‘fxfiif = "_s,,.!:

DESIGN AND MODELING OF

HYBRID SOFTWARE FAULT-TOLERANT SYSTEMS

by

Man-Xia Zhang

A Thesis Submitted to the Faculty of the
College of Engineering
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Engineering

Florida Atlantic University
Boca Raton, Florida

April 1992

DESIGN AND MODELING OF HYBRID SOFTWARE
FAULT-TOLERANT SYSTEMS

by
Man-xia (Maria) Zhang
This thesis was prepared under the direction of the candidate’s thesis advisor Dr. Jie Wu,
Department of Computer Science and Engineering and has been approved by the
members of her supervisory committee. It was submitted to the faculty of the College of

Engineering and was accepted in partial fulfillment of the requirements for the degree of
Master of Science in Computer Engineering.

SUPERVISORY COMMITTEE:

T W

Thesis Advisor
Dr. Jie Wu

Gt [S Fpianst,

Dr. Eduardo B. Fernandez

/M/ Mwé}dwé

Dr. Imadeldin O. Mahgoub

Yvd 4 Gt

Chairperson, Department of Computer
Science and Engineering

Eean of Graduate Studles 7 Date Z; /

ACKNOWLEDGEMENTS

I would like to thank my thesis advisor Dr. Jie Wu, for his constant
support and guidance through this research. I am also thankful to my supervisory
committee members Professors Eduardo B. Fernandez and Imadeldin O. Mahgoub who
have contributed to my graduate study and who spent countless hours reviewing and
correcting the thesis.

I also like to say thanks to my parents Professor Bao-An Zhang and
Professor Dai Jin for the love and support they have always given to me.

Finally, I want to thank my dear husband Ching-Ping Han and my dear

son George Han, for their support, understanding and love.

iii

ABSTRACT
Author: Man-xia (Maria) Zhang
Title: Design and Modeing of Hybrid Software Fault-

Tolerant Systems

Institution: Florida Atlantic University

Thesis Advisor: Jie Wu

Degree: - Master of Science in Computer Engineering
Year: 1992

Fault tolerant programming methods improve software reliability using the principles of
design diversity and redundancy. Design diversity and redundancy, on the other hand,
escalate the cost of the software design and development. In this thesis, we study the
reliability of hybrid fault tolerant systems. Probability models based on fault trees are
developed for the recovery block (RB), N-version programming (NVP) and hybrid
schemes which are the combinations of RB and NVP. Two heuristic methods are
developed to construct hybrid fault tolerant systems with total cost constraints. The

algorithms provide a systematic approach to the design of hybrid fault tolerant systems.

iv

II.

TABLE OF CONTENTS

ACKNOWLEDGEMEBINTE . cnensensnsseis e ey amionms saumens 3o iii
BBETRIRITT rorossviomitass oo s s i s i s s e s sy s S ey iv
ST OF TRBIIEES o umoms oo somei sy otmum er et 1 4 Eoeea s s uaetss s aaaes ix
LT OF PIGTTRES «.cnmmsunmminsssns i smsmenssismmsssemnyiersmogossuens X
DNTRIGTEU TR v dionsiove s soadeit anmesart s Bumnid s S oREVE (0 0aIe pA SIS £ S 555 1
1.1 Motivation R e e R 1
1.2 DESIE CODECIIE worssmommanssmnmmsnss vammss s sacems s s Dammn s s s s s 2
1.2.1 Software Fault Tolerancecooeveiiiniiiininennnn. 2
1.2.2 ROy BIOOKE .convsysws siovsy amenens pumsmis 1 st § s o 2
1.2.3 N-Version Programmingccevvvieeininninnennennnns | 3
1.2.4 Hybrid Fault-Tolerant System and Cost Constraints ... 3
1.2.5 Hierarchical N-Version Programming 4
1.3 Contributions of the Thesis ccevevreriiiieenieininienannn, . 4
L THRBIE CRBETIET coumns s nomssce s iy s samssis A SEasan ibns v7sins 5
BACEGROUNTD: ANE BEVIBEW ..ouommens ssmomen sepsmons swsnmns seasaen ins 7
2.1 Pault-Tolerant SOIWATE: . ssmexs cossmns sonsiinsshimes s sxamens xamesws sy 7
2.1:1 Software Pailune BEREVIDT e s sevioacs samns.os st sasnin 7

v

III.

2.1.2

2.2

50 |

2.2.2

2.2.3

2.3

2.4

23

Fault Tree for Analyzing Fault-Tolerant Systems

Cost Analysis of Fault-Tolerant Systemsccccevennens

RELIABILITY ANALYSIS OF HYBRID FAULT-TOLERANT

SYSTEMS

3.1

3.2

3.3

3.3:1

3.3.2

333

3.3.4

333

Recovery Block and N-Version Programming Models
Hybrid RB and NVP Fault-Tolerant Systems and Their
Mathematical MOd@IE ..o ismmmme cassmies sosmen s vamasn s smumes s s
Static Modeling of the Hybrid Systems
Recovery Block BSUHUCTUIE .ococssonsonissmnsss sumws s ssmn .
N-Version Programming Structure
FyOed STICTUEE 1 coome s s nomes s o soeon b s waiv . 5 dmsee 8 0553008 4 5w e
Simulation Models and Modeling Results

IDISCISSION mommmsrmiesown s Toa.s o e s T e oy

Vi

...

11

11

12

15

17

18

20

20

21

21

33

33

41

49

56

IV. HYBRID FAULT-TOLERANT SYSTEM DESIGN WITH
COBT CUONSTHAIETTS nvnsumomnns s 5 Sumss v Samar ¢ 3 s s sdusies sss
4.1 Hybrid Fault-Tolerant SYSIEM .cousossomsssnmmmans sossmen sommes s sums

4.2 Fault-Tolerant System Design with Equal Program Reliability

OB, WCTOIBIE o w40 o5k O S M SR
4.2.1 Method I: Symmetrical Balanced Fault-Tolerant

System Designccoviiiiiiiiiiiiiiiiiiiiiiiiieeiiaean..

4.2.2 HiGsieation OF el L civessseumsssssmos s mossissanmmasss

4.3 Hybrid Fault-Tolerant System Design with Cost Constraints:

CIRHEIRL DIOKICL wuvscrmmmnsssonmms o sounnns sommeies smimes bRasa sy eumiss 5

4.3.1 Fault-Tolerant System Design with Different Program
Reliability aid COBIE s s ssmmmens s sammnis swaonss wunatins
4.3.2 Ilustration of Method ITcocoiiiiiiiiiiiiiinnnn....
G 8 DIBBUEEION. ¢ :osss vsmnmes s s oauins { BDas s FAumes 5 Kamts § § BESas Y| SRS §
8.0 SUNMBT s o nssuns s sonums s bmmmbs s buSmbicns 5o ssbns s wamaes s pusayss SEumwe s vs

FAULT-TOLERAMT SYSTERIS uunisemimesonmmun o i yasms o st i a5
5.1 Hierarchical N-Version Prograrflming
5.2 ARIES-82 Reliability Modeling Software
D3 SaInRon MG . vesssmsosssmmmmnen susmin s s fommmy s s
S48 AUREE O RESIE oo nmen ot anons s s 1 0 sS000E 15 SRR Sin
B DD oo b i s SR SN A A LR AR RS

Vi. CONCLISIONS AND FUTURE STUDY . ccmesmmaninsnssinisssnssse

O]l CONEDISIONE oo conmsmmmrmmams s ssmeso s aRShess b i
6.2 Limitations and Future Study coooiiiiiiiiiiiiiiiiiiinnn,
BEFERBNICER s s sosmms s s mn s s s mern s s Sewss i 5 kb s msawihs

viii

95

95

96

98

4-1

4-2

4-3

LIST OF TABLES

System Reliability of Different Hybrid Fault-Tolerant

DR o BT Sy sy o st B s isalion: 1 £ & e 69
Input Data for Illustration ITc.ooiiiiiiiiiiiiiin, 77
Feasible Solutions of Illustration ITcccevviiiiviinninnn.. 83

1X

LIST OF FIGURES

2-1 Three Stages of Software Development Cycle
2-2 Conceptual Diagram of Software Failure
2-3 General Striictiure of the Recovery Block ..ccvsiissmrssmsnasnssnsss
2-4 Conceptual Diagram of the Recovery Block
2-5 Conceptual Structure of the N-Version Programming
28 Paulb Tre Ior THIR B98I ovsvomesissmusiinsanabissorssispnmitiie
3-1 Geoonilived RB SEOMETE ..o sevmves simrns snosens saoms sy s
3-2 Fault Tree for Generalized RB ccceiiiiiiiiiiiiiiiiinenn..
3-3 Generalized NVP SHOBRIE ..ou i ommusis sommns s sommns s smmsers ssumenss
3-4 Fault Tree for Generalized NVPcooooiiiiiiiiiiiiiiinn,
3-5 Structure of Hybrid RB & NVP Fault-Tolerant System
3-6 Scheme (1) 071 RB. couuiiimmmenssmmmmosssomses o s smmnn s somos s saminns s nosn
3-7 Scheme (2) 61 NVPccvenncssmmunnssnmunssssmmsss s aosns s somnss i
3-8 Scheme (3)2"1 RB3"I NVP ...
39 Scheme (4) 21 NVP3®1 RB iiviiiiiiiiiiiiiiiiiiiinenn,
3-50 SChemie (5] 3L BB 271 TV v voomonmsoseosms s nasmas s 1o
3-11 Scheme (6) 3”1 NVP 21 RB .iiiiiiiiiiiiiiiieieiee e
3-12 Failure Rales 107 SCHEe (1) ivesmsssssmsissmvnesssmmersonanuensnsn

X

10

k3

14

16

19

22

24

26

27

29

32

34

35

36

37

38

42

3-13

3-14

3-15

3-16

3-17

3-18

3-19

3-20

3-21

3-22

3-23

3-24

3-25

4-1

4-3

4-4

Failure Rates for Scheme (2)coovvviiiiiiiiiiiiiiiiiiieenns .
Failure Rates for SchBme (3] aeosssmesvsvommn s ommmnass e s 55500 85
Failure Rates for Scheme (4) ...cicowsiisonmsissanmioninmesses ammenes
Failure Rates for Scheme (5) ...oovvviiiiiiiiiiiiiiiiii

Failure Rates for SChetne (B <. » wswes s s s o5 s 5 3 swmacs v 45 wssws 1 5

Comparison of System Failure Rates

(€=2%,d=0.1% 10 0.6%) ...cccovvvirriiiiiiiiiiiiii

Comparison of System Failure Rates

(e=06%, d=0.1% 10 0.6%0) sciissnmmossssmmss s somums s s nms s s oamn i 5 5505

Comparison of System Failure Rates (e=6%, d=1% to 6%) ..

Comparison of System Failure Rates

(€=6%, d=0.01% t0 0.06%) ...c.coevvrririiiiiiniiiiiiiinininn..
NVP System Reliability by Using Scott’s Model

RB System Reliability with Error Type t1=0

Comparisons of System Failure Rates Using

Soott’s Model (62) csanmerssnmms 155 058555 500 « 5 5 vonmsi o 1 sesomracn .5 2 men

Comparisons of System Failure Rates Using

Scott’s Model (E=6%) .ooovvrniiiiiii i e
Homogenous Hybrid Fault-Tolerant Software Scheme
Hybrid Fault-Tolerant System Scheme (1)
Hybrid Fault-Tolerant System Scheme (2)cccooenin.

Hybrid Fault Tolerant System Scheme (3)cooeint.

X1

43

44

45

46

47

50

51

53

54

55

57

58

59

70

79

80

81

4-5

5-1

5-2

3-3

Hybrid Fault-Tolerant System Scheme (4)

Model 1 - Three Level Redundancy
Model 2 - Two Level Redundancy
Model 3 - One Level Redundancy

Comparison of System Reliability

xii

82

90

21

92

93

CHAPTER I

INTRODUCTION

1.1 Motivation

In certain critical areas such as air traffic control [Aviz87], nuclear plants
monitoring, financial management applications [Sims87], and in military applications, for
instance in the so called "star wars" (Strategic Defense Initiative - SDI) project
[Myer86], the reliability of the computer systems is of utmost concern. Fault-tolerant
computer systems are capable of recovering from failures of their hardware or software
components to provide uninterrupted service [Kimk89]. Due to the continuous decline of
the cost of computer hardware, the reliability of computer systems can be improved by
using redundant components. This redundancy can be static or dynamic [Aviz75]. Most
of previous studies have concentrated on hardware redundance mechanisms as the means
to improve the computer system’s reliability. However, it is the software reliability
problem that has become more and more critical to the total reliability of the computer
system. Any study of fault-tolerant systems must consider in a balanced way both
hardware and software fault tolerance [Fern90].

Software fault tolerance is the study of design approaches to provide

correct outputs in the presence of design faults. Two important issues which are related

2

to the design and analysis of software fault-tolerant systems are the reliability and the
cost associated with various fault-tolerant mechanisms, and we concentrate on these
issues in this thesis. Fault-tolerant software systems considered in this study are the two
most commonly adopted schemes, Recovery Block (RB) [Rand75] and N-Version

Programming (NVP) [Aviz77], [Chen78].

1.2 Basic Concepts
1.2.1 Software Fault Tolerance

It has been noticed that to completely remove all software defects is not
possible for a complicated software system. In order to prevent the failure of a software
system due to some unpredicted conditions, different programs (alternative programs) are
developed separately, preferably based on different logic and/or algorithms (design
diversity). The fault-tolerant program so obtained should be able to function correctly in

the presence of most software design faults.

1.2.2 Recovery Blocks

The Recovery Block (RB) scheme [Rand75], is one of the basic fault-
toleraxllt programming structures. In a RB system, a programming function is realized by
n alternative programs. The computational result generated by an alternative program is
checked by an acceptance test. If the result is rejected, another alternative program is
then executed. The program will be repeated until an acceptable result is generated by

one of the n alternatives or there are no more alternatives available.

1.2.3 N-Version Programming

The N-Version Programming (NVP) scheme [Chen78] also consists of n
alternative programs and a decision algorithm, usually, a voting mechanism. Differently
from the RB approach, all the n alternative programs are usually executed simultaneously

and their results are sent to the decision algorithm which selects the final output.

1.2.4 Hybrid Fault-Tolerant Scheme and Cost Constraints

The hybrid fault-tolerant system considered in this study is a software
system which combines the RB and NVP schemes for a given functional task. In the
hybrid system RB and NVP are blended together by different arrangements of the n
alternatives. The idea here is to take advantage of the fact that the reliability of RB and
NVP fault-tolerant systems depend on the reliability of the components which form the
system. Those components include the program module, the acceptance test module for
RB and the decision module for NVP. For instance, when a voting mechanism cannot
select a correct result from n alternative results due to lack of similar results, a recovery
block can be applied in this case since an acceptance test could test individual results.

In general, the reliability of the fault-tolerant system is enhanced by using
more redundant program modules and by selecting the right fault-tolerant strategies. If
there is a limitation on the total cost of the fault-tolerant system, the complexity of
selecting the right components and the right structure to achieve the best system

reliability is substantial.

4
1.2.5 Hierarchical N-Version Programming

The original N-Version Programming method implies to develop redundant
modules for the entire programming task. In other words, one needs to write n (n=>2)
programs to solve a particular problem. However, normally a problem can be divided
into several distinct modules, and the reliability of the system can then be improved by
applying fault-tolerant programming to some or all of the modules instead of the entire
system. The hierarchical N-Version Programming is based on the perception that
software reliability can be improved by applying N-Version Programming on the

subsystems rather than the entire system.

1.3 Contributions of the Thesis

Fault-tolerant programming methods improve software reliability using the
principles of design diversity and redundancy. Design diversity and redundancy, on the
other hand, escalate the cost of the software design and development. TheEefore, the
objective of this study is to analyze the reliability and cost of RB, NVP and hybrid
schemes of those two original strategies.

Probability models based on fault trees are developed for the RB, NVP and
hybrid schemes. Two heuristic methods are developed to construct hybrid fault-tolerant
systems with total cost constraints. Mathematical programming methods, such as linear
and nonlinear programming methods, are used in those proposed methods. Those
heuristic methods provide a systematic approach to the design of hybrid fault-tolerant

systems.

5
[Bell90], [Scot83] proposed various probability models to calculate the

reliability of NVP and RB fault-tolerant systems. [Bell91] introduced an optimization
model to design the RB and NVP schemes with total cost constraints. The model
introduced in [Bell90] and [Bell91] is rather complicated and the optimal solution is
obtained by using exhaustive searching. Extensive amount of calculations made this
model not practical. Additional assumptions are introduced in this study to simplify the
mathematical calculations. Using probability models and fault tree to study the hybrid
fault-tolerant schemes and utilizing heuristic algorithms to design hybrid scheme with cost

constraints are the unique contribution of the study.

1.4 Thesis Overview

Some basic concepts and previous research related to this study are
presented in Chapter 2. The discussion includes a review of software failure behavior,
RB and NVP, as well as methods for modeling fault-tolerant system such as fault trees
and probability models.

Chapter 3 deals with mathematical models for the RB, NVP and hybrid
schemes. Fault tree and probability models are developed to study the reliability of the
RB, NVP as well as the hybrid fault-tolerant systems. Examples are given to analyze the
general behavior of the different schemes under various input data.

The cost issues of hybrid fault-tolerant software systems are considered in
Chapter 4. Two heuristic algorithms used for the design of hybrid fault-tolerant systems

are presented. Algorithm I is for a symmetrical balanced hybrid structure. In a

6

symmetrical balanced system, the reliability of program modules are all identical, and
the same as the reliability of acceptance test modules and decision making modules. A
nonlinear program model is developed to optimize the design of the structure of the
hybrid fault-tolerant system. Examples are constructed under various system structures
and software failure conditions. Method II addresses a more general condition, in which
the system structure is not necessarily balanced and the program version failure rates
vary. The reliability of the testing and voting modules also vary. Heuristic methods are
developed for the design of the system under cost constraints.

A hierarchical N-version fault-tolerant system is presented in Chapter 5.
The ARIES 82 software system was used here to evaluate the reliability of different
schemes.

Finally, some thoughts on the limitations of this study and future research

are presented in Chapter 6.

CHAPTER 1II

BACKGROUND AND REVIEW

This chapter reviews basic fault tolerance concepts and recent
developments in software fault tolerance.
2.1 Fault-tolerant Software

Hardware fault tolerance has been extensively studied [Siew82], [John89].
We concentrate here in software fault tolerance which is the objective of this thesis. We
consider software failure behavior, the two basic constructs for fault tolerance: Recovery
Blocks and N-Version Programming, and we present the use of fault trees for the

evaluation of software.

2.1.1 Software Failure Behavior
In order to study software failure behavior we need to understand the life
cycle of software development. Software development can be divided into three stages
as shown in Figure 2-1:
(1) Functional requirement specifications stage;
(2) Logic/algorithm design stage; and

(3) Programming/coding stage.

|

]

| i
Function —Logic/Algorithm|— Programming

Specification

% ' Design Coding
L

1

Fig. 2-1 Three Stages of Software Development Cycle

9

Usually, the human errors/faults occur in all three stages. Errors in the
functional specifications can be reduced by careful planning and supervision. Using
modern computer aided software engineering systems programming faults can be largely
reduced. Most of the software failures come from the design stage. Design faults could
be produced by the following reasons:

(1) Misinterpretation of the specifications; or
2) Faults on design and selection of the logic and/or algorithms.

Most of the misinterpretations of the functional specifications are caused
by inaccurate and/or incomplete specifications. This should be resolved by better
planning and administration. Fault tolerant programming, therefore, should be addressed
specifically to faults in the logi.c/algorithm design stage.

The logic/algorithm design faults imply more than just errors in themselves
but faults usually occur with unpredicted input combinations or unpredicted data
exchanges with other functional programs. Because of the complexity of software
systems, complete testing of all the input combinations for a particular program is not
possible. Using fault tolerance programming, n different versions will be coded for the
same functional requirements. We hope that not all of the n different versions of the
programs will fail under a particular input condition.

A general conceptual diagram of software fault tolerance is shown in
Figure 2-2 [Lapr84]. Let us use I for input, O for output, V for program versions,
subscript e for error set, and c for correct set. Then the notation I; will be the input

subset of those points which will cause V(i) to fail. Failures are produced whenever

10

Input V - Version O

Fig. 2-2 Conceptual Diagram of Software Failure

11

inputs are selected from the subset I; within input space I, processed by program version
V(i), and an erroneous result in O, is generated. The input error sets overlap as shown
by I; U I;. This type of errors, correlated errors, are an important source of failure for

fault-tolerant software [Dhil89], [Eckh85].

2.1.2 Software Fault Tolerance

As said earlier, software fault tolerance is based on redundant diversity.

In general, program redundancy can be applied under three major aspects [Horn74]:
(D Acceptance test or error checks;
2) Alternate try routines; and
3) Restoration routines.

In the acceptance test approach, the intermediate results of the program
are tested for reasonableness or acceptability during program execution. Alternate try
moutines use different approaches for the same objective. Restoration routines return the
system to a previously determined state when the acceptance test rejects a result. Recent
developments on fault tolerant system design are primarily focused on two approaches,

Recovery Blocks (RB) and N-Version Programming (MVP) methods.

2.2 Recovery Blocks and N-Version Programming
Two of the most popular software fault tolerant programming methods,
Recovery Blocks and N-Version Programming are discussed. The system reliability is

used as quality criteria. Comparisons of RB and NVP are made.

12

2.2.1 Recovery Blocks

The general structure of the RB is shown in Figure 2-3 while Figure 2-4
shows its conceptual diagram where AT indicates the Acceptance Test, Restore is the
program function which restores the input states (state i) of the RB. The A;, (i = 1, 2,
... , n) are the Alternative Programs. If the AT rejects an output produced by program
A, then the alternative A,,, is activated. This process continues until a result is accepted
or until all outputs are rejected. In the later case, an error signal will be generated.
Primary Alternative and Secondary Alternatives

The RB contains n alternative programs which are developed from the
same set of specifications. They are arranged in a serial fashion comparable to the
standby sparing technique used in hardware redundancy. Usually, the first alternative in
the series is called the primary alternative which is the most reliable or most efficient
program. The other alternatives are known as the secondary alternatives. The secondary
alternatives could be degraded program modules; i.e., they can be simpler than the
primary program and could generate degraded but acceptable service. (A reduction in the

number of design faults should be expected by designing less complicated alternative

programs.)

Acceptance Test

The Acceptance test applies some known conditions that the result should
satisfy for error detection. It is invoked at the exit point of the alternatives. The

acceptance test should be as simple as possible such that itself does not contain any

13

ensure acceptance test
by alternative,
else by alternative,

else by alternative, -
else error

Fig. 2-3 General Structure of the Recovery Block

14

No

Yes

}

»__.I AT. P

Restore |*
A1
A2
State | |
l An
RP

R.B.

Fig. 2-4 Conceptual Diagram of the Recovery Block

State o

Ly

design faults. In case the acceptance test contains design faults, it could then produce
a failure by:

(1) Rejecting an acceptable result, or

) Accepting an unacceptable result. (This is really the most

serious failure.)

Limitations of RB

The most important limitation of RB is in finding good acceptance tests.
If there are not adequate their lack of coverage reduces the reliability of the system.

It is expected that by using different programmers, computer languages,
and algorithms to produce several functional comparable programs from the same initial
specification, the alternatives should not contain design faults. However, this expectation
is not guaranteed, because of the possibility of correlated errors. However, in a RB those

errors are not so significant as in N-Version Programming.

2.2.2 N-Version Programming (NVP)

The NVP method consists of n program versions and a voting mechanism.
Figure 2-5 shows the conceptual structure of the NVP approach. State I and State O are
the input state and the output state of the NVP module. a,(i=1,2,...,n) are the
alternative program modules. Decision selects the best solution out of n alternative

solutions. Usually, a voter is used as the decision mechanism.

16

A1 N
o A2 \\
§ State | ! | . ____: Voter | —-| State Q 1‘
R I ‘
An ¥y

Fig. 2-5 Conceptual Structure of the N-Version Programming

17
Voting Mechanisms

Usually a voting mechanism is used to select the correct result from the
n results generated by the n program versions. However, some applications generate
identical results and some can produce slightly different but correct results. In the case
that the versions generate identical results then a majority voting can select the correct
result [Andt81]. For results which are slightly different due to precision voting can be
done after a range check and correction.
Limitations of NVP

Similar to the RB, the NVP requires more design and programming work,
and needs additional hardware to run those n program versions. Its effectiveness depends
directly on the independence of the programs. Recent study reveals that the independently
developed programs do not fail independently [Voum835], i.e., there are correlated errors
among independently developed n programs. Because the versions must execute
concurrently the effect of correlated errors is much more serious than for RBs. N-
Version Programming is also wasteful of resources since the n versions must execute

concurrently.

2.2.3 -Methods

Various probability models have been developed for RB and NVP
[Grna80a], [Grna80b], [Scor83]. Assumptions are used in developing those models.
[Bell91] proposed a model for designing these fault tolerant schemes with a total cost

limit. The fault tolerant schemes considered were simple RB or NVP schemes.

18

2.3 Fault Tree for Analyzing Fault Tolerant Systems

Many modeling techniques have been adopted to study the reliability of
fault tolerance systems. In this section we describe the fault tree method since it is the
only one we will use in this thesis. See [Leus90] for a discussion of several other

methods.

Fault Trees

The fault tree is a modeling tool represents the conditions that result in a
system or subsystem failure. It displays the possible events which cause the system
failure. The fault tree is obtained from the system structure and functional requirements.
Sometimes, the system reliability is calculated based on the tree representation but it
cannot describe common failures.

A TMR system is used here to demonstrate the construction of fault tree
and develop the system reliability from it [John88]. Figure 2-6 is the fault tree for a
TMR system. Two type of logical gates are shown in the figure, the "OR" gate and the
"AND" gate. The OR gate indicates that the output event will exist if one or more of the
input events is present. The AND gate defines the situation when the coexistgnce of all
input events is required to produce the output event. Additional discussions about fault
trees can be found in [Arse80], [Barl75], and [Dhil78]. Some reliability modeling

program packages use the fault tree as one of their input tools [Stif79], [Sahn87].

19

System Failure

1 1L
P, , 3 \\/ / \]
ep (eg) (eallec) (eBileC)

Fig. 2-6 Fault Tree for TMR System

(A)—

20
2.4 Cost Analysis of Fault-tolerant Systems

In general, more redundancy in the computer program modules will
increase the reliability of the software in both RB and NVP schemes (if these modules
are carefully tested). However, additional program modules increase the software
development cost. Extra programs also requires more computational power on the
computer, especially for the NVP. A balance on reliability and cost should be achieved.
[Bell91] seems to be the only work which addresses the relationship between cost and

reliability of a fault tolerant system.

2.5 Summary

This chapter introduced the basic concepts of software fault tolerance and
reviewed previous research in this field. The fault tree method will be applied in this
thesis for analyzing hybrid fault tolerant systems and has been discussed here in some

detail.

CHAPTER III
RELIABILITY ANALYSIS OF

HYBRID FAULT-TOLERANT SYSTEMS

In this chapter two of the most common approaches for fault tolerance, the
Recovery Block (RB) and the N-Version Programming (NVP) method are evaluated.
Then the reliability of a hybrid fault-tolerant system combining the RB and NVP is
explored.

The analysis consists of two parts: First, reliability models of RB and
NVP are developed in the form of fault-trees and analytical modeling. Then, a reliability
expression for the hybrid mechanisms is developed. A program containing six modules
and a number of testing and voting modules is used to demonstrate the proposed
reliability analysis method. Numerical calculations are analyzed to give a general

understanding of the hybrid approach.

3.1 Recovery Block and N-Version Programming Models

Recovery Block

A generalized RB structure with ng; modules is described in Figure 3-1.

We assume one acceptance test module T is used for all the versions. If the acceptance

21

22

oo gy

s i

Fig. 3-1 Generalized RB Structure

23

test detects an erroneous output in module i then the input state is recovered and module
(i+1) is activated. This procedure is repeated until success or lack of versions.

A fault tree for this RB model is shown in Figure 3-2 [Bell90]. The reliability of the
fault-tolerant system depends on the reliability of program modules p; as well as on the
reliability of the acceptance test 7 . The test module can fail in two modes, type 1
failure (¢,) and type 2 failure (¢,) described below. The following parameters are used

in the analysis:

e; = Probability of failure for program module ; (i=1,2,...,n) -
n = Number of program modules.
Pa, = Number of RB modules in a scheme.

£, = Probability of failure in RB when acceptance test i judges an incorrect
result as correct.
£y = Probability of failure in RB when acceptance test i judges a correct result

as incorrect.

The probability model of the generalized RB scheme is calculated as

follows:
Dpp Ny]
Pgp = Hl: (es*tz;) + Z; €1; (11(e;+t,;))
i= i= Jj=
(3-1)
where:

P, = Probability of failure of the RB scheme.

24

- System Failure

!

| | | i
Aa a o
oy(ly ety o ey L

AND Gate

OR Gate

A
O Basic Fault Event

Fig. 3-2 Fault Tree for Generalized RB [Bell90]

25

There are two parts in equation 3-1. The first part reflects the situation
when program versions fail or when the acceptance test erroneously judges correct results
as failures. The second part represents the situation when the test accepts an incorrect

result. Both conditions cause the fault-tolerant system failure.

N-Version Programming

Figure 3-3 shows a generalized NVP structure. The decision algorithm
may itself fail by not being able to select the correct result. Figure 3-4 is the fault tree
for a generalized NVP [Bell90]. [Scot83] described that there are three types of errors
related to NVP:

(1) all of the n versions disagree
(2) more than one version has an incorrect result
(3) voting procedure has error.
Assuming that the correlated errors among program versions and the error of type (2)

are ignored, the probability of system failure p, is obtained from the fault tree as:

Py = nﬁ e; +d
i-1
(3-2)
where:
e = Probability of failure for program module i (i = 1, 2, ... n). In

NVP, the program module failure is defined as producing no

output.

26

S ——

Fig. 3-3 Generalized NVP Structure

27

- System Failure

i
i

|
1
|

|

—t
. j“—“r'

—

=2 ‘ g -~ Y /- 0 /_\\
| \e ”'1,) \‘\\9) /) ,\\e e J <\\ d
S N S—— Bt

Fig. 3-4 Fault Tree for Generalized NVP [Bell90]

28

d= Probability in NVP that the decision algorithm cannot select the

result out of at least 2 correct results

Number of NVP versions in a scheme.

3.2 Hybrid RB and NVP Fault-Tolerant Systems and Their Mathematical Models

A hybrid fault-tolerant system combines the RB and NVP schemes. The
idea here is to take advantage of good aspects of both RB and NVP. In general, a hybrid
fault-tolerant system consists of many small subsystems. Each subsystem may include
even smaller subsystems. To simplify the discussion, we consider here hybrid fault-
tolerant systems with only two levels: RB embedded in NVP or NVP embedded in RB.
Figure 3-5 shows the basic structure of a hybrid RB and NVP fault-tolerant system. The

first level consists of N basic program modules which form the second level program
versions P, 1<ism If RB (or NVP) is used at the first level, NVP (or RB) is used

at the second level. Failure rates for the basic program modules and program versions

are e; and e, , respectively. The program versions failure rates e, are calculated

based on the structure of the version and the failure rates of the program modules (e;)
acceptance test error probabilities (¢ .. t;), and decision error probability (4). The total
hybrid fault-tolerant scheme’s reliability is obtained by first calculating the reliability of
the lower level program versions, and then use the lower level program versions
reliability as the input to the higher level versions. This process is repeated until the total

system reliability is obtained. Mathematically, the hybrid system’s reliability is calculated

29

Fig. 3-5 Structure of Hybrid RB & NVP Fault Tolerance System

30

by using equations (3-1) and (3-2) where the program module’s failure rates e, I8

substituted by 8y, We have:

Npg d

Tlgg
PRB=H (ev,"'tzi)"'iz:; tli(_

(By g))

1=1 J=L
(3-3)
Dyy
Py = H 8, * d
i=1
(3-4)
The following definitions are defined for hybrid fault-tolerant scheme:
e, = Probability of failure for program modulei (i = 1, 2, ... n)
e, = Probability of failure for version i.
m= Number of hybrid versions.
T, = Test module i in the RB scheme.
v = Voting module i in the NVP scheme.
p, = Program module ; (=1,25 45,00
ny = Number of program modules in version i (n, +n,+...+n, = n)
p. = Hybrid program version ; (i =1,2,...,m) -

The probability of system failure p_ :

P, = f (Ppy, Pyy)

3-3)

31

The function £ defines the approach used in the higher level of the

system, which is given by equation (3-3) for RB or equation (3-4) for NVP.

3.3 Static Modeling of the Hybrid Systems

In this section, a fault-tolerant scheme with six (6) program modules which

represent the same function in different ways is used to study different fault tolerance

characteristics. The RB, NVP as well as the hybrid RB and NVP schemes are studied.

The following simplifications are used:

)

)

©))

All program module’s failure rates are same

(e;=e, e, =e,) . The probabilities of failure for hybrid
program versions are also the same since we assume the number
of program versions and their structure (RB or NVP) in hybrid
versions are the same.

The two types of errors t, and t, are the same (£, = t,)‘in
a Recovery Block structure.

The probabilities of acceptance test error t, and t, are greater

than the decision error d in a NVP.

3.3.1 Recovery Block Structure

Scheme 1:

6”1 RB (6-modules, 1-acceptance test RB scheme, Figure 3-6)

With six program modules and one acceptance test, several Recovery

Block schemes can be formed. Figure 3-6 shows its system structure and its fault tree

32

|

fF’x Pa fPs P4 Ps Pg

Failure Pg |

System

Fig. 3-6 Scheme (1) 6*1 RB

33

form. According to equation (3-3) the probability of system failure p, for the 6”1 RB

scheme is as follows:

P, = fI (e;+t,) + ¢, > (e;+t,) |e;=e

i=1 i=1
= (e+t,)¢ + ¢ if;:l (e+t,) "
(3-6)
3.3.2 N-Version Programming Structure
Scheme 2: 6”1 NVP (Six modules, one voter NVP scheme, Figure 3-7)
In this NVP scheme the system is unable to produce an output under two
conditions: either all six program modules fail or the decision (voter) mechanism fails.
Figure 3-7 displays the scheme and its corresponding fault tree. From the equation (3-4),

the probability model is as follows:
P, = fle ;+d|

i=1

=ef+d

e;=e

(3-7)
3.3.3 Hybrid Structure
The hybrid structure combines both RB and NVP concepts. With six
modules, four combinations are possible. Figures 3-8, 3-9, 3-10, and 3-11 are the
schemes and fault trees for the schemes 3, 4, 5 and 6 relatively. The probability models

are the following:

i

i
|

System Failure P }

34

1

‘Pg;Ps P4 Ps Psg

|

T
|
{
i

P1

R — |

Fig. 3-7 Scheme (2) 6"1 NVP

| Pag

P4

—f

;
E Voter

System Failure P |

A

)

i’
=
5§

|

L

(39“,

a)-

Partial Failure ¢, j‘

4
D

@)
&
@)
S
s
&r

Fig. 3-8 Scheme (3) 2*1 RB 3"1 NVP

36

est

T

System Failure P

\4

Partial Failure @

Fig. 3-9 Scheme (4) 2”1 NVP 3“1 RB

37

8
]

=
3
L |

{_

R S

Voter

System Failure Pc |

==

|

1

1
, 31 A
(Q/t) ! eva_> ! ‘d /

Partisl Failure €
T

Fig. 3-10 Scheme (5) 3”1 RB 2*1 NVP

38

Partial Failure e,

cﬁ;

(\(_i/;
{_“1_1
DRRC)

Fig. 3-11 Scheme (6) 3*1 NVP 2”1 RB

P1 | | P4 L.{ }
= | | | dspon
P2 ¥ P8 Vo
f o] : j__j: .
& | f| i !
; |
+ v
,__é_ﬁ
‘: |
| Test
(System Failure PF JI
| 1
= ‘
| E— 1 e
L4 & &
& o e
SRR (> a i a A o
o s = I N W
&y)it2!) (L2} Ey){t2

39
Scheme 3: 2°1 RB 3”1 NVP (Figure 3-8)

Cv, T ﬁ (ei+t2) * tllgl(ei+t2)i'ei=e

i=1

=(e+t,)? + t, 5 (e+t,)1

i=1

(3-8)

PF' = lE‘Ievi » dl

is1
el +d

8y;=6y, 1=1,2,3

(3-9)
Where:

P, = Total system failure rate

e, = Program version failure rate
i

e. = Program module failure rate
A

Scheme 4: 2”1 NVP 3“1 RB (Figure 3-9)

D
]

,12‘[ei+d|ei-e
=1

e? +d

(3-10)

40

P, = (e +t)+t§2(e £, %]

i=

=(e +t2)3+tlf: (e +t,) 1
i=1

Scheme 5: 3*1 RB 2*1 NVP (Figure 3-10)

e—fI(e+t)+ti(e+t)

=(e+t2)3+t1f: (e+ty)
i=1

- e, +dl,,

1=1 vi
=e+d

=e,, i=1,

Scheme 6: 31 NVP 2”1 RB (Figure 3-11)

fle ¥ e

i=1

=e’ + d

fI(e] +tf:(e e

i=1

=(e,+t,)?% + tlﬁ (e, +t,)*
i=1

8y =6y, i=1,2,3

|9 =a

2

8y;=8y, 1=1,2

(3-11)

(-12)

(3-13)

(3-14)

(3-15)

41
3.3.4 Simulation Models and Modeling Results

There are many different types of simulation techniques [John88].
Simulation involves conducting experiments with a model in order to understand how a
system will behave and obtaining numerical evaluations of the various operational
strategies. In this study, all six schemes are simulated under different failure rates of the
program modules, the acceptance tests, and the decision (voting) mechanisms. The
calculation program was developed under the Lotus 123 environment.

The simulation results for the schemes shown in Figures 3-6 to 3-11 are
presented in Figures 3-12 to 3-17. Test data ranges are chosen as:

e=1%to 6%

t=1%1t06%

d = 0.0001% to 0.0006%
We assume that the decision module has a higher reliability than the testing module.

Some observations that can be obtained by analyzing the output are the folloWing:

Scheme 1 (Figure 3-12): 6*1 RB

Under the given test ranges of e, t, and d, the scheme failure rate P, =
0% to 1.3% (Max. whene = 6%,t = 6%).

The 6”1 scheme is a pure RB scheme and its reliability is used as the
reference for the other schemes. The 6”1 RB scheme is fairly reliable. If the average
program module failure rate (€) is 1% and the test error rate is 1% then the system

reliability is better than 99.95%. If the computer program module reliability dropped to

42

Scheme 1 (6 ™ 1) Failure Rates

0.014

2 0.0121
0.01-
0.008-
0.006-
0.004-

System Failure (x100%
o
o
o
b

0 I i I I I I T | T
0.010.0150.020.0250.030.0350.040.0450.050.0550.06
Acceptance Test Failure (x100%)

M- e=1% +— e=2% —<— e=3% -
= e=4% < e=5% —&— e=6%

Fig. 3-12 Failure Rates for Scheme (1)

43

Scheme 2 (6~ 1 NVP) Failure Rates
0.007

0.006

100%)

2 0.0051
0.004+
0.003+

System Failure

0.002+

0-001 I I 1] 1} 1 1§) T I
1 156 2 25 3 35 4 45 5 55 6

Decision Failure (dxE-3)

B e=1% —+— e=2% —<— e=3%
—=— e=4% > e=5% & e=6%

Fig. 3-13 Failure Rates for Scheme (2)

44

Scheme 3 (271 RB371 NVP)

0.007

—

0.006+

100%

% 0.005-
0.004+
0.003+
0.002+

System Failure

0:001 1 1 I 1] I T I I I
1 156 2 25 3 35 4 45 5 55 6
Test Failure (%) Decision Failure (E-3)

- e=1% —+— e=2% —<— e=3%
—=— e=4% < e=5% & e=6%

Fig. 3-14 Failure Rates for Scheme (3)

45

Scheme 4 (27 1NVP3 ™ 1RB) Failure Rate

System Failure (x100%)

O T I I I I | I 1 T
1 156 2 25 3 35 4 45 5 55 6
Test Failure (%) Decision Failure (E-3)

- e=1% —+— e=2% < e=3%
——— e=4% > e=5% —&— e=6%

Fig. 3-15 Failure Rates for Scheme (4)

—

System Failure (x100%

46

Scheme 5 (3™ 1RB2 ™ 1NVP) Failure Rate

0.007
0.006-
0.005+
0.004+
0.003+
0.002-

0.001

2 25 3 35 4 45 5
Test Failure (%) Decision Failure (E-3)

——— e=4% > =5% —— e=6%

Fig. 3-16 Failure Rates for Scheme (5)

T

55 6

47

Scheme 6 (37 1NVP2 ™ 1RB) Failure Rate

0.009
0.008+
0.007+
0.006+
0.005+
0.004+
0.0034
0.002+
0.001 1

System Failure (x100%)

O I 1 1 L 1 1j 1 | : I
1 16 2 25 3 35 4 45 5 55 6
Test Failure (%) Decision Failure (E-3)

- e=1% +— e=2% —<— e=3%
—— e=4% > e=5% & e=6%

Fig. 3-17 Failure Rates for Scheme (6)

48

94% (6% failure rates) and the test error rate increased to 6%, the system reliability is
still better than 98.6%. The system is not very sensitive to the program module failure
rate and test failure rate: with a 6% difference in failure rates the system reliability

decreases by 1.1%.

Scheme 2 (Figure 3-13): 6°1 NVP

The probability of system failure for the 6”1 NVP scheme depends
strongly on the reliability of the voting mechanism. When the program module failure
rate e varies from 1% to 6%, there is no clear effect on the system reliability. However,
there is a clear relation between the system failure Py and the voter error rate d. In other
words, the NVP can tolerate not so reliable modules as far as it has a reliable decision

mechanism.

Scheme 3 (Figure 3-14): 2°1 RB 3"1 NVP
Similar to the 6*1 NVP scheme, the system’s failure rate is related to the
decision failure rate d. Lower level redundancy is not necessary if a decision module

with failure rate d is going to be used as a final determination of the scheme.

Scheme 4 (Figure 3-15): 2”1 NVP 3"1 RB
This scheme takes the advantages of both NVP and RB. Under the same
testing data, the system’s failure rate p_ is between 0.01% to 0.45%. The system’s

reliability is not very sensitive to the program module failure rates e.

49
Scheme 5 (Figure 3-16): 31 RB 21 NVP

When a decision/voting module is used as the final judgement of the
scheme, it resembles the characteristics of NVP. In other words, the system’s failure rate

is strongly dependent on decision failure rate d.

Scheme 6 (Figure 3-17): 3°1 NVP 2”1 RB
The system reliability is very much independent of the program module
failure rate e. It can be discovered from the plot that the system failure is related to

decision or testing failure rates exponentially.

3.3.5 Discussion
Figures 3-18 and 3-19 show the comparisons of the six schemes when the
program failure rates are e=2% and e=6%. The testing failure rate t is set between 1%
to 6% and the decision/testing failure rate d is assigned from 0.1% to 0.6%. The
following are some observations from Figure 3-18 and 3-19.
(1) Scheme 4 2*INVP3”1RB has the best system reliability under the given testing
data.
(2) A pure RB or NVP scheme has higher system failure rates than most of the
hybrid schemes.
3) Under the assumption that 4 = o .1 ¢, the schemes 2, 3, and 5 generate better
system reliability than other three schemes when t > 4% and d > 0.4%

approximately.

50

Comparisons
Module Failure Rate e=2%

__ 0.0t

0.009-
0.008-
0.007-
0.006
0.005-
0.004-
0.003
0.002-

x100%

N’

System Failure

o
o
o
—t
.

0 I 1 1 I 1 | 1 I I
1 156 2 25 3 35 4 45 5 55 6
Test Failure (%) Decision Failure (E-3)

- 6" 1RB —— 6" 1NVP —%— 27~ 1RB3 ™ 1NVP
—=— 27 1NVP3~ 1RB —>¢- 3~ 1RB2”~ 1NVP - 3~ 1NVP2" 1RB

Fig. 3-18 Comparison of System Failure Rates (e=2%, d=0.1% to 0.6%)

—~

System Failure (x100%

51

Comparisons
Module Failure Rate e=6%

0.014
0.012-

0.011
0.008+
0.006-
0.004-
0.0024

O L 1 I 1 : | 1 T I 1
1 156 2 25 3 35 4 45 5 55
Test Failure (%) Decision Failure (E-3)

6

—&- 6" 1RB —+— 6~ 1INVP —— 27 1RB3 ™ 1NVP
——=- 27~ 1NVP3"~ 1RB =< 3~ 1RB2”~ 1NVP —&— 3"~ 1NVP2~ 1RB

Fig. 3-19 Comparison of System Failure Rates (e=6% d=0.1% to 0.6%)

52

Figures 3-20 and 3-21 show the comparison of system failure rates of the
six hybrid schemes with decision failure rate d=1% to 6% (Figure 3-20) and d=0.01%
to 0.06% (Figure 3-21). It can be clearly seen that the system’s reliability for a NVP
dominated scheme, such as schemes 2, 3 and 5, will have a better system’s reliability if
d < 0.1t or worse reliability if d > 0.1t when compared with a RB dominated scheme.

[Scot87] proposed a reliability model to calculate the NVP system’s
reliability, as well as other mechanisms. The assumptions used in his model are:

(1) The only type of error considered is that when all outputs disagree (called
type one error by them).

(2) Type two and type three errors, that is, when an incorrect output appears
more than once ktype 2) and errors in the voting procedure (type 3) are
ignored.

Under those assumptions, the system failure rate P, becomes:

= = = Nyy i 0w d :
Py = 1 =B 1 = Y {"P)(1-0,) %6]

i=2
(3-16)
Figure 3-22 shows the system failure rate when e=1% to 6%. Under Scott’s model the
NVP system reliability does not increase very large by using fault tolerance especially
when e increases. According to Scott’s model using the same way to define the type of

errors, we have equation (3-17) from [Bell90]:

53

Comparisons
Module Failure Rate e=6%

_. 0.07
0.06-
< 0.051
0.04+
0.03
0.02-
0.01

100%

X

System Failure

O I I 1 1 I K
1 156 2 25 3 35 4 45 5 55 6
Test Failure (%) Decision Failure (E-2)

- 6" 1RB —— 67" 1NVP —— 27 1RB3 ™ 1NVP
—=— 27 1NVP3" 1RB =< 3~ 1RB2” 1NVP —&— 3~ 1NVP2" 1RB

Fig. 3-20 Comparison of System Failure Rates (e=6%, d=1% to 6%)

54

Comparisons
Module Failure Rate e=6%

_. 0.014
0.012+

0.011
0.008+
0.006-
0.004+
0.002+

System Failure (x100%

O ! T ‘ 3#(—* T % T T
1 16 2 25 3 35 4 45 5 55 6
Test Failure (%) Decision Failure (E-4)

- 6" 1RB —— 6" 1NVP —— 27 1RB3 "™ 1NVP
—=— 27 1NVP3~1RB =< 3~ 1RB2” 1NVP —&— 3~ 1NVP2" 1RB

Fig. 3-21 Comparison of System Failure Rates (e=6%, d=0.01% to 0.06%)

55

6~ 1 NVP (Scott’'s Model: d=0)

0.06

x100%)

N

System Failure

1 15 2 25 3 35 4 45 5 55 6
Module Failure Rate e = 1 to 6%

—— 6" 1NVP

Fig. 3-22 NVP System Reliability by Using Scott’s Model

56

Dgs

II (ev,i"tzi)

i=1

(3-17)
where:

t, = 0 and ¢, is the only type of error of the acceptance test in RB.

Figure 3-23 shows the system failure rate when e=1% to 6% under the pure RB.
Figures 3-24 and 3-25 show the comparisons of the system failure rates for all six hybrid
schemes when Scott’s model is used to calculate the failure rates of NVP modules.
Except for the 6*1 NVP scheme, the other schemes yield similar system failure rates to
the ones calculated by the mathematical model developed in this study.

[Scot83] proposed a consensus RB model which starts with an NVP scheme and
if there is no output result an RB scheme is applied. That is also a combined NVP and
RB scheme of the type used in this study. The difference is that the consensus RB
combines NVP and RB within one level of redundancy and the hybrid schefne in this
study applies these methods in two levels. The hybrid fault-tolerant systems proposed in
this study generate better system reliability than the pure RB or NVP systems. The
hybrid fault-tolerant scheme could be extended to more than two levels but the high

number of versions makes this idea impractical.

3.4 Summary
A simulation model has been used to study the behavior of hybrid fault-

tolerant schemes. Six fault-tolerant programs were constructed using Recovery Block

37

6”1 RB (Scott’'s Model: t1=0)

2.5+

System Failure (x100%)
(Times 10E-6)
g

] =

___“_‘_—- ‘

1 15 2 25 3 35 4 45 5 55 6
Acceptance Test Failure (x100%)

& e=1% —+— e=2% —*— e=3%
—= e=4% > e=5% &k e=6% "

Fig. 3-23 RB System Reliability with Error Type t1=0

58

System Failure (Scott’s Model)
Module Failure Rate e=2% Error t1=0

0.012
®
g 0.01-
S

System Failure
o
o
o
3

T —i T - T o i
i 156 2 25 3 35 4 45 5 55 6
Decision Failure t2 (x100%)

- 6" 1RB —+— 6" 1NVP —<— 27 1RB3 "~ 1NVP
—— 27 1NVP3~1RB =< 37 1RB2” 1NVP —&— 37~ 1NVP2" 1RB

Fig. 3-24 Comparisons of System Failure Rates Using Scott’s Model e=2%)

59

System Failure (Scott’'s Model)
Module Failure Rate e=6% Error t1=0

0.06

0.05-
X 0.041
0.03-
0.02+
0.011

0 I

100%)

System Failure

T i T ' T L T L
1 156 2 25 3 35 4 45 5 655
Decision Failure t2 (x100%)

- 6" 1RB —+— 6" 1NVP —— 27 1RB3 ™ 1NVP

—=- 2~ 1NVP3~ 1RB —¢ 3~ 1RB2” INVP A&~ 37~ 1NVP2" 1RB

Fig. 3-25 Comparisons of System Failure Rates Using Scott’s Model (e=6%)

6

60

and N-Version Programming including their combinations. The study contains four main
parts: development of the fault-tolerant schemes, fault tree for these schemes, probability
models, and simulation.

A sample fault-tolerant system which consists of six redundant versions
was utilized for building the various schemes and for numerical testing. Four hybrid
configurations of the basic RB and NVP were compared with the original RB and NVP
design. The results show that the combined schemes can produce better system
reliability than that of the original RB and NVP methods. Also studied were the system
reliability under different schemes and different probabilities of program failure,
acceptance testing failure and decision failure. Guidance to select the best system

configurations was also presented.

CHAPTER IV
HYBRID FAULT-TOLERANT SYSTEM DESIGN

WITH COST CONSTRAINTS

4.1 Hybrid Fault-tolerant System

Two important issues which are related to the design and analysis of fault-
tolerant software are the reliability and the cost associated with various fault-tolerant
mechanisms. This chapter presents two heuristic methods for the design of hybrid
Recovery Block (RB) and/or. N-Version Programming (NVP) systems under cost
constraints. The first one is an homogeneous model where all program module’s failure
rates, acceptance test or voter’s failure rates and costs are the same. The second
algorithm deals with a general model in which all failure rates and costs are v.ariable. As
we saw in Chapter III, hybrid RB ?.nd NVP schemes, can further improve reliability.
Design diversity and redundancy, on the other hand, escalate the cost of software design
and development. [Bell90] proposed an optimization algorithm to design RB and NVP
systems under total cost constraints. In this chapter, we propose two heuristic methods
for the design of fault-tolerant software using two levels of hybrid RB and NVP schemes

under cost constraints.

61

62

The cost of fault-tolerant software includes design, implementation, testing,
and operation costs. In general, the reliability of software can be increased by adding
more redundant programs or units. However, in practice cost limits are usually imposed
in designing such a system. [Bell91] reported optimization models for systems using

separated RB and NVP systems under constraints on the total cost.

System Failure Rates of the Hybrid System
In general, using the notation of Chapter III, the failure rates for the RB

and NV module can be written as (Equations 3-3 and 3-4):

Ngp Ny
Ppp = H (evi*'tz) 4 Z (evi"'tz)i
i=1 i=1
(4-1)
nnv
Py=]]e, *+d
i1
(4-2)
The probability of system failure p_, is:
P, = £ (Puy, Py
(4-3)

In this equation, p_ is a function £ defined by the configuration of the

hybrid system.

63

Since p_ is the probability of system failure, then (1 - p_) is equal
to the system reliability. The cost models of the proposed schemes are then a nonlinear

function as follows:

Objective:
Max (1-Pg) el
jes J S o
(4-4)
Subject to:
n n n,,
1§C91+J§Ctj +1§1C"k mhe
Py 20
C,;20
C,;20
- C,20
(4-5)
where:

B = failure rates of the scheme 5

¢ = the total resources available

c,; = resources needed for program module i

c,; = resources needed for voting module i

c,; = Tresources needed for testing module i

s = the complete set of possible schemes can be constructed

s = the scheme that gives the optimal system reliability

scheme index

(R
Il

64

The configuration which generates the best system reliability within the
total resource limits will be the optimal solution.

Two methods are presented here which will generate optimal fault-tolerant
system structure under given cost limits. The first method developed is for homogeneous
fault-tolerant systems in which all the program modules have the same reliability and
cost. A more general method applied to systems in which the program modules as well
as the voting and acceptance test all have dissimilar reliability and associated costs. Both
algorithms are based on two results from our previous study (Chapter III). The relevant
facts are the following:

(1) A fault-tolerant system which consists of more program modules has higher
reliability. This is true for both RB and NVP schemes if the modules have been
carefully tested. Since the probabilities of the program failures are less than one
(e;,t,d<1), more multiplication of them will generates a smaller number.

(2) In general, software system reliability is improved by using more test and vote
program modules. As our previous study shows that for a system consist of same
number of functional redundant programs, the systems with least testing and
voting programs have lowest reliability. The system’s reliability can be improved
by using more testing and voting modules.

4.2 Fault-Tolerant System Design with Equal Program Reliability and
Costs

Based on the observations stated above, the algorithm calculates possible

system configurations under the cost limit. It first confines the maximum number of

65

redundant programs supported by the cost limit. The system reliability will be used as

the lower bound. Then more voting and testing modules are added into the scheme.

Program modules will be traded for the testing and voting modules if necessary. The

configuration with the highest reliability will be selected. Following is a step by step

description of the method.

4.2.1 Method I: Symmetrical Balanced Fault-Tolerant System Design

Step 1:

Step 2:

Step 3:

Calculate the total number of program modules, n,-
n, = max integer (Total cost / cost for each program module)
= max int [C/Ci]
(The assumption used here is that all the program modules have the same
cost c9i=c1.).

Calculate the remaining resources ¢/

&= {o=8)

¢! represents the resources remaining for the voting and testing programs
when a number p, of programs are utilized.

Select hybrid scheme

If ¢/ > r - c.orc'>r-c,, g0 to step 4. This indicates that there
are enough resources remaining for the testing and voting programs after

the resources have been committed to the n, number of functional

programs. (Here r is the iteration number which in initially 1).

Step 4:

Step S:

Step 6:

66

Else, n, = n, - 1, repeat step three.
If there are not enough resources left for the voting and/or testing
programming, then one of the functional programs has to be traded for the

testing/voting programs.

Calculate the system reliability

Calculate the system reliability under the given number of testing and
voting modules. This is accomplished by using equations (1), (2), and (3).
There could be several different configurations under a given number of
program modules, acceptahce test and voting modules.

Stopping Rule

If, r < % g, * 1, then, r = r + 1, g0 to step 3;

else, go to step 6.

The stopping rule is used to decide when to continue or terminate the
iteration procedure. It is obvious that in the hybrid system, the number of
testing and voting programs should not exceed half of the number of
functional programs. This assumes that there should be at least two
functional programs in a RB or NVP structure.

Select the scheme with the maximum system reliability.

67

4.2.2 Illustration of Method I

The following example illustrates this method. It is assumed that all

programs and their testing modules have the same reliability and costs. The input data

are:

Iteration 1:

Step 1:

Step 2:

Step 3:

Step 4:

Cost of the program module ¢, = 15 (thousand dollars)

Cost of the testing module ¢, = 85% - ¢, = 12.75 (thousand dollars)
Cost of the voting module ¢ = 10% * ¢, = 1.50 (thousand dollars)
Total amount of resources available C = 120 (thousand dollars)
Probability of program module failure e = 5%

Probability of testing module failure t = 2%

Probability of voting module failure d = 0.2%

Total number of program modules n, = [C/ gl = [120/15] = 8
(modules) -

if By = 8 , remaining ¢/ = 0,

There are no resources for testing and voting, we have to adjust the n,
and R as follows:

n, = n,-1 = 7 (modules)

=~ n) = 120 - 157 = 15 (unit $)

Calculate the reliability for this number of modules.

Reliability for 71 RB (Scheme 1)

Reliability for 71 NVP (Scheme 2)

68

Step 5: r=1<%-np+1=4.5,gotostep3.

Iteration 2:

Step 3: n=ny,-1 =71 = 6

Step 4: ¢/ = 120 - (6:15) = 30 (unit $)

Step 5: Calculate the systems reliability under the possible system configurations.
There are:

2”1 NVP 3”1 RB (#.=6, 8 =4Lan 3) (Scheme 4)

3A1RB2A1NVP(HP=6,H =2,n

t

1) (Scheme 5)

3*1NVP2*1RB(n, =6, n, = 1, n 2) (Scheme 6)

Note: Scheme 3 (2”1 RB 3”1 NVP) is not feasible.

Go to step 3 until rs%'nfl)

The final systems reliability and their costs are as shown in Table 4-1.

Step 6: Select the system structure with the least failure probability. Scheme 4
will be selected. The scheme consists of three NVP versions each of
which has two functional programs and a voting mechanism. Then those
three NVP versions are combined using a RB testing module. The

reliability of the system is 99.95% under the given conditions. Figure 4-1

Table 4-1: System Reliability of Different Hybrid Fault-Tolerant Systems

Schemes Total Cost System Reliability
1 117.75 99.78
2 106.50 299.80
4 109.50 99.95
5 116.50 99.80
6 111.00 99.91

69

70

Fig. 4-1 Homogenous Hybrid Fault Tolerant Software Scheme

71

shows the structure of the hybrid design and Table 4-1 shows the result
of the variable schemes (those scheme numbers related with same method

in Chapter III).

4.3 Hybrid Fault-Tolerant System Design with Cost Constraints: General
Model
The previous method assumes that all modules have the same reliability
and cost. We now show a generalization of the previous algorithm which handles the

situation when costs and reliability are variable.

4.3.1 Fault-Tolerant System Design with Different Program Reliability and Costs
The two assumptions used in the previous method are still valid. They
allow us to simplify the method into two stages, one to design the best system structure
using an iterative procedure and the second is select the best combinations of program
modules. This method selects tests and voters first, then the program versions, while
method I selects version first followed by the selection of tests and voters.
Step 1: Initialization:
The procedure starts with one voter or one test module. According to the
observation that the reliability of the voting and testing has the biggest
influence on the system reliability, one should select the voting or testing
module with the highest reliability to start the procedure.

Initially, n, or n, = 1

Step 2:

Step 3:

72

Remaining Resources for program modules:

Y ¢

vi

n
c=c-%c, -

i=1 i=1

Program Module Selection Rules:

Assume there are p, program modules and that the costs of the program
modules c_, are different. Each program module can be used only once.
The procedure of selecting the program modules is given by the following

integer program module:

min II e
ies

Subject to:

b #,

4 el
ies

g
0se; <1

Cs; 2 0

el

The program modules i can now be selected so as to give the best system
reliability under the cost constraints.

This is a nonlinear programming problem. In this particular case, it can
be converted into a linear programming problem by the following

procedure.

73

Since:

n
ln(ITei) =lne #lne + =~ +1n e,

i=1
n
=¥ 1n e;

i=1

Then:

min I e;
ies

is equivalent to:

n
min):t 1ln e
i=1

Letting: x; = 1n e;
the original problem becomes a linear problem:

min ¥ X;

ies
subject to:

3 I
ies
x;, 20

20

el

74
Step 4: Hybrid Rules:

It can be proved that the system reliability is maximized by building a
balanced hybrid structure. In other words, the hybrid system should have
versions (RB or NVP or a combination of them) with similar reliabilities.

Mathematical Model:

Given:

e; = the probability of failure for the individual program module

0<e; <1, ies:
£, = failure rates of the testing module
d, = failure rates of the voting module

The system failure rate is minimized by:

min X 2, - P,._)
i=1

Where:
m = number of versions in the hybrid system
P
P, = failure rates of the version ;, P, is calculated according

to the equations 1, 2, and 3 given before.

Step 5: Calculate the system reliability accordingly.

73
Step 6: Stopping Rule:

if

then go to step 7 else go to step 8.
Step 7: Adding Rules:
When the remaining ¢/ is less than the cost for adding a test or a vote

module, one program module will be selected to be deleted from the
system. In order to do so, two ratios are considered here, the cost
efficiency ratios for program module and the testing/voting module.

In general, since the reliability of the testing and voting module are vital
to the system reliability, a testing/voting module with the highest
reliability usually will be added to the system. The choice of adding a
testing or voting module depends on the initial selection of the type of
decision module. We assume that in a two layer structure, if one layer is
RB then the other layer is NVP, i.e. one voter is always combined with
a number of acceptance tests to form a hybrid system; and one acceptance
test is always combined with number of voters to form a hybrid system.
The program module with the least cost efficiency and enough cost to
cover the added testing or voting module will be removed from the
previous design.

Program cost efficiency:

76
Eei = {1 = ei)/cei
Testing/Voting efficiency:

E,

(1 - ti)/Cti ’

1

or

Evi (1 - Vl)/CV1)

Addition Rules:

max (1 - t;) , Or

max (1 - v;) for all i, i is the testing/voting module index.
i e (remaining testing or voting modules)

Deletion Rule:

min E,
for i that C, 20 OFC,
Go to step 2.
Step 8: Select the design with the maximum system reliability.

4.3.2 TIllustration of Method II

The following example illustrates the proposed method. Table 4-2 shows
the failure rates and costs of the modules. It is assumed that the voter has higher
reliability and less cost when compared with the acceptance test.

The procedure to solve the problem is quite lengthy, only the final results

are presented here. Four iterations generate four system designs according to the given

Table 4-2: Input Data for Illustration II

Data for the Illustration Example II

1 2 a 4 5 6
Cost of Program Module 10 12 14 16 18 20
Failure Rates of Program Module .06 | .05 .04 .03] .02 | .01
Cost of Testing Module 10 12 14
Failure Rates of Testing Module .05 | .03 .01
Cost of Voting Module 1 2 3
Reliability of Voting Module .005 | .003 | .001)

77

78

data. Figures 4-2 through 4-5 show the system structure. The first design is a pure NVP
design with a system failure rate of 5.01% . Design number two is a hybrid scheme.
Three program modules with a testing module form a RB version. Two of such versions
are then connected with a voter to form a NVP scheme. This design gives a failure rate
of 5.22%. A third design is generated in the form of a hybrid NVP with RB. Three
program modules with a voter form an NVP. Two of those NVPs form a RB scheme.
The best design consists of three voters and a test. Each two of the six programs with
a voter forms an NVP. Three of those NVPs are then linked using an RB scheme. This
design yields the lowest failure rate of 1.69%. Considering the average program failure
rate is 3% to 4%, the hybrid design made a big impact in terms of improving the system
reliability. Table 4-3 summarizes these results.
4.4 DISCUSSION

The mathematical form of the hybrid fault-tolerant system design is in a
rather complicated nonlinear programming form. It may be very difficult to obtain an
analytical optimal solution. Therefore, using approximate methods are a practical and
more efficient approach.

In a realistic environment, method 11 might be more useful than method
I since the assumption of equal cost and reliability for all the modules is not realistic.
However, it does supply a simple approach to design the hybrid system.

Method II is a more complex procedure. The method applies several linear
and nonlinear programming methods to achieve some local optimization goals. It should

be brought to our attention that comparing the two examples used in this thesis, method

79

"6

Fig. 4-2 Hybrid Fault Tolerant Software Scheme (1)

System Reliability = 94.99 %
Total Cost = 91 (unit of dollars)

80

|
P4 Po
| _
Pe Ps :
P 1 ‘ Py

Fig. 4-3 Hybrid Fault Tolerant System Scheme (2)
System Reliability = 94.78 %
Total Cost = 113 (unit of dollars)

81

P4 P4
P2 185 Ps T
P 1

Fig. 4-4 Hybrid Fault Tolerant System Scheme (3)
System Reliability = 94.48 %
Total Cost = 103 (unit of dollars)

82

— —
(“33"‘} : P2_"
‘1——- |] P === 1
Vi j«"zi i ; "1I
F’4 ‘ Pa
Pyt Py 51 Pw
|
i
i
|
.

r

Fig. 4-5 Hybrid Fault Tolerant System Scheme (4)
System Reliability = 98.3 %
Total Cost = 106 (unit of dollars)

Table 4-3: Feasible Solutions of Illustration II

Feasible Solutions for Illustration IT

Solution No. Hybrid Structures System Reliability Cost
1 6*1 NVP 0.9499 91
2 3*1 RB & 2*1 NVP 0.9478 113
3 3"1 NVP & 2”1 RB 0.9448 103
4 2”1 NVP & 3”1 RB 0.9831 106

83

84

IT generates a better hybrid system compared to method I under similar circumstances.
This heuristic method does not necessarily generate a system with maximum possible
reliability. An analytical explanation for this result requires for further study.

[Bell91] proposed an approach to optimize system reliability with cost
constraints. In his approach, system reliability is calculated through a nonlinear program
and the optimal solutions obtained through exhaustive searching. Under our different

assumptions, the method proposed in this study is much simpler.

4.5 SUMMARY

In this study, we proposed two algorithms for design hybrid RB and NVP
fault- tolerant systems. Both procedures were executed in an spreadsheet environment.
Provided with input data such as the reliability and cost of program modules as well as
testing and voting modules, these procedures will determine the hybrid structures with
fiighest system reliability within the cost constraints. In this thesis we showed examples
with two layer hybrid configurations. In fact the number of layers could be more than
two, although in general this is not a practical approach because of the high number of

versions required.

CHAPTER V
MODELING OF HIERARCHICAL N-VERSION

SOFTWARE FAULT-TOLERANT SYSTEMS

Wu [WuJi91] presented a hierarchical N-Version method where a problem is
viewed as a set of objects which can be hierarchically organized into several levels. The
reliability of hierarchical N-Version fault-tolerant software is now studied using a reliability
modeling software called ARIES 82 [ARIE91]. Simulation models are used here to test the
system reliability and performance of that approach. The system behavior under various failure

patterns is also analyzed.

5.1 Hierarchical N-Version Programming

In general, a software system can be modeled as the superposition of four levels:

Level 1 application software
Level 2 module

‘Level 3 procedure

Level 4 data structure

The reliability of the whole application depends on the reliability of the
subsystems at each level. Reliable subsystems can enhance the reliability of the whole system.
By implementing hierarchical NVP, it is also possible that the cost of the software development

85

86

can be reduced. One can spend more resources on the subsystems which have the least reliability

rather than on the entire system.

5.2 ARIES 82 Reliability Modeling Software
The ARIES (Automated Reliability Interactive Estimation System) 82 [ARIES91]
was developed to assist designers of fault-tolerant systems. ARIES 82 provides a general
mathematical framework of analysis which allows extensions to new models and new classes of
systems.
| ARIES 82 is a set of more than 100 C-language procedures developed by a
research group at the Department of Computer Science, UCLA. The system is capable to model
transient fault recovery, graceful degradation, off-line repair, periodic renewal, as well as user
defined subsystems. The system supports seven types of systems:
(D) Closed FT systems
2 Closed FT systems with transient fault recovery
(3) Mission-oriented repairable systems
(4) Repairable systems with transient fault recovery
(5) Repairable systems with restart
(6) Periodically renewed closed FT systems
(7) User defined systems
The functions of ARIES 82 include three groups: system/subsystem configuration
functions, reliability analysis functions, and system utility commands. The notation used in

building system models and output analysis is as follows:

87

y[0] Initial number of active program modules in NVP
y[1] Minimum number of faultfree program modules
D Number of degradations allowed

A Probability of failure for program module

5.3 Simulation Models

As said earlier, a software system (whole application) can be divided into three
levels: the data structure level, the procedure level, and the module level. The systems reliability
can be improved by utilizing N-Version Programming at one, two, or all three levels, and these
simulation studies intend to evaluate tl}iS using three models.

Model one uses NVP on all three levels; model two applies NVP on two levels;
and model three applies NVP to one of the three levels. The simulation type specified by ARIES
has been selected as type 7 systems which corresponds to closed fault-tolerant systems. In this
particular case spare module recovery is not considered. The descriptions of those snodels are
given below.

Model One: N-Version Programming on all three levels

Assume there are three program modules at each level (number of initial active

program modules Y[0]=3). Only of the three program modules can fail at a time

(D=1). The minimum number of faultfree program modules Y[1] is equal to

Y[0] - D = 2. The failure rates), are between 1% to 25%. The failure rates are

too high for practical usages. They have been exaggerated here to show the trends

of the model. The input parameters are as follows:

88

D=1
Y[0] =3
Y[1] =2

3 = 1% to 25%

Model Two: N-Version Programming on two of three levels

Model Three:

The two NVP sublevels have the following input parameters:

Y[0] = 3
Y[1] =2
D=1

The level without redundant programming has the following parameters:

D=0
Y[0] = 1
Y[=1

N-Version Programming on one of the three levels

This model studies the hierarchical NVP by applying NVP on one of the three
levels. For instance, NVP is only applied to the data structure level, while the
procedure and module levels do not use any fault-tolerant programming.

The system is configured as having three (n=3) NVPs at one level and the other
two have one program each. The failure rate of an active module, 3, is set from

1% to 25%. The maximum number of failed modules is set to one.

89

Using the ARIES 82, the system reliability for all three models is obtained. Figure

5-1, 5-2. and 5-3 show the input and output values of the models one, two and three,

respectively.

5.4 Analysis of Resu