

Dr.ru~~
Dr. Imadeldin 0. Mahgoub

ACKNOWLEDGEMENTS

I would like to thank my thesis advisor Dr. Jie Wu, for his constant

support and guidance through this research. I am also thankful to my supervisory

committee members Professors Eduardo B. Fernandez and Imadeldin 0. Mahgoub who

have contributed to my graduate study and who spent countless hours reviewing and

correcting the thesis.

I also like to say thanks to my parents Professor Bao-An Zhang and

Professor Dai Jin for the love and support they have always given to me.

Finally, I want to thank my dear husband Ching-Ping Han and my dear

son George Han, for their support, understanding and love.

111

Author:

Title:

Institution:

Thesis Advisor:

Degree:

Year:

ABSTRACT

Man-xia (Maria) Zhang

Design and Modeing of Hybrid Software Fault

Tolerant Systems

Florida Atlantic University

Jie Wu

Master of Science in Computer Engineering

1992

Fault tolerant programming methods improve software reliability using the principles of

design diversity and redundancy. Design diversity and redundancy, on the other hand,

escalate the cost of the software design and development. In this thesis, we study the

reliability of hybrid fault tolerant systems. Probability models based on fault trees are

developed for the recovery block (RB), N-version progr~mming (NVP) and hybrid

schemes which are the combinations of RB and NVP. Two heuristic methods are

developed to construct hybrid fault tolerant systems with total cost constraints. The

algorithms provide a systematic approach to the design of hybrid fault tolerant systems.

IV

TABLE OF CONTENTS

PAGE

ACKNOWLEDGEMENTS . m

ABSTRACT... tv

LIST OF TABLES . 1x

LIST OF FIGURES "... X

I. INTRODUCTION . 1

1.1 Motivation .. 1

1.2

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

1.3

1.4

Basic Concepts .. .

Software Fault Tolerance

Recovery Blocks .. .

N-Version Programming

Hybrid Fault-Tolerant System and Cost Constraints .. .

Hierarchical N-Version Programming

Contributions of the Thesis .. .

Thesis Overview

2

2

2

3

3

4

4

5

II. BACKGROUND AND REVIEW :. 7

2.1 Fault-Tolerant Software 7

2.1.1 Software Failure Behavior 7

v

2.1.2

2.2

2.2.1

2.2.2

2.2.3

2.3

2.4

2.5

Software Fault-Tolerance

Recovery Blocks and N-Version Programming

Recovery Blocks

N-Version Programming

Methods

Fault Tree for Analyzing Fault-Tolerant Systems

Cost Analysis of Fault-Tolerant Systems

Summary .. .

III. RELIABILITY ANALYSIS OF HYBRID FAULT-TOLERANT

11

11

12

15

17

18

20

20

SYSTEMS 21

3.1 Recovery Block and N-Version Programming Models 21

3.2 Hybrid RB and NVP Fault-Tolerant Systems and Their

Mathematical Models . 28

3.3 Static Modeling of the Hybrid Systems 31

3. 3. 1 Recovery Block Structure 3 1

3.3.2 N-Version Programming Structure 33

3.3 .3 Hybrid Structure- . 33

3.3.4 Simulation Models and Modeling Results 41

3.3.5 Discussion . 49

3.4 Summary 56

Vl

IV. HYBRID FAULT-TOLERANT SYSTEM DESIGN WITH

COST CONSTRAINTS 61

4.1 Hybrid Fault-Tolerant System . 61

4.2 Fault-Tolerant System Design with Equal Program Reliability

and Costs . 64

4.2.1 Method I: Symmetrical Balanced Fault-Tolerant

System Design 65

4.2 .2 Illustration of Method I 67

4.3 Hybrid Fault-Tolerant System Design with Cost Constraints:

General Model . 71

4.3.1 Fault-Tolerant System Design with Different Program

Reliability and Costs . 71

4.3.2 Illustration of Method II . 76

4. 4 Discussion . 78

4.5 Summary 84

V. MODELING OF HIERARCHICAL N-VERSION SOFTWARE

FAULT-TOLERANT SYSTEMS 85

-
5.1 Hierarchical N-Version Programming 85

5.2 ARIES-82 Reliability Modeling Software 86

5. 3 Simulation Models . 87

5.4 Analysis of Results 89

5.5 Summary 89

Vll

VI. CONCLUSIONS AND FUTURE STUDY 95

6.1 Conclusions . 95

6.2 Limitations and Future Study 96

REFERENCES . 98

Vlll

LIST OF TABLES

4-1 System Reliability of Different Hybrid Fault-Tolerant

Systems ... 69

4-2 Input Data for Illustration II . 77

4-3 Feasible Solutions of Illustration II . 83

lX

2-1

2-2

2-3

2-4

2-5

2-6

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

LIST OF FIGURES

Three Stages of Software Development Cycle

Conceptual Diagram of Software Failure ~.

General Structure of the Recovery Block ·~.

Conceptual Diagram of the Recovery Block

Conceptual Structure of the N-Version Programming

Fault Tree for TMR System .. .

Generalized RB Structure .. .

Fault Tree for Generalized RB

Generalized NVP Structure

Fault Tree for Generalized NVP

Structure of Hybrid RB & NVP Fault-Tolerant System

Scheme (1) 6A1 RB .. .

Scheme (2) 6A1 NVP

Scheme (3) 2A1 RB 3A1 NVP

Scheme (4) 2A1 NVP 3Al RB

3-10 Scheme (5) 3A1 RB 2A1 NVP

3-11 Scheme (6) 3Al NVP 2Al RB

3-12 Failure Rates for Scheme (1)

X

8

10

13

14

16

19

22

24

26

27

29

32

34

35

36

37

38

42

3-13

3-14

3-15

3-16

3-17

Failure Rates for Scheme (2)

Failure Rates for Scheme (3)

Failure Rates for Scheme (4)

Failure Rates for Scheme (5)

Failure Rates for Scheme (6)

3-18 Comparison of System Failure Rates

43

44

45

46

47

{e=2% , d=O.l%to0.6%).... 50

3-19 Comparison of System Failure Rates

(e = 6% , d = 0.1 % to 0. 6%) 51

3-20 Comparison of System Failure Rates {e=6% , d= 1% to 6%) . . 53

3-21 Comparison of System Failure Rates

{e=6%, d=0.01% to 0.06%) 54

3-22 NVP System Reliability by Using Scott 's Model 55

3-23 RB System Reliability with Error Type t l =0 57

3-24 Comparisons of System Failure Rates Using

Scott' s Model {e=2 %) 58

3-25 Comparisons of System Failure Rates Using

Scott's Model (e=6%) 59

4-1 Homogenous Hybrid Fault-Tolerant Software Scheme 70

4-2

4-3

4-4

Hybrid Fault-Tolerant System Scheme (1)

Hybrid Fault-Tolerant System Scheme (2)

Hybrid Fault Tolerant System Scheme (3)

Xl

79

80

81

4-5 Hybrid Fault-Tolerant System Scheme (4) :. 82

5-l Model 1 - Three Level Redundancy 90

5-2 Model 2- Two Level Redundancy 91

5-3

5-4

Model 3 - One Level Redundancy

Comparison of System Reliability

Xll

92

93

1.1 Motivation

CHAPTER I

INTRODUCTION

In certain critical areas such as air traffic control [Aviz87], nuclear plants

monitoring, financial management applications [Sims87], and in military applications, for

instance in the so called "star wars" (Strategic Defense Initiative - SDI) project

[Myer86], the reliability of the computer systems is of utmost concern. Fault-tolerant

computer systems are capable of recovering from failures of their hardware or software

components to provide uninterrupted service [Kimk89]. Due to the continuous decline of

the cost of computer hardware, the reliability of computer systems can be improved by

using redundant components. This redundancy can be static or dynamic [Aviz75]. Most

of previous studies have concentrated on hardware redundance mechanisms as the means

to improve the computer system's reliability. However, it is the software reliability

problem that has become more and more critical to the total reliability of the computer

system. Any study of fault-tolerant systems must consider in a balanced way both

hardware and software fault tolerance [Fem90].

Software fault tolerance is the study of design approaches to provide

correct outputs in the presence of design faults. Two important issues which are related

1

2

to the design and analysis of software fault-tolerant systems are the reliability and the

cost associated with various fault-tolerant mechanisms, and we concentrate on these

issues in this thesis. Fault-tolerant software systems considered in this study are the two

most commonly adopted schemes, Recovery Block (RB) [Rand75] and N-Version

Programming (NVP) [Aviz77], [Chen78].

1.2 Basic Concepts

1.2.1 Software Fault Tolerance

It has been noticed that to completely remove all software defects is not

possible for a complicated software system. In order to prevent the failure of a software

system due to some unpredicted conditions, different programs (alternative programs) are

developed separately, preferably based on different logic and/or algorithms (design

diversity) . The fault-tolerant program so obtained should be able to function correctly in

the presence of most software design faults.

1. 2. 2 Recovery Blocks

The Recovery Block (RB) scheme [Rand75], is one of the basic fault

tolerant programming structures. In aRB system, a programming function is realized by

n alternative programs. The computational result generated by an alternative program is

checked by an acceptance test. If the result is rejected, another alternative program is

then executed. The program will be repeated until an acceptable result is generated by

one of the n alternatives or there are no more alternatives available.

3

1.2.3 N-Version Programming

TheN-Version Programming (NVP) scheme [Chen78] also consists of n

alternative programs and a decision algorithm, usually, a voting mechanism. Differently

from the RB approach, all then alternative programs are usually executed simultaneously

and their results are sent to the decision algorithm which selects the final output.

1.2.4 Hybrid Fault-Tolerant Scheme and Cost Constraints

The hybrid fault-tolerant system considered in this study is a software

system which combines the RB and NVP schemes for a given functional task. In the

hybrid system RB and NVP are blended together by different arrangements of the n

alternatives. The idea here is to take advantage of the fact that the reliability of RB and

NVP fault-tolerant systems depend on the reliability of the components which form the

system. Those components include the program module, the acceptance test module for

RB and the decision module for NVP. For instance, when a voting mechanism cannot

select a correct result from n alternative results due to lack of similar results, a recovery

block can be applied in this case since an acceptance test could test individual results.

In general, the reliability of the fault-tolerant system is enhanced by using

more redundant program modules and by selecting the right fault-tolerant strategies. If

there is a limitation on the total cost of the fault-tolerant system, the complexity of

selecting the right components and the right structure to achieve the best system

reliability is substantial.

4

1.2.5 Hierarchical N-Version Programming

The original N-Version Programming method implies to develop redundant

modules for the entire programming task. In other words, one needs to write n (n~2)

programs to solve a particular problem. However, normally a problem can be divided

into several distinct modules, and the reliability of the system can then be improved by

applying fault-tolerant programming to some or all of the modules instead of the entire

system. The hierarchical N-Version Programming is based on the perception that

software reliability can be improved by applying N-Version Programming on the

subsystems rather than the entire system.

1.3 Contributions of the Thesis

Fault-tolerant programming methods improve software reliability using the

principles of design diversity and redundancy. Design diversity and redundancy, on the

other hand, escalate the cost of the software design and development. Therefore, the -
objective of this study is to analyze the reliability and cost of RB, NVP and hybrid

schemes of those two original strategies.

Probability models based on fault trees are developed for the RB, NVP and

hybrid schemes. Two heuristic methods are developed to construct hybrid fault-tolerant

systems with total cost constraints. Mathematical programming methods, such as linear

and nonlinear programming methods, are used in those proposed methods. Those

heuristic methods provide a systematic approach to the design of hybrid fault-tolerant

systems.

5

[Bell90], [Scot83] proposed various probability models to calculate the

reliability of NVP and RB fault-tolerant systems. [Bell91] introduced an optimization

model to design the RB and NVP schemes with total cost constraints. The model

introduced in [Bell90] and [Bel191] is rather complicated and the optimal solution is

obtained by using exhaustive searching. Extensive amount of calculations made this

model not practical. Additional assumptions are introduced in this study to simplify the

mathematical calculations. Using probability models and fault tree to study the hybrid

fault-tolerant schemes and utilizing heuristic algorithms to design hybrid scheme with cost

constraints are the unique contribution of the study.

1.4 Thesis Overview

Some basic concepts and previous research related to this study are

presented in Chapter 2. The discussion includes a review of software failure behavior,

RB and NVP, as well as methods for modeling fault-tolerant system such as fault trees

and probability models.

Chapter 3 deals with mathematical models for the RB, NVP and hybrid

schemes. Fault tree and probability models are developed to study the reliability of the

RB, NVP as well as the hybrid fault-tolerant systems. Examples are given to analyze the

general behavior of the different schemes under various input data.

The cost issues of hybrid fault-tolerant software systems are considered in

Chapter 4. Two heuristic algorithms used for the design of hybrid fault-tolerant systems

are presented. Algorithm I is for a symmetrical balanced hybrid structure. In a

6

symmetrical balanced system, the reliability of program modules are all identical, and

the same as the reliability of acceptance test modules and decision making modules. A

nonlinear program model is developed to optimize the design of the structure of the

hybrid fault-tolerant system. Examples are constructed under various system structures

and software failure conditions. Method II addresses a more general condition, in which

the system structure is not necessarily balanced and the program version failure rates

vary. The reliability of the testing and voting modules also vary. Heuristic methods are

developed for the design of the system under cost constraints.

A hierarchical N-version fault-tolerant system is presented in Chapter 5.

The ARIES 82 software system was used here to evaluate the reliability of different

schemes.

Finally, some thoughts on the limitations of this study and future research

are presented in Chapter 6.

CHAPTER IT

BACKGROUND AND REVIEW

This chapter reviews basic fault tolerance concepts and recent

developments in software fault tolerance.

2.1 Fault-tolerant Software

Hardware fault tolerance has been extensively studied [Siew82], [John89].

We concentrate here in software fault tolerance which is the objective of this thesis. We

consider software failure behavior, the two basic constructs for fault tolerance: Recovery

Blocks and N-Version Programming, and we present the use of fault trees for the

evaluation of software.

2.1.1 Software Failure Behavior

.
In order to study software failure behavior we need to understand the life

cycle of software development. Software development can be divided into three stages

as shown in Figure 2-1:

(1) Functional requirement specifications stage;

(2) Logic/algorithm design stage; and

(3) Programming/coding stage.

7

8

I I
I I I

Function !- ----1 Logic/Aigorithm
I I

Specification 1 ! Design

~----------~~ I

Programming
I

Coding I -
I - --------------

Fig. 2-1 Three Stages of Software Development Cycle.

9

Usually, the human errors/faults occur in all three stages. Errors in the

functional specifications can be reduced by careful planning and supervision. Using

modern computer aided software engineering systems programming faults can be largely

reduced. Most of the software failures come from the design stage. Design faults could

be produced by the following reasons:

(1) Misinterpretation of the specifications; or

(2) Faults on design and selection of the logic and/or algorithms.

Most of the misinterpretations of the functional specifications are caused

by inaccurate and/or incomplete specifications. This should be resolved by better

planning and administration. Fault tolerant programming, therefore, should be addressed

specifically to faults in the logic/algorithm design stage.

The logic/algorithm design faults imply more than just errors in themselves

but faults usually occur with unpredicted input combinations or unpredicted data

exchanges with other functional programs. Because of the complexity of software -
systems, complete testing of all the input combinations for a particular program is not

possible. Using fault tolerance programming, n different versions will be cod~ for the

same functional requirements. We hope that not all of the n different versions of the

programs will fail under a particular input condition.

A general conceptual diagram of software fault tolerance is shown in

Figure 2-2 [Lapr84]. Let us use I for input, 0 for output, V for program versions,

subscript e for error set, and c for correct set. Then the notation lei will be the input

subset of those points which will cause V(i) to fail. Failures are produced whenever

10

v (1)

v (2)

---------. ~ "" . \
I , I

! ei \ i :
I . . . ~A~-1--L v (')

- • ' (---~-... I ... I I
,.--------/ ! . · · !---· v m i r

· ~~j/~ . ~---l~)
. I ~

I v (n) I \,~~-
~L------------'·

___ ..

, I

f 0. ! ---t--+---- , ~. e1 ·

r
I
I
I

Input v Version 0 Output

Fig. 2-2 Conceptual Diagram of Software Failure

11

inputs are selected from the subset ~i within input space I, processed by program version

V(i), and an erroneous result in O ei is generated. The input error sets overlap as shown

by ~i U ~j · This type of errors, correlated errors, are an important source of failure for

fault-tolerant software [Dhi189], [Eckh85].

2.1.2 Software Fault Tolerance

As said earlier, software fault tolerance is based on redundant diversity.

In general, program redundancy can be applied under three major aspects [Horn74]:

(1) Acceptance test or error checks;

(2) Alternate try routines; and

(3) Restoration routines.

In the acceptance test approach, the intermediate results of the program

are tested for reasonableness or acceptability during program execution. Alternate try

routines use different approaches for the same objective. Restoration routines return the

system to a previously determined state when the acceptance test rejects a result. Recent

developments on fault tolerant system design are primarily focused on two approaches,

Recovery Blocks (RB) and N-Version Programming (MVP) methods.

2.2 Recovery Blocks and N-Version Programming

Two of the most popular software fault tolerant programming methods,

Recovery Blocks and N-Version Programming are discussed. The system reliability is

used as quality criteria. Comparisons of RB and NVP are made.

12

2. 2. 1 Recovery Blocks

The general structure of the RB is shown in Figure 2-3 while Figure 2-4

shows its conceptual diagram where AT indicates the Acceptance Test, Restore is the

program function which restores the input states (state i) of the RB. The Ai, (i = 1, 2,

... , n) are the Alternative Programs. If the AT rejects an output produced by program

Ai then the alternative Ai+t is activated. This process continues until a result is accepted

or until all outputs are rejected. In the later case, an error signal will be generated.

Primary Alternative and Secondary Alternatives

The RB contains n alternative programs which are developed from the

same set of specifications. They are arranged in a serial fashion comparable to the

standby sparing technique used in hardware redundancy. Usually, the first alternative in

the series is called the primary alternative which is the most reliable or most efficient

program. The other alternatives are known as the secondary alternatives. The secondary

alternatives could be degraded program modules; i.e., they can be simpler than the

primary program and could generate degraded but acceptable service. (A reduction in the

number of design faults should be expected by designing less complicated alternative

programs.)

Acce.ptance Test

The Acceptance test applies some known conditions that the result should

satisfy for error detection. It is invoked at the exit point of the alternatives. The

acceptance test should be as simple as possible such that itself does not contain any

13

ensure acceptance test
by alternative1
else by alternative2

else by alternativen ·
else error

Fig. 2-3 General Structure of the Recovery Block

14

Restore I '
......

i

i
I
I
I

I No I
I
I A1 I
I A2

. Yes
-State I . A.T. State o ' . ..

l .
I An I

RP I :. ·

I
A.B.

i

Fig. 2-4 Conceptual Diagram of the Recovery Block

15

design faults. In case the acceptance test contains design faults , it could then produce

a failure by:

(1) Rejecting an acceptable result, or

(2) Accepting an unacceptable result. (This is really the most

serious failure.)

Limitations of RB

The most important limitation of RB is in finding good acceptance tests.

If there are not adequate their lack of coverage reduces the reliability of the system.

It is expected that by using different programmers, computer languages,

and algorithms to produce several functional comparable programs from the same initial

specification, the alternatives should not contain design faults. However, this expectation

is not guaranteed, because of the possibility of correlated errors. However, in aRB those

errors are not so significant as inN-Version Programming.

2.2.2 N-Version Programming (NVP)

The NVP method consists of n program versions and a voting mechanism.

Figure 2-5 shows the conceptual structure of the NVP approach. State I and State 0 are

the input state and the output state of the NVP module. A i (i = 1 , 2 , ... , n) are the

alternative program modules. Decision selects the best solution out of n alternative

solutions. Usually, a voter is used as the decision mechanism.

16

I
A1 k
A2

I "'"' i I

I~ I

.l I

State I I Voter State Q.
I I I ! I

I ~/ I
I An

Fig. 2-5 Conceptual Structure of theN-Version Programming

17

Votine Mechanisms

Usually a voting mechanism is used to select the correct result from the

n results generated by the n program versions. However, some applications generate

identical results and some can produce slightly different but correct results. In the case

that the versions generate identical results then a majority voting can select the correct

result [Andt81]. For results which are slightly different due to precision voting can be

done after a range check and correction.

Limitations of NVP

Similar to the RB, the NVP requires more design and programming work,

and needs additional hardware to run those n program versions. Its effectiveness depends

directly on the independence of the programs. Recent study reveals that the independently

developed programs do not fail independently [Voum85], i.e., there are correlated errors

among independently developed n programs. Because the versions must execute

concurrently the effect of correlated errors is much more serious than for RBs. N

Version Programming is also wasteful of resources since the n versions must execute

concurrently.

2.2.3 Methods

Various probability models have been developed for RB and NVP

[Gma80a], [Gma80b], [Scor83]. Assumptions are used in developing those models.

[Bell91] proposed a model for designing these fault tolerant schemes with a total cost

limit. The fault tolerant schemes considered were simple RB or NVP schemes.

18

2.3 Fault Tree for Analyzing Fault Tolerant Systems

Many modeling techniques have been adopted to study the reliability of

fault tolerance systems. In this section we describe the fault tree method since it is the

only one we will use in this thesis. See [Leus90] for a discussion of several other

methods.

Fault Trees

The fault tree is a modeling tool represents the conditions that result in a

system or subsystem failure. It displays the possible events which cause the system

failure. The fault tree is obtained from the system structure and functional requirements.

Sometimes, the system reliability is calculated based on the tree representation but it

cannot describe common failures.

A TMR system is used here to demonstrate the construction of fault tree

and develop the system reliability from it [John88]. Figure 2-6 is the fault tree for a

TMR system. Two type of logical gates are shown in the figure, the "OR" gate and the

"AND" gate. The OR gate indicates that the output event will exist if one or more of the

input events is present. The AND gate defines the situation when the coexistence of all

input events is required to produce the output event. Additional discussions about fault

trees can be found in [Arse80], [Barl75], and [Dhil78]. Some reliability modeling

program packages · use the fault tree as one of their input tools [Stit79], [Sahn87].

19

System Failure

I g
1
,1---- I -------.

e /a
1: e A ; (e 9 } (_ e A) (e c)

" __,.,.... ____,..

I

fi
(\ ' \

\ es ;_ec ;
...._.,.,.. ..._._.,..·-'

_1
(<i)

'-..__..-·'

Fig. 2-6 Fault Tree for TMR System

20

2.4 Cost Analysis of Fault-tolerant Systems

In general, more redundancy in the computer program modules will

increase the reliability of the software in both RB and NVP schemes (if these modules

are carefully tested). However, additional program modules increase the software

development cost. Extra programs also requires more computational power on the

computer, especially for the NVP. A balance on reliability and cost should be achieved.

[Bell91] seems to be the only work which addresses the relationship between cost and

reliability of a fault tolerant system.

2.5 Summary

This chapter introduced the basic concepts of software fault tolerance and

reviewed previous research in this field. The fault tree method will be applied in this

thesis for analyzing hybrid fault tolerant systems and has been discussed here in some

detail.

CHAPTER ill

RELIABILITY ANALYSIS OF

HYBRID FAULT-TOLERANT SYSTEMS

In this chapter two of the most common approaches for fault tolerance, the

Recovery Block (RB) and the N-Version Programming (NVP) method are evaluated.

Then the reliability of a hybrid fault-tolerant system combining the RB and NVP is

explored.

The analysis consists of two parts: First, reliability models of RB and

NVP are developed in the form of fault-trees and analytical modeling. Then, a reliability

expression for the hybrid mechanisms is developed. A program containing six modules

alld a number of testing and voting modules is used to demonstrate the proposed

reliability analysis method. Numerical calculations are analyzed to give a general

understanding of the hybrid approach.

3.1 Recovery Block and N-Version Programming Models

Recovery Block

A generalized RB structure with nRB modules is described in Figure 3-1.

We assume one acceptance test module Tis used for all the versions. If the acceptance

21

22

--.. t

I
I I I I I I p I I p I I P 2 I P I

CJ I n-11 ! nffi\ I I I

I I

! I

I I
I

I I +

T

Fig. 3-1 Generalized RB Structure

23

test detects an erroneous output in module i then the input state is recovered and module

(i + 1) is activated. This procedure is repeated until success or lack of versions.

A fault tree for this RB model is shown in Figure 3-2 [Bell90]. The reliability of the

fault-tolerant system depends on the reliability of program modules p . as well as on the
~

reliability of the acceptance test T . The test module can fail in two modes, type 1

failure (t
1

) and type 2 failure (t
2

) described below. The following parameters are used

in the analysis:

e . =
~

n =

n = RB

follows:

where:

Probability of failure for program module i (i =1, 2 1 . .. In) .

Number of program modules.

Number of RB modules in a scheme.

Probability of failure in RB when acceptance test i judges an incorrect

result as correct.

Probability of failure in RB when acceptance test i judges a correct result

as incorrect.

The probability model of the generalized RB scheme is calculated as

(3-1)

p RB = Probability of failure of the RB scheme.

0

Q

0

24

I

Q
I

Failure :

i
I
I

-~

AND Gate

OR Gate

·c Fault Event Basi

. 3-2 Fault Tree Ftg. . ed RB [Bel190] for Generahz

25

There are two parts in equation 3-1. The first part reflects the situation

when program versions fail or when the acceptance test erroneously judges correct results

as failures. The second part represents the situation when the test accepts an incorrect

result. Both conditions cause the fault-tolerant system failure.

N-Version Pro~rammin~

Figure 3-3 shows a generalized NVP structure. The decision algorithm

may itself fail by not being able to select the correct result. Figure 3-4 is the fault tree

for a generalized NVP [Bell90]. [Scot83] described that there are three types of errors

related to NVP:

(1) all of the n versions disagree

(2) more than one version has an incorrect result

(3) voting procedure has error.

Assuming that the correlated errors among program versions and the error of type (2)

are ignored, the probability of system failure pNV is obtained from the fault tree as:

where:

nNV

PNV = IT ei + d
ial

(3-2)

ei = Probability of failure for program module i (i = 1, 2, ... n). In

NVP, the program module failure is defined as producing no

output.

26

I

I p n-1 ~ p1 p 2 I 'P
I nNV I

~~

I

I
I
i

t I
i

I

1
v

Fig. 3-3 Generalized NVP Structure

27

System Failure

I I L-------------~ 6 I

I, .,\ / \) / \ / . \

\ .. e 1 / · · · \ e n-t · · · \ e 2) · · · \ e n !
/ '.._ / ', / " .-' ... _____ ./ ·..._____.-· ·.....___.-___.-·

Fig. 3-4 Fault Tree for Generalized NVP [Bell90]

28

d = Probability in NVP that the decision algorithm cannot select the

n = NV

result out of at least 2 correct results

Number of NVP versions in a scheme.

3.2 Hybrid RB and NVP Fault-Tolerant Systems and Their Mathematical Models

A hybrid fault-tolerant system combines the RB and NVP schemes. The

idea here is to take advantage of good aspects of both RB and NVP. In general, a hybrid

fault-tolerant system consists of many small subsystems. Each subsystem may include

even smaller subsystems. To simplify the discussion, we consider here hybrid fault-

tolerant systems with only two levels: RB embedded in NVP or NVP embedded in RB.

Figure 3-5 shows the basic structure of a hybrid RB and NVP fault-tolerant system. The

first level consists of p basic program modules which form the second level program
n1

versions p , 1 s: i s:m. If RB (or NVP) is used at the first level, NVP (or RB) is used
V1

at the second level. Failure rates for the basic program modules and program versions

are e . and e respectively. The program versions failure rates e are calculated
1 ~ I ~

based on the structure of the version and the failure rates of the program modules (e .),
1

acceptance test error probabilities (t
1

, t
2
), and decision error probability (d). The total

hybrid fault-tolerant scheme's reliability is obtained by first calculating the reliability of

the lower level program versions, and then use the lower level program versions

reliability as the input to the higher level versions. This process is repeated until the total

system reliability is obtained. Mathematically, the hybrid system' s reliability is calculated

29

I
I i < i
l p i I
.· I . I

. • • . • j n1 ; .•.
1

: I . . . : : I

l
l!'j:·····;:,'••:••,: ..•..• ,,,., .. i~ ,.,.,.-v,..,..,..,.,j..,..,..,T~-- ~ ---····'····.·.'._._.,'_ •• _.:· .. ·· .•. : ... -• .. :.i'._-.i•.-•:._.i_!_: .• _._P_••. ·.·-·-···!•·j ;l __ :_j.i1· _:i __ :_: _.i._.· .•..• l,__-
·~:)!U<i~ : >~/:: =··· - ~ .

t ./ v

• • •

Fig. 3-5 Structure of Hybrid RB & NVP Fault Tolerance System

30

by using equations (3-1) and (3-2) where the program module's failure rates e i is

substituted by e . We have:
vi

nNV

PNV = II evi + d
i=l

The following definitions are defined for hybrid fault-tolerant scheme:

e . =
~

m=

Ti =

vi =

pi =

Probability of failure for program module i (i = 1, 2, ... n)

Probability of failure for version i.

Number of hybrid versions.

Test module i in the RB scheme.

Voting module i in the NVP scheme.

Program module i (i =1 I 2 I ... In) ·

(3-3)

(3-4)

ni = Number of program modules in version i (n
1
+n

2
+ .•. +nm = n)

pvi = Hybrid program version i (i = 1 1 2 1 •••
1

m) .

The probability of system failure p F :

(3-5)

31

The function f defines the approach used in the higher level of the

system, which is given by equation (3-3) for RB or equation (3-4) for NVP.

3.3 Static Modeling of the Hybrid Systems

In this section, a fault-tolerant scheme with six (6) program modules which

represent the same function in different ways is used to study different fault tolerance

characteristics. The RB, NVP as well as the hybrid RB and NVP schemes are studied.

The following simplifications are used:

(1) All program module's failure rates are same

(e . == e e . == e) . The probabilities of failure for hybrid
~ ' v~ v

program versions are also the same since we assume the number

of program versions and their structure (RB or NVP) in hybrid

versions are the same.

(2) The two types of errors t
1

and t
2

are the same (t
1

== t
2

) in

a Recovery Block structure.

(3) The probabilities of acceptance test error t
1

and t
2

are greater

than the decision error d in a NVP.

3.3.1 Recovery Block Structure

Scheme 1: 6A1 RB (6-modules, !-acceptance test RB scheme, Figure 3-6)

With six program modules and one acceptance test, several Recovery

Block schemes can be formed. Figure 3-6 shows its system structure and its fault tree

•

32

P3 1P4 1Ps]Ps]
I '

i
~ • I t ~

i
+

System Failure PF

------~ff~------~
I

Q Q
: I ' ! I I

---------'~ I '--' -- ' I '--' -
~------- ~

Fig. 3-6 Scheme (1) 6"'1 RB

...

33

form. According to equation (3-3) the probability of system failure p for the 6 1 RB
F

scheme is as follows:

P F = ~ (e i + t2) + t1 ~ (e i + t2) i I e i = e
~=1 ~ -1

= (e+t2) 6 + t 1 "t (e+t2) 6
i • 1

3.3.2 N-Version Programming Structure

Scheme 2: 6 1 NVP (Six modules, one voter NVP scheme, Figure 3-7)

(3-6)

In this NVP scheme the system is unable to produce an output under two

condit~ons: either all six program modules fail or the decision (voter) mechanism fails.

Figure 3-7 displays the scheme and its corresponding fault tree. From the equation (3-4) ,

the probability model is as follows:

(3-7)

3.3.3 Hybrid Structure

The hybrid structure combines both RB and NVP concepts. With six

modules, four combinations are possible. Figures 3-8, 3-9, 3-10, and 3-11 are the

schemes and fault trees for the schemes 3, 4, 5 and 6 relatively. The probability models

are the following:

34

I

System Failure PF 1

~
.----------~1 I, ____________ ~
i

I

---~~--------~.
! I ·--------, I I
I I I I

I I I I I I
-·-';___A A~ A

1,~ \~ l~) ~ -~) {~) I ~

Fig. 3-7 Scheme (2) 6'''1 NVP

i
I
I

I
i

I
I

.J____

~. d ')
.__/

35

· tEJ~• · ···· · ··•·······!

! . ,1 · r ··
:. I. . '-. :--r---'

I
P5 .I

T .,

1 ~i I' r (dj

I

I *
1 Voter
'

I
1· System Failure PF

,---------~fr._

I~

Partial Failure 9v

Fig. 3-8 Scheme (3) 2"'1 RB 3"'1 NVP

·· a·· . ·.· ·.·.

.······• .. · · ... · ·.· · ·
! . : .
r Pt 1 '
~ · ~·

r=ll v l
(f'2 I L.y-J•I r · · · 1

I •

I
I
'

36

System Failure P

.------~'----------;

(~}(~ \.~(!_~)(~)\.~) 1.~ --!_~)(~K !s)I .~H,~)

37

System Failure PF !

I
I
I

_l
i d)
'-.-

I

Fig. 3-10 Scheme (5) 3Al RB 2Al NVP

38

I j

: P1 h
j

: ! i: ~ ----.
: P2 hl-.; v
i l I ! ·
, I
'P3 ~ I . · 1

i

*
Test

System Failure PF

39

Scheme 3: 2Al RB 3Al NVP (Figure 3-8)

= ii: (e i + t2) + tl t (e i + t2) i I ~
isl i=l ei e

= (e+ t 2) 2 + t 1 t (e+ t 2) i
i=l

(3-8)

(3-9)

Where:

p F = Total system failure rate

e = Program version failure rate
vi

e . = Program module failure rate
~

Scheme 4: 2Al NVP 3Al RB (Figure 3-9)

(3-10)

40

PF= Il(ev+t2)+tlt(ev+t2)ila • a i •1 23
i=l 1 i=l 1 vi v• ' '

= (ev+t2) 3+t1 t (ev+t2) i
i • l

Scheme 5: 3A1 RB 2A1 NVP (Figure 3-10)

ev=TI (ei+t2) +tlt (ei+t2)ila •a
i•l i•l 1

= (e+ t 2) 3 + t 1 t (e+ t 2) i
i•l

Scheme 6: 3A1 NVP 2A1 RB (Figure 3-11)

=(e+t) 2 + v 2

(3-11)

(3-12)

(3-13)

(3-14)

(3-15)

41

3.3.4 Simulation Models and Modeling Results

There are many different types of simulation techniques [John88].

Simulation involves conducting experiments with a model in order to understand how a

system will behave and obtaining numerical evaluations of the various operational

strategies. In this study, all six schemes are simulated under different failure rates of the

program modules, the acceptance tests, and the decision (voting) mechanisms. The

calculation program was developed under the Lotus 123 environment.

The simulation results for the schemes shown in Figures 3-6 to 3-11 are

presented in Figures 3-12 to 3-17. Test data ranges are chosen as:

e = 1% to 6%

t = 1% to 6%

d = 0.0001% to 0.0006%

We assume that the decision module has a higher reliability than the testing module.

Some observations that can be obtained by analyzing the output are the following:

Scheme 1 (Figure 3-12): 6A1 RB

Under the given test ranges of e, t, and d, the scheme failure rate Pp =

0% to 1.3% (Max. when e = 6%, t = 6%).

The 6A 1 scheme is a pure RB scheme and ·its reliability is used as the

reference for the other schemes. The 6A 1 RB scheme is fairly reliable. If the average

program module failure rate (e) is 1% and the test error rate is 1% then the system

reliability is better than 99.95%. If the computer program module reliability dropped to

42

Scheme 1 (6"' 1) Failure Rates

0.014~--------------------------------~ -'#. 0.012 0
0

0.01 ,-
X - .
~ 0.008
:::J

.03
u..
E
Q)
CIJ
>-

(./)

0.006

0.004

0.002

0
0.010.0150.020.0250.030.0350.040.0450.050.0550.06

Acceptance Test Failure (x1 OOo/o)

-e- e= 1% -+-- e=2% --¥-- e=3%

-a- e=4% ~ e=5%_ e=6%

Fig. 3-12 Failure Rates for Scheme (1)

0.007

-?ft. 0.006 0
0
T""

X 0.005 -Q)
~

:::::J 0.004
'(ij
LL

E 0.003
Q)
+-' en 0.002 >.
(/)

0.001
1

43

Scheme 2 (6 ~ 1 NVP) Failure Rates

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Decision Failure (dxE-3)

--- 9=1% ~ 9=2% ~ 9=3%

~ 9=4% '""'*""" 9=5% 9=6%

Fig. 3-13 Failure Rates for Scheme (2)

0.007

-?fl. 0.006 0
0
,.--
X 0.005 -Q)
'-
::J 0.004

"ffi
LJ..

E 0.003
Q) en 0.002 >-

(f)

0.001
1

44

Scheme 3 (2 A 1 RB 3 A 1 NVP)

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Test Failure (%) Decision Failure (E-3)

--- 9=1%--+-- 9=2% ~ 9=3%

~ 9=4% --*- 9=5% _..... 9=6%

Fig. 3-14 Failure Rates for Scheme (3)

-??-
0
0
,--
X ..__,
Q.) ,_
:J
-~
u.
E
Q.) -en
>-

(j)

45

Scheme 4 (2 ;"-. 1 NVP3 ;"-. 1 RB) Failure Rate

0.005
0.0045

0.004
0.0035

0.003
0.0025

0.002
0.0015

0.001
0.0005

0
1 1 :5 2 2.5 3 3.5 4 4.5 5 5.5 6

Test Failure (%) Decision Failure (E-3)

~ 9=1%-+- 9=2% ~ 9=3%

~ 9=4% --*- 9=5% 9=6%

Fig. 3-15 Failure Rates for Scheme (4)

46

Scheme 5 (3 A 1 RB2 A 1 NVP) Failure Rate
0.007

-#- 0.006
0
0
~

>< 0.005 ...__,
Q)
.......
:::J

"(ij
0.004

u..
E 0.003
Q)

+oJ
en

0.002 >-
(j)

0.001
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Test Failure (%) Decision Failure (E-3)

--- 9=1%-+-- 9=2% ~ 9=3%

--Er 9=4% """"*- 9=5%_ 9=6%

Fig. 3-16 Failure Rates for Scheme (5)

47

Scheme 6 (3 A. 1 NVP2 A. 1 RB) Failure Rate

0.009

- 0.008 '#.
0 0.007 0
~

X 0.006 -Q) 0.005 \,.,

:::J
'ffi 0.004
u.
E 0.003
Q)

0.002 --(/)
>.

0.001 (/)

0
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Test Failure {%) Decision Failure (E-3)

--- 9=1%--+- 9=2% ~ 9=3%

-a- 9=4% ~ 9=5%__ 9=6% ...

Fig. 3-17 Failure Rates for Scheme (6)

48

94% (6% failure rates) and the test error rate increased to 6% , the system reliability is

still better than 98.6%. The system is not very sensitive to the program module failure

rate and test failure rate: with a 6% difference in failure rates the system reliability

decreases by 1.1%.

Scheme 2 (Figure 3-13): 6A1 NVP

The probability of system failure for the 6A 1 NVP scheme depends

strongly on the reliability of the voting mechanism. When the program module failure

rate e varies from 1 % to 6% , there is no clear effect on the system reliability. However,

there is a clear relation between the system failure Pp and the voter error rate d. In other

words, the NVP can tolerate not so reliable modules as far as it has a reliable decision

mechanism.

Scheme 3 (Figure 3-14): 2A1 RB 3A1 NVP

Similar to the 6Al NVP scheme, the system's failure rate is related to the

decision failure rate d. Lower level redundancy is not necessary if a decision module

with failure rate d is going to be used as a final determination of the scheme.

Scheme 4 (Figure 3-15): 2A1 NVP 3A1 RB

This scheme takes the advantages of both NVP and RB. Under the same

testing data, the system's failure rate pF is between 0.01% to 0.45%. The system's

reliability is not very sensitive to the program module failure rates e.

49

Scheme 5 (Figure 3-16): 3"' 1 RB 2"' 1 NVP

When a decision/voting module is used as the final judgement of the

scheme, it resembles the characteristics of NVP. In other words, the system's failure rate

is strongly dependent on decision failure rate d.

Scheme 6 (Figure 3-17): 3"' 1 NVP 2"' 1 RB

The system reliability is very much independent of the program module

failure rate e. It can be discovered from the plot that the system failure is related to

decision or testing failure rates exponentially.

3. 3. 5 Discussion

Figures 3-18 and 3-19 show the comparisons of the six schemes when the

program failure rates are e=2% and e=6%. The testing failure rate tis set between 1%

to 6% and the decision/testing failure rate d is assigned from 0.1% to 0.6%. The

following are some observations from Figure 3-18 and 3-19.

(1) Scheme 4 2"'1NVP3"'1RB has the best system reliability under the given testing

data.

(2) A pure RB or NVP scheme has higher system failure rates than most of the

hybrid schemes.

(3) Under the assumption that d = o . 1 t, the schemes 2, 3, and 5 generate better

system reliability than other three schemes when t > 4% and d > 0.4%

approximately.

-?fl.
0
0 ,....
X -Q)
'-
~

·co
LJ..

E
Q) en
>-

(j)

0.01
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001

0
1

50

Comparisons
Module Failure Rate e=2%

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Test Failure (%) Decision Failure (E-3)

-II- 6 A 1 RB -+- 6 A 1 NVP ---*-- 2 A 1 RB3 A 1 NVP

-a- 2 A 1 NVP3 A 1 RB """*- 3 A 1 RB2 A 1 NVP __.... 3 A 1 NVP2 A 1 RB

Fig. 3-18 Comparison of System Failure Rates (e=2%, d=O.l% to 0.6%)

-(fl.
0
0 ,....
>< -Q)
~

::::J
·cu
u.
E
Q)
(/)
>.

C/)

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0
1

51

Comparisons
Module Failure Rate e=6%

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Test Failure (%) Decision Failure (E-3)

Fig. 3-19 Comparison of System Failure Rates (e=6% d=O.l% to 0.6%)

52

Figures 3-20 and 3-21 show the comparison of system failure rates of the

six hybrid schemes with decision failure rated= 1% to 6% (Figure 3-20) and d=0.01%

to 0.06% (Figure 3-21). It can be clearly seen that the system's reliability for a NVP

dominated scheme, such as schemes 2, 3 and 5, will have a better system's reliability if

d < 0.1 tor worse reliability if d > 0.1 t when compared with a RB dominated scheme.

[Scot87] proposed a reliability model to calculate the NVP system's

reliability, as well as other mechanisms. The assumptions used in his model are:

(1) The only type of error considered is that when all outputs disagree (called

type one error by them).

(2) Type two and type three errors, that is, when an incorrect output appears

more than once (type 2) and errors in the voting procedure (type 3) are

ignored.

Under those assumptions, the system failure rate pF becomes:

n~ -
PNV = 1 -RNV= 1 - :E (n7) (1-e) i e~~-i

.I=2

. (3-16)

Figure 3-22 shows the system failure rate when e = 1 % to 6%. Under Scott's model the

NVP system reliability does not increase very large by using fault tolerance especially

when e increases. According to Scott's model using the same way to define the type of

errors, we have equation (3-17) from [Be1190]:

-(ft.
0
0
T""

X -(])
"-
::::J

·co
u.
E
(]) en
>-

(/)

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0
1

53

Comparisons
Module Failure Rate e=6%

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Test Failure (%) Decision Failure (E-2)

--- 6 "' 1 RB -+-- 6 "' 1 NVP ~ 2 "' 1 AB3 "' 1 NVP

-t::r 2"' 1 NVP3 "' 1 RB """*-- 3 "' 1 AB2"' 1 NVP _.... 3 "' 1 NVP2"' 1 RB

Fig. 3-20 Comparison of System Failure Rates (e=6%, d=l% to 6%)

-(fl.
0
0
or-
>< -Q)
'-
::::s
'ffi
LL.

E
Q) -en
>-

(./')

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0
1

54

Comparisons
Module Failure Rate e=6%

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Test Failure (%) Decision Failure (E-4)

--- 6"' 1 RB ~ 6"' 1 NVP ~ 2"' 1 RB3 A 1 NVP

-8- 2"' 1 NVP3 A 1 RB ""*- 3 A 1 RB2 A 1 NVP _.._ 3 A 1 NVP2 A 1 RB

Fig. 3-21 Comparison of System Failure Rates (e=6%, d=O.Ol% to 0.06%)

-:;:.g
0
0
0
,...-
>< -Q)
'-
::::J

·co
LL.

E
Q) en
>.

CJ)

0.06

0.05

0.04

0.03

0.02

0.01

0
1

55

6"" 1 NVP (Scott's Model: d =0)

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Module Failure Rate e = 1 to 6%

1--- 6"~ NVP

Fig. 3-22 NVP System Reliability by Using Scott's Model

where:

56

nRB

PRB =IT (ev1+t2i)
i•l

t
1

= o and t
2

is the only type of error of the acceptance test in RB.

(3-17)

Figure 3-23 shows the system failure rate when e= 1% to 6% under the pure RB.

Figures 3-24 and 3-25 show the comparisons of the system failure rates for all six hybrid

schemes when Scott's model is used to calculate the failure rates of NVP modules.

Except for the 6A 1 NVP scheme, the other schemes yield similar system failure rates to

the ones calculated by the mathematical model developed in this study.

[Scot83] proposed a consensus RB model which starts with an NVP scheme and

if there is no output result an RB scheme is applied. That is also a combined NVP and

RB scheme of the type used in this study. The difference is that the consensus RB

combines NVP and RB within one level of redundancy and the hybrid scheme in this

study applies these methods in two levels. The hybrid fault-tolerant systems proposed in

this study generate better system reliability than the pure RB or NVP systems. The

hybrid fault-tolerant scheme could be extended to more than two levels but the high

number of versions makes this idea impractical.

3.4 Summary

A simulation model has been used to study the behavior of hybrid fault-

tolerant schemes. Six fault-tolerant programs were constructed using Recovery Block

-?fl.
0
0 -,..- <0 X I - UJ
Q) 0
'- ,..-
:::J en ·ca Q)
u. E
E i-
Q) -...... en
>-en

3

2.5

2

1.5

1

0.5

0
1

57

6 /'-. 1 RB (Scott's Model: t1 =0)

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Acceptance Test Failure (x1 00%)

--- 9=1%-+- 9=2% ~ 9=3%

~ 9=4% """*""" 9=5% --...... 9=6% ...

Fig. 3-23 RB System Reliability with Error Type t1 =0

-'#
0
0 ,....
X -Q)
'"-
::J

'ffi
LL

E
Q) en
>-

(f)

0.012

0.01

0.008

0.006

0.004

0.002

0
1

58

System Failure (Scott's Model)
Module Failure Rate e=2% Error t1 =0

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Decision Failure t2 (x1 00%)

--- 6~ 1RB -+- 6~ 1NVP ~ 2~ 1R83~ 1NVP

--t:r 2 ~ 1 NVP3 ~ 1 RB --*- 3 ~ 1 RB2 ~ 1 NVP "'*'" 3 ~ 1 NVP2 ~ 1 RB

Fig. 3-24 Comparisons of System Failure Rates Using Scott's Model (e=2%)

-?fl.
0
0
T""

X -Q)
~

::::J
'ffi
u.
E
Q) en
>-

(j)

0.06

0.05

0.04-

0.03-

0.02-

0.01-

0
1

59

System Failure (Scott's Model)
Module Failure Rate e=6% Error t1 =0

~

'""'""' =
"=' - -I "T" I "T" I "T" I "T" I

1.5 2 2.5 3 3.5 4 4.5 5 5.5
Decision Failure t2 (x1 00%)

--- 6A1RB -+-- 6A1NVP """*- 2 A 1 RB3 A 1 NVP

-a- 2 A 1 NVP3 A 1 RB ~ 3 A 1 RB2 A 1 NVP 3 A 1 NVP2 A 1 RB

dll.

6

Fig. 3-25 Comparisons of System Failure Rates Using Scott's Model (e=6%)

60

and N-Version Programming including their combinations. The study contains four main

parts: development of the fault-tolerant schemes, fault tree for these schemes, probability

models, and simulation.

A sample fault-tolerant system which consists of six redundant versions

was utilized for building the various schemes and for numerical testing. Four hybrid

configurations of the basic RB and NVP were compared with the original RB and NVP

design. The results show that the combined schemes can produce better system

reliability than that of the original RB and NVP methods. Also studied were the system

reliability under different .schemes and different probabilities of program failure,

acceptance testing failure and decision failure. Guidance to select the best system

configurations was also presented.

CHAPTER IV

HYBRID FAULT-TOLERANT SYSTEM DESIGN

WITH COST CONSTRAINTS

4.1 Hybrid Fault-tolerant System

Two important issues which are related to the design and analysis of fault-

tolerant software are the reliability and the cost associated with various fault-tolerant

mechanisms. This chapter presents two heuristic methods for the design of hybrid

Recovery Block (RB) and/or N-Version Programming (NVP) systems under cost

constraints. The first one is an homogeneous model where all program module's failure

rates, acceptance test or voter's failure rates and costs are the same. The second

algorithm deals with a general model in which all failure rates and costs are variable. As
•

we saw in Chapter III, hybrid RB and NVP schemes, can further improve reliability.

Design diversity and redundancy, on the other hand, escalate the cost of softw_are design

and development. [Bel190] proposed an optimization algorithm to design RB and NVP

systems under total cost constraints. In this chapter, we propose two heuristic methods

for the design of fault-tolerant software using two levels of hybrid RB and NVP schemes

under cost constraints.

61

62

The cost of fault- tolerant software includes design, implementation, testing,

and operation costs. In general, the reliability of software can be increased by adding

more redundant programs or units. However, in practice cost limits are usually imposed

in designing such a system. [Bel191] reported optimization models for systems using

separated RB and NVP systems under constraints on the total cost.

System Failure Rates of the Hybrid System

In general, using the notation of Chapter III, the failure rates for the RB

and NV module can be written as (Equations 3-3 and 3-4):

nRB

(evi + t2) + tl L (evi + t2) i
i•l

The probability of system failure pF is:

(4-1)

(4-2)

(4-3)

In this equation, pF is a function f defined by the configuration of the

hybrid system.

63

Since p F is the probability of system failure, then (1 - p F) is equal

to the system reliability. The cost models of the proposed schemes are then a nonlinear

function as follows:

Objective:

Max (1-PF)
jeS J

Subject to:

where:

p = failure rates of the scheme j
FJ

c = the total resources available

C = resources needed for program module i
ei

C = resources needed for voting module i vi

c ti = resources needed for testing module i

s = the complete set of possible schemes can be constructed

s = the scheme that gives the optimal system reliability

j = scheme index

(4-4)

(4-5)

64

The configuration which generates the best system reliability within the

total resource limits will be the optimal solution.

Two methods are presented here which will generate optimal fault-tolerant

system structure under given cost limits. The first method developed is for homogeneous

fault-tolerant systems in which all the program modules have the same reliability and

cost. A more general method applied to systems in which the program modules as well

as the voting and acceptance test all have dissimilar reliability and associated costs. Both

algorithms are based on two results from our previous study (Chapter III). The relevant

facts are the following:

(1) A fault-tolerant system which consists of more program modules has higher

reliability. This is true for both RB and NVP schemes if the modules have been

carefully tested. Since the probabilities of the program failures are less than one

(e i I t I d < 1) , more multiplication of them will generates a smaller number.

(2) In general, software system reliability is improved by using more test and vote

program modules. As our previous study shows that for a system consist of same

number of functional redundant programs, the systems with least testing and

voting programs have lowest reliability. The system's reliability can be improved

by using more testing and voting modules.

4.2 Fault-Tolerant System Design with Equal Program Reliability and

Costs

Based on the observations stated above, the algorithm calculates possible

system configurations under the cost limit. It first confines the maximum number of

65

redundant programs supported by the cost limit. The system reliability will be used as

the lower bound. Then more voting and testing modules are added into the scheme.

Program modules will be traded for the testing and voting modules if necessary. The

configuration with the highest reliability will be selected. Following is a step by step

description of the method.

4.2.1 Method I: Symmetrical Balanced Fault-Tolerant System Design

Step 1:

Step 2:

Calculate the total number of program modules, n .
p

n = max integer (Total cost I cost for each program module)
p

= max int [C/ Ci]

(The assumption used here is that all the program modules have the same

cost c .=c .).
e~ ~

Calculate the remaining resources c'

c' = (c - c . · n)
~ p

c' represents the resources remaining for the voting and testing programs

when a number np of programs are utilized.

Select hybrid scheme

If c' ~ I • c or c' ~ I • c , go to step 4. This indicates that there t v

are enough resources remaining for the testing and voting programs after

the resources have been committed to the n number of functional
p

programs. (Here I is the iteration number which in initially 1).

Step 4:

Step 5:

Step 6:

66

Else, n = n - 1 , repeat step three.
p p

If there are not enough resources left for the voting and/ or testing

programming, then one of the functional programs has to be traded for the

testing/voting programs.

Calculate the system reliability

Calculate the system reliability under the given number of testing and

voting modules. This is accomplished by using equations (1), (2), and (3).

There could be several different configurations under a given number of

program modules, acceptance test and voting modules.

Stopping Rule

If, r < .! · n + 1 , then, r = r + 1, go to step 3;
2 p

else, go to step 6.

The stopping rule is used to decide when to continue or terminate the

iteration procedure. It is obvious that in the hybrid system, the number of

testing and voting programs should not exceed half of the number of

functional programs. This assumes that there should be at least two

functional programs in a RB or NVP structure.

Select the scheme with the maximum system reliability.

67

4.2.2 Illustration of Method I

The following example illustrates this method. It is assumed that all

programs and their testing modules have the same reliability and costs. The input data

are:

Iteration 1 :

Step 1:

Step 2:

Step 3:

Step 4:

Cost of the program module C
9

= 15 (thousand dollars)

Cost of the testing module ct = 85% · C
9

= 12.75 (thousand dollars)

Cost of the voting module c = 10% · c = 1.50 (thousand dollars)
v 9

Total amount of resources available C = 120 (thousand dollars)

Probability of program module failure e = 5%

Probability of testing module failure t = 2%

Probability of voting module failure d = 0.2%

Total number of program modules nP = [C/ C
9

] = [120/15] = 8

(modules)

if nP = 8 , remaining c' = 0,

There are no resources for testing and voting, we have to adJust then
p

and R as follows:

n = n -1 = 7 (modules)
p p

c' = (c - c · n) = 120 - 15-7 = 15 (unit $)
9 p

Calculate the reliability for this number of modules.

Reliability for 7A1 RB (Scheme 1)

Reliability for 7A 1 NVP (Scheme 2)

Step 5:

Iteration 2:

Step 3:

Step 4:

Step 5:

68

r = 1 < 1 · n P + 1 = 4. 5, go to step 3.
2

n =n -1 = 7-1 = 6 p p

c' = 120 - (6·15) = 30 (unit $)

Calculate the systems reliability under the possible system configurations.

There are:

2A1 NVP 3A1 RB (n = 6, n = 1, n = 3) (Scheme 4)
p t v

3A1 RB 2A1 NVP (n = 6, n = 2, n = 1) (Scheme 5)
p t v

3A1 NVP 2A1 RB (n = 6, n = 1, n = 2) (Scheme 6)
p t v

Note: Scheme 3 (2A1 RB 3A1 NVP) is not feasible.

Go to step 3 until n;.! ·nP+1 .
2

The final systems reliability and their costs are as shown in Table 4-1.

Step 6: Select the system structure with the least failure probability. Scheme 4

will be selected. The scheme consists of three NVP versions each of

which has two functional programs and a voting mechanism. Then those

three NVP versions are combined using a RB testing module. The

reliability of the system is 99.95% under the given conditions. Figure 4-1

Table 4-1: System Reliability of Different Hybrid Fault-Tolerant Systems

Schemes Total Cost System Reliability

1 117.75 99.78

2 106.50 299.80

4 109.50 99.95

5 116.50 99.80

6 111.00 99.91

69

70

[. ·.. .

!'El l ,
IL.I· .:·.· .1···· L~J~--

·····'···· ·P··2· ~ .• , .. :.••.· J '·o: . . • . . ,>'' ~~ :

<..,.-..-.,-..,..,.,....,..,...., .::w:
: :~ :; :;:!:;;;;: :;; ; ~;; ;; ~~;~ ~ ~i : ~ ;;: : :; :: ;: v

iil ~~ .J[,',,i!!~:,i::·,;:;:;:.l!,:l:>li:

I

)__,
i T I

r
I
I

I

Fig. 4-1 Homogenous Hybrid Fault Tolerant Software Scheme

71

shows the structure of the . hybrid design and Table 4-1 shows the result

of the variable schemes (those scheme numbers related with same method

in Chapter III) .

4.3 Hybrid Fault-Tolerant System Design with Cost Constraints: General

Model

The previous method assumes that all modules have the same reliability

and cost. We now show a generalization of the previous algorithm which handles the

situation when costs and reliability are variable.

4. 3.1 Fault-Tolerant System Design with Different Program Reliability and Costs

The two assumptions used in the previous method are still valid. They

allow us to simplify the method into two stages, one to design the best system structure

using an iterative procedure and the second is select the best combinations of program

modules. This method selects tests and voters first, then the program versions, while

method I selects version first followed by the selection of tests and voters.

Step 1: Initialization:

The procedure starts with one voter or one test module. According to the

observation that the reliability of the voting and testing has the biggest

influence on the system reliability , one should select the voting or testing

module with the highest reliability to start the procedure.

Initially, nt or n v = 1

Step 2:

Step 3:

72

Remaining Resources for program modules:

n£ nE
C'=c- c c ti - vi

i•l i•l

Program Module Selection Rules:

Assume there are n P program modules and that the costs of the program

modules c . are different. Each program module can be used only once.
e~

The procedure of selecting the program modules is given by the following

integer program module:

min II e . . ~
~es

Subject to:

The program modules i can now be selected so as to give the best system

reliability under the cost constraints.

This is a nonlinear programming problem. In this particular case, it can

be converted into a linear programming problem by the following

procedure.

Since:

Then:

73

ln (ft eJ = ln e1 + ln e2 + ... + ln en
i•l

min II ei
ies

is equivalent to:

Letting:

~
min L ln ei

i=l

the original problem becomes a linear problem:

subject to:

min :E xi
ies

Step 4:

74

Hybrid Rules:

It can be proved that the system reliability is maximized by building a

balanced hybrid structure. In other words, the hybrid system should have

versions (RB or NVP or a combination of them) with similar reliabilities.

Mathematical Model:

Given:

e i = the probability of failure for the individual program module

1 .

0 s; ei s; 1, i e s.

ti = failure rates of the testing module

di = failure rates of the voting module

The system failure rate is minimized by:

Where:

m = p

1flp

min E (P,.; - P,.;_1)
i=l

number of versions in the hybrid system

failure rates of the version i , p . is calculated according
m~

to the equations 1 , 2, and 3 given before.

Step 5: Calculate the system reliability accordingly.

75

Step 6: Stopping Rule:

if

1
r s;

2
· nP + 1

then go to step 7 else go to step 8.

Step 7: Adding Rules:

When the remaining c' is less than the cost for adding a test or a vote

module, one program module will be selected to be deleted from the

system. In order to do so, two ratios are considered here, the cost

efficiency ratios for program module and the testing/voting module.

In general, since the reliability of the testing and voting module are vital

to the system reliability, a testing/voting module with the highest

reliability usually will be added to the system. The choice of adding a

testing or voting module depends on the initial selection of the type of

decision module. We assume that in a two layer structure, if one layer is

RB then the other layer is NVP, i.e. one voter is always combined with

a number of acceptance tests to form a hybrid system; and one acceptance

test is always combined with number of voters to form a hybrid system.

The program module with the least cost efficiency and enough cost to

cover the added testing or voting module will be removed from the

previous design.

Program cost efficiency:

76

Testing/Voting efficiency:

or

E =(1-v.)/C ·
V1 ~ V1

Addition Rules:

max (1 - tJ , or

max (1 - vJ for all i, i is the testing/voting module index.

i e (remaining testing or voting modules)

Deletion Rule:

fori that c ~ cc or cv
8j !I !I

Go to step 2.

Step 8: Select the design with the maximum system reliability.

4.3.2 Illustration of Method II

The following example illustrates the proposed method. Table 4-2 shows

the failure rates and costs of the modules. It is assumed that the voter has higher

reliability and less cost when compared with the acceptance test.

The procedure to solve the problem is quite lengthy, only the final results

are presented here. Four iterations generate four system designs according to the given

Table 4-2: Input Data for Illustration II

Data for the Illustration Example II

1 2 3 4 5 6

Cost of Program Module 10 12 14 16 18 20

Failure Rates of Program Module .06 .05 .04 .03 .02 .01

Cost of Testing Module 10 12 14

Failure Rates of Testing Module .05 .03 .01

Cost of Voting Module 1 2 3

..
Reliability of Voting Module .005 .003 .001

77

78

data. Figures 4-2 through 4-5 show the system structure. The first design is a pure NVP

design with a system failure rate of 5.01% . Design number two is a hybrid scheme.

Three program modules with a testing module form aRB version. Two of such versions

are then connected with a voter to form a NVP scheme. This design gives a failure rate

of 5.22%. A third design is generated in the form of a hybrid NVP with RB. Three

program modules with a voter form an NVP. Two of those NVPs form a RB scheme.

The best design consists of three voters and a test. Each two of the six programs with

a voter forms an NVP. Three of those NVPs are then linked using an RB scheme. This

design yields the lowest failure rate of 1. 69%. Considering the average program failure

rate is 3% to 4%, the hybrid design made a big impact in terms of improving the system

reliability. Table 4-3 summarizes these results.

4.4 DISCUSSION

The mathematical form of the hybrid fault-tolerant system design is in a

rather complicated nonlinear programming form. It may be very difficult to obtain an

analytical optimal solution. Therefore, using approximate methods are a practical and

more efficient approach.

In a realistic environment, method II might be more useful than method

I since the assumption of equal cost and reliability for all the modules is not realistic.

However, it does supply a simple approach to design the hybrid system.

Method II is a more complex procedure. The method applies several linear

and nonlinear programming methods to achieve some local optimization goals. It should

be brought to our attention that comparing the two examples used in this thesis , method

79

! I P1 I I P2 I 1:1 [;] ~ I P3 I p4
y 1 l I

l 1
I

~

Fig. 4-2 Hybrid Fault Tolerant Software Scheme (1)
System Reliability = 94.99 %

Total Cost = 91 (unit of dollars)

1

I

'

!

80

E~ ~
p4

Ps

1---- -8 p3 ~ B
f-----t

Pv1
Ps f-----t ..

v 1

Fig. 4-3 Hybrid Fault Tolerant System Scheme (2)
System Reliability = 94.78 %

Total Cost = 113 (unit of dollars)

PV2

I

I

81

I
~-o I Ps f'--- -B I @-J··· I

I
Pv1 I I

I
I

T1

Fig. 4-4 Hybrid Fault Tolerant System Scheme (3)
System Reliability = 94.48 %

Total Cost = 103 (unit of dollars)

pv2

Pv1

82

I
~~
l2J

I !I
~ ~
I !

Fig. 4-5 Hybrid Fault Tolerant System Scheme (4)
System Reliability = 98.3 %

Total Cost = 106 (unit of dollars)

p

Table 4-3: Feasible Solutions of Illustration II

Feasible Solutions for Illustration II

Solution No. Hybrid Structures System Reliability Cost

1 6"1 NVP 0.9499 91

2 3"1 RB & 2"1 NVP 0.9478 113

3 3"1 NVP & 2"1 RB 0.9448 103

4 2"1 NVP & 3"1 RB 0.9831 106

83

84

II generates a better hybrid system compared to method I under similar circumstances.

This heuristic method does not necessarily generate a system with maximum possible

reliability. An analytical explanation for this result requires for further study.

[Bell91] proposed an approach to optimize system reliability with cost

constraints. In his approach, system reliability is calculated through a nonlinear program

and the optimal solutions obtained through exhaustive searching. Under our different

assumptions, the method proposed in this study is much simpler.

4.5 SUMMARY

In this study, we proposed two algorithms for design hybrid RB and NVP

fault- tolerant systems. Both procedures were executed in an spreadsheet environment.

Provided with input data such as the reliability and cost of program modules as well as

testing and voting modules, these procedures will determine the hybrid structures with

nighest system reliability within the cost constraints. In this thesis we showed examples

with two layer hybrid configurations. In fact the number of layers could be more than

two, although in general this is not a practical approach because of the high number of

versions required.

CHAPfERV

MODELING OF HIERARCIDCAL N-VERSION

SOFfWARE FAULT-TOLERANT SYSTEMS

Wu [WuJi91] presented a hierarchical N-Version method where a problem is

viewed as a set of objects which can be hierarchically organized into several levels. The

reliability of hierarchical N-Version fault-tolerant software is now studied using a reliability

modeling software called ARIES 82 [ARIE91]. Simulation models are used here to test the

system reliability and performance of that approach. The system behavior under various failure

patterns is also analyzed.

5.1 Hierarchical N-Version Programming

In general, a software system can be modeled as the superposition of four levels:

Level 1 application software

Level 2

Level 3

Level4

module

procedure

data structure

The reliability of the whole application depends on the reliability of the

subsystems at each level. Reliable subsystems can enhance the reliability of the whole system.

By implementing hierarchical NVP, it is also possible that the cost of the software development

85

86

can be reduced. One can spend more resources on the subsystems which have the least reliability

rather than on the entire system.

5.2 ARIES 82 Reliability Modeling Software

The ARIES (Automated Reliability Interactive Estimation System) 82 [ARIES91]

was developed to assist designers of fault-tolerant systems. ARIES 82 provides a general

mathematical framework of analysis which allows extensions to new models and new classes of

systems.

ARIES 82 is a set of more than 100 C:-language procedures developed by a

research group at the Department of Computer Science, UCLA. The system is capable to model

transient fault recovery, graceful degradation, off-line repair, periodic renewal, as well as user

defined subsystems. The system supports seven types of systems:

(1) Closed FT systems

(2) Closed FT systems with transient fault recovery

(3) Mission-oriented repairable systems

(4) Repairable systems with transient fault recovery

(5) Repairable systems with restart

(6) Periodically renewed closed FT systems

(7) User defined systems

The functions of ARIES 82 include three groups: system/subsystem configuration

functions, reliability analysis functions, and system utility commands. The notation used in

building system models and output analysis is as follows:

87

y [o] Initial number of active program modules in NVP

y [1] Minimum number of faultfree program modules

D Number of degradations allowed

A Probability of failure for program module

5.3 Simulation Models

As said earlier, a software system (whole application) can be divided into three

levels: the data structure level, the procedure level, and the module level. The systems reliability

can be improved by utilizing N-Version Programming at one, two, or all three levels, and these

simulation studies intend to evaluate this using three models.

Model one uses NVP on all three levels; model two applies NVP on two levels;

and model three applies NVP to one of the three levels. The simulation type specified by ARIES

has been selected as type 7 systems which corresponds to closed fault-tolerant systems. In this

particular case spare module recovery is not considered. The descriptions of those .models are

given below.

Model One: N-Version Programming on all three levels

Assume there are three program modules at each level (number of initial active

program modules Y[O] =3). Only of the three program modules can fail at a time

(D= 1). The minimum number of faultfree program modules Y[l] is equal to

Y[O] - D = 2. The failure rates A are between 1% to 25%. The failure rates are

too high for practical usages. They have been exaggerated here to show the trends

of the model. The input parameters are as follows:

D = 1

Y[O] = 3

Y[1] = 2

A = 1% to 25%

88

Model Two: N-Version Programming on two of three levels

The two NVP sublevels have the following input parameters:

Y[O] = 3

Y[1] = 2

D= 1

The level without redundant programming has the following parameters:

D = 0

Y[O] = 1

Y[1] = 1

Model Three: N-Version Programming on one of the three levels

This model studies the hierarchical NVP by applying NVP on one of the three

levels. For instance, NVP is only applied to the data structure level, while the

procedure and module levels do not use any fault-tolerant programming.

The system is configured as having three (n=3) NVPs at one level and the other

two have one program each. The failure rate of an active module, A , is set from

1% to 25%. The maximum number of failed modules is set to one.

89

Using the ARIES 82, the system reliability for all three models is obtained. Figure

5-l, 5-2. and 5-3 show the input and output values of the models one, two and three,

respectively.

5.4 Analysis of Results

Figure 5-4 shows the system reliability for all three models. As we can see from

the figure the systems reliability follows closely a linear pattern, i.e. when program module

failure probability {}.) increases, the system reliability decreases.

Figures 5-4 also shows the quantitative relations of the hierarchical NVP vs.

regular NVP. It is interesting to notice that the effect of implementing one more level NVP is

similar to reduce the model failure rates by half. For instance, in Figure 5-4, the system

reliability is equal to 85% when probability of module failure is equal to 25% and all three

levels are implemented using NVP; the value is about the same if the failure rates are reduced

to 12.5% and only one level is using NVP. This gives us an quantitative indicator for NVP

software design. The effect of reducing the module failure rates can be compared with the use

of program redundancy.

5.5 Summary

Hierarchical NVP has simulated on ARIES82 and was studied under three basic

models: NVP on one level, two levels, and all three levels. The results show that the effect of

hierarchical NVP can improve system reliability. It also indicates the quantitative relationship

90

(1) Redundant at All Three Levels

Input:

}.. = J-'

0.01

0.05

0.10

0.15

0.20

0.25

}.. = J-'

0.01

0.05

0. 10

0.15

0:20

0.25

Y[O] = 3
Y[l] = 2
D = 1

System Reliability T = 0.6

0.999679

0.992313

0.970949 '

0.938462

0.897322

0.849812

System MTIF

38.6825

7.9365

3.9684

2.6457

1.9841

1.5873

System Reliability T = 1. 0

0.999115

0.979432

0.925593

0.849812

0.761891

0.669598

MTIF tot

83.3333

16.6667

8.3333
'

5.5556

4.1667

3.3333

Fig. 5-l Modell -Three Level Redundancy

(2) Redundant at Two Levels

Input:
Level without redundancy:

D = 0
Y[O] = 1

Levels with redundancy:
Y[O] = 3
Y[1] = 2
D = 1

91

A = JJ System Reliability T = 0.6 System Reliability T = 1. 0

0.01 0.993805 0.989466

0.05 0.965466 0.938141

0.10 0.923435 0.859378

0.15 0.876042 0.772214

0.20 0.825155 0.682972

0.25 0.772214 0.596077

A = J.' System MTIF

0.01 37.1429

0.05 7.4286

0.10 3.7142

0.15 2.4726

0.20 1.8571

0.25 1.4857

Fig. 5-2 Model 2- Two Level Redundancy

(3) One Level Redundant

Input:
Level without redundancy:

D = 0
Y[O] = 1

Levels with redundancy:
Y[O] = 3
Y[1] = 2
D = 1

92

A = /J System Reliability T = 0.6 System Reliability T = 1. 0

0.01 0.987966 0.979907

0.05 0.939345 0.898591

0.10 0.878247 0.797899

0. 15 0.817773 0.701702

0.20 0.758727 0.612228

0.25 0.701702 0.530629

A = /J System MTTF

0.01 35.0000

0.05 7.0000

0.10 3.5000

0.15 2.3333

0.20 1.7500

0.25 1.4000

Fig. 5-3 Model 3- One Level Redundancy

93

Comparison of System Reliability

1

0.95
~
~ 0.9
.~
a;

0.85 a:
E
Q)

- 0.8 -(J)
~

(/}

0.75

0.7
0 0.05 0.1 0.15 0.2 0.25

Failure Rates

--- 1-Level Redundant -+- 2-Level Redundant ~ 3-Level Redundant

Fig. 5-4 Comparison of System Reliability

94

between the redundancy and the probability of program module failure. We believe that this

information can be used to design hierarchical fault-tolerant software systems.

Future study should extend the proposed work by testing more combinations of

failure rates on different levels, increase the number of program versions (increase n in NVP),

and probably to explore further the quantitative relationship among the number of program

modules, the system reliability, the software development cost, and the execution time.

6.1 Conclusions

CHAPTER VI

CONCLUSIONS AND FUTURE STUDY

The objective of this study was to analyze the reliability of hybrid fault-tolerant

software systems as well as to design such systems with total resource cost limitations.

Mathematical models for the hybrid RB and NVP were developed. ARIES 82

software was used to model the hierarchical NVP. Simulation results reveals that the reliability

of a hybrid software system depends on the parameters of the system, such as the program

module failure rates, as well as the failure rates of acceptance test and voting modules. The

numerical results show that the reliability of the acceptance test in the RB model and the voter

in the NVP model have much larger influence in the reliability of a hybrid system. The results

also show that the relationship between cost and system reliability is not a linear relation, i.e.

the system reliability does not increase when more program modules (alternates, voter, and

testing module) are added into the system.

Two heuristic methods were developed to supply a step by step approach to design

hybrid fault-tolerant software systems. These procedures can be easily converted into computer

programs.

95

96

6.2 Limitations and Future Study

There are several limitations which could be the topic of future study.

(1) The probability model used in the study is a simplified version of the general

probability model [Bel191]. The reliability of the hybrid system could be further

investigated based on an more generic probability model.

(2) The design methods proposed in this study do not necessary generate the optimal

solution for hybrid fault-tolerant system design. They do produce a standard

approach to the problem. Searching for an optimal or suboptimal solution to the

problem should continue.

(3) We assumed that the cost and reliability of the software modules are known.

However, in most cases estimating the development cost and predicting the

reliability of software is difficult.

(4) Hardware cost is not taken into consideration in this study. N-Version

Programming utilizes more hardware resources than RB due . to the parallel

processing nature of the NVP. The hardware cost should be taken into

consideration.

(5) Since the timing factor (calculation time and the distribution of the faults) is not

considered in this study, the hybrid schemes generate better system reliability than

that of pure RB and NVP systems. However, if the timing is a factor especially

in real time situations, the results need to be reconsidered.

(6) The static simulation does not handle the statistical (dynamical) features of a fault

tolerant system. Most of the simulation studies have assumed that the failures in

97

the output will follow a Poisson process [Leus90] [Musa87] . The theoretical

foundation of this assumption is that the times between failures are assumed to be

exponentially distributed. In fact the faults of the software should follow a

binomial distribution. It is necessary to study fault-tolerant systems using a

general statistical modeling environment.

(7) Correlated faults are not concerned in this study. Coorelated faults could have big

effects on the system reliability, especially the NVP systems.

(8) Other analytical methods, such as Markov chain and Petri Nets, can be applied

to analyze the hybrid fault-tolerant systems.

[Arse80]

[Aviz75]

[Aviz77]

[Aviz84]

[Aviz85]

[Aviz87]

REFERENCES

Arsenault, J.E. and J.A. Roberts, Reliability and Maintainability of

Electronic Systems, Computer Science Press, Rockville, MD, 1980.

Avizienis, A., "Architecture of fault-tolerant computer systems," Digest

1975 International Conference on Fault-Tolerant Computing (FTCS-5),

IEEE, June 1975, pp.3-16.

Avizienis, A. and L. Chen, "On the implementation of N-version

programming for software fault-tolerance during program execution,"

Proceedings COMPSAC 77, Chicago, IL, 1977, pp.149-155.

Avizienis, A. and J. P. Kelly, "Fault tolerance by design diversity:

concepts and experiments," IEEE Computer, Vol. 17, No. 8, August

1984, pp.67-80.

A vizienis, A., "The n-version approach to fault-tolerant software," IEEE

Transactions on Software Engineering, Vol. 12, No. 13, Dec. 1985,

pp.1491-1510.

Avizienis, A., "On the achievement of a highly dependable and fault

tolerant air traffic control system," IEEE Computer, Vol. 20, No. 2,

February 1987.

98

[Barl75]

[Bell90]

[Bell91]

[Bhar81]

[:Sour69]

[Chen78]

[Cost81]

99

Barlow, R.W., and H.E. Lambert, "Introduction to fault tree analysis,"

Reliability and Fault Tree Analysis, Theoretical and Applied Aspects of

System Reliability and Safety Assessment, R.E. Barlow, J.B. Fussell,

N.D. Singurwalla, Ed., SIAM, Philadelphia, 1975, pp.7-35.

Belli F., and P. Jedrzejowicz, "Fault-tolerant programs and their

reliability," IEEE Transactions on Reliability, Vol. 39, No. 2, 1990,

pp.184-192.

Belli, F., and P. Jedrzejowicz, "An approach to the reliability

optimization of software with redundancy," IEEE Transaction on Software

Engineering, Vol. 17, No. 3, 1991, pp.310-312.

Bhargava, B., and C. Hua, "Cost analysis of recovery block scheme and

its implementation issues," International Journal of Computer and

Information Sciences, Vol. 10, No. 6, 1981, pp.359-383.

Bouricius, W. G., et al., "Reliability modeling techniques for self-repairing

computer systems," Proceeding A CM 1969 Annual Conference, NY, 1969,

pp.295-309.

Chen, L., and A. Avizienis, "N-version programming: a fault tolerance

approach to reliability of software operation," Digest of the 8th Annual

International Conference on Fault-Tolerant Computing (FTCS-8), IEEE,

June 1978, pp.3-9.

Costes, A., J.E. Doucet, C. Landrault, and J.C. Laprie, "SURF A

program for dependability evaluation of complex fault-tolerant computing

[Dhil78]

[Dhil89]

[Doln83]

[Eckh85]

[Fern90]

[Geis83]

[Grna80a]

100

systems, " Digest of the 11th Annual Symposium of Fault-Tolerant

Computing (FTCS-11), IEEE, 1981, pp.72-78.

Dhillon, B.S., and C. Singh, "Bibliography of literature on fault-trees,"

Microelectrical Reliability, Vol. 17, 1978, pp.501-503 .

Dhillon, B.S., et al., "Modeling human errors in repairable systems,"

Proceedings of the Annual Reliability and Maintainability Symposium,

January 1989, pp.418-424.

Dolny, L.J., R.E. Fleming, and R.L. DeHoff, "Fault-tolerant computer

system design using GRAMP," Proceedings of the 1983 Annual Reliability

and Maintainability Symposium, IEEE, 1983, pp.417-422.

Eckhardt, D.E., and L.D. Lee, "A theoretical basis for the analysis of

multi version software subject to coincident errors," IEEE Transactions on

Software Engineering, Vol. 11, December 1985, pp.1511-1517.

Fernandez, E. B., Fault-Tolerant Computer Systems, Class Notes,

Department of Computer Science and Engineering, Florida Atlantic

University, 1990.

Geist, R. et al., "Design of the hybrid automated reliability predictor,"

Proceedings IEEEIAIAA 5th Digital Avionics Systems Conference,

November 1983.

Grnarov, A., J. Arlat and A. Avizienis, "Modelling of software fault

tolerance strategies," Proceedings 1980 Pittsburgh Modeling and

Simulation Conference, Pitt., Pa. , May 1980.

[Grna80b]

[Heip84]

[Horn74]

[John88]

[KimK78]

[KimK84]

101

Grnarov, A., J. Arlat and A. Avizienis, "On the performance of software

fault-tolerance strategies," Digest of the lOth Annual International

Conference on Fault-Tolerant Computing (FTCS-10), Japan, October

1980, pp.251-253.

Heidelberger, P., and S. Lavensberg, "Computer performance evaluation

methodology," IEEE Transactions on Computers, Vol. C-33, No. 12,

December 1984.

Horning, J.J., and H.C. Lauer, P.M. Melliar-Smith, and B. Randell,

"Program structure for error detection and recovery," Lecture Notes in

Computer Science, Vol. 16, Springer-Verlag, New York, 1974, pp.171-

187.

Johnson, A.M., Jr. "Survey of software tools for evaluation, reliability,

availability, and serviceability," ACM Computing Surveys, Vol. 20, No.

4, December 1988, pp.227-269.

Kim, K.H., "An approach to program-transparent coordination of

recovering parallel processes and its efficient implementation rules,"

Proceedings Int. Conf. Parallel Processing, 1978, pp. 58-68.

Kim, K.H., "Software fault tolerance," In Handbook of Software

Engineering, C.R. Vick and C.V. Ramamoorthy, Eds., Van Nostrand

Reinhold Co. Inc., 1984, pp.437-455.

[Lala83]

[Lapr84]

[Laze84]

[LeuS90]

[Lice86]

[Ajmo84]

[Math70]

102

Lala, J.H., "Interactive reductions in the number of states in Markov

reliability analysis," Proceedings of the AIAA Guidance and Controls

Conference, AIAA, 1983.

Laprie, J.C., "Dependability evaluation of software systems in operation,"

IEEE Transactions Software Engineering, Vo1.6, SE-10, No.ll, 1984,

pp.701-714.

Lazowska, E.D., et al., Quantitative system performance, Prentice-Hall

Inc., Englewood Cliffs, NJ, 1984.

Leu, S., "Reliability modeling of fault-tolerant software," Ph.D. Thesis,

Dept. of Computer Engineering, Florida Atlantic University, 1990.

Liceage, C.A., and D.P. Siewiorek, "Towards automatic Markov

reliability modeling of computer architectures," NASA Technical

Memorandum, 89009, 1986.

M.Ajmone Marsan, Balbo,G., and Conte,G., "A class of generalized

stochastic Petri nets for the performance evaluation of multiprocessor

systems," ACM Transactions Computer Systems, Vol. 2, No . . 2, 1984,

pp.94-122.

Mathur, F.P. and A. Avizienis, "Reliability analysis and architecture of

a hybrid-redundant digital system: generalized triple modular redundancy

with self-repair," AFIPS Spring Joint Computer Conference, 1970,

pp.375-383.

[Math75]

[Musa87]

[Myer86]

[Pete77]

[Rand75]

[Sahn86]

[Sahn87]

[Scot83]

103

Mathur, F.P. and P.T. deSousa, "Reliability modeling and analysis of

general modular redundant systems," IEEE Transactions on Reliability,

Vol. R-24, No. 5, December 1975, pp.269-299.

Musa J.D., A. Iannino, and K. Okumoto, Software Reliability:

Measurement, Prediction, Application, New York, NY, McGraw-Hill,

1987.

Myers, W., "Can software for the strategic defense initiative ever be

error-free?", IEEE Computer, November 1986.

Peterson, J.L., "Petri nets," ACM Computer Surveys, Vol. 9, No.3, 1977,

pp.223-252.

Randell, B., "System structure for software fault tolerance," IEEE

Transactions on Software Engineering, Vol. SE-1, No. 2, June 1975,

pp.220-232.

Sahner, R.A., and K.S. Trivedi, "A hierarchical, combinatorial-Markov

method of solving complex reliability models," Proceedings of the 1986

Fall Joint Computer Conference, AFIPS, 1986, pp.817-825.

Sahner, R.A., and K.S. Trivedi: "Reliability modeling using SHARPE,"

IEEE Transactions on Reliability, Vol.R-36, No.2, Feb. 1987, pp.186-

193.

Scott, R.K., et al., "The consensus recovery block," Proceedings of the

IEEE workshop on Hardware-software System Reliability, December 1983,

pp.74-85.

[Scot87]

[Siew82]

[Shoo87]

[Stit79]

[Triv82]

[WuJi89]

[WuJi91]

[Zhan91]

104

Scott, R.K., et al., "Fault tolerant software reliability modeling," IEEE

Transactions on Software Engineering, Vol. SE-13, No. 5, May 1987,

pp.582-592.

Siewiorek, D.P. and R.S. Swarz, The Theory and Practice of Reliable

System Design, Digital Press, 1982.

Shooman, M.L., and A.E. Laemmel, "Simplification of Markov models

by state merging," Proceedings of the 1987 Annual Reliability and

Maintainability Symposium, IEEE, 1987, pp.159-164.

Stiffler, J.J. L.A. Bryant, and L. Guccione, "CARE III final report phase

I volume I & II," NASA Contractor Reports 159122 & 159123, 1979.

Trivedi, D. S., Probability & Statistics with Reliability Queuing, and

Computer Science Applications, Prentice-Hall, Inc., Englewood Cliffs,

N.J., 1982.

Wu, J., The Design of Reliable Decentralized Computer Systems, Ph.D.

Thesis, Department of Computer Engineering, Florida Atlantic University,

1989.

Wu, J., Software Fault Tolerance Using Hierarchical N-Version

Programming, Working Paper, Department of Computer Engineering,

Florida Atlantic University, 1991.

Zhang, M., and J. Wu, "Modeling and analysis of fault tolerant systems,"

Second International Conference of Young Computer Scientists, Beijing,

China, 1991.

	10001
	10002
	10003
	10004
	10005
	10006
	10007
	10008
	10009
	10010
	10011
	10012
	10013
	10014
	10015
	10016
	10017
	10018
	10019
	10020
	10021
	10022
	10023
	10024
	10025
	10026
	10027
	10028
	10029
	10030
	10031
	10032
	10033
	10034
	10035
	10036
	10037
	10038
	10039
	10040
	10041
	10042
	10043
	10044
	10045
	10046
	10047
	10048
	10049
	10050
	10051
	10052
	10053
	10054
	10055
	10056
	10057
	10058
	10059
	10060
	10061
	10062
	10063
	10064
	10065
	10066
	10067
	10068
	10069
	10070
	10071
	10072
	10073
	10074
	10075
	10076
	10077
	10078
	10079
	10080
	10081
	10082
	10083
	10084
	10085
	10086
	10087
	10088
	10089
	10090
	10091
	10092
	10093
	10094
	10095
	10096
	10097
	10098
	10099
	10100
	10101
	10102
	10103
	10104
	10105
	10106
	10107
	10108
	10109
	10110
	10111
	10112
	10113
	10114
	10115
	10116
	10117
	10118

