

A MULTIPROCESSOR SIMULATOR TO TEST

FAULT DETECTION AND RECONFIGURATION

ALGORITHMS

by

U.nmesfl. Bh.a.th.i,ja

A Thesis Submitted to the Faculty of the

College of Engineering

in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Engineering

Florida Atlantic University

Boca Raton, Florida

August 1990

A MULTIPROCESSOR SIMULATOR TO TEST

FAULT DETECTION AND RECONFIGURATION ALGORITHMS

by

Unmesh Bhathija

This thesis was prepared under the direction of the candidate's thesis advisor, Dr.
Eduardo B. Fernandez, Department of Computer Engineering and has been approved
by the members of his supervisory committee. It was submitted to the faculty of the
College of Engineering and was accepted in partial fulfillment of the requirements for
the degree of Master of Science in Computer Engineering.

SUPERVISORY COMMTITEE:

Th~ ests amnan

Dr. Fnuardo B. ~lez
f?o o__

Dr. Ravi Shankar

Dean of Graduate Studies

ii

ACKNOWLEGEMENTS

I would like to express my sincere gratitude to Dr. Eduardo B. Fernandez for his

valuable guidance and most patient help during the period of this work.

I would also like to extend my thanks to Dr. Ravi Shankar and Dr. Taghi Khoshgoftaar

for their suggestions.

I am extremely thankful to my parents, for making lots of sacrifices in their lives for my

overall upbringing and education without which the entire course of my life would have

been different. Finally, I would like to thank my wife, Shubhada (Yamu) without

whose support it would have been almost impossible to finish this thesis.

111

Author:

Title:

Institution:

Thesis Advisor

Degree:

Year:

ABSTRACT

Unmesh Bhathija

A Multiprocessor Simulator to test Fault Detection and

Reconfiguration Algorithms

Florida Atlantic University

Dr. Eduardo B. Fernandez

Master of Science in Computer Engineering

1990

In recent years multiprocessor systems are becoming increasingly important in critical

applications. In particular, their fault tolerance properties are of great importance for

their ability to be used in these type of applications. We have developed a

multiprocessor simulator that can be used to test different fault detection algorithms.

The processors must have four communication links. This simulator operates by

passing messages between processors. An algorithm was developed for routing the

messages among the processors. The simulator can also be used to try different

reconfiguration strategies. In particular we have tested Malek's comparison algorithm

using different multiprocessor configurations. We also developed a program which

determines the configuration of an unknown network of transputers.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION AND OVERVIEW 1

1.1 Motivation and Objectives .. 1

1.2 Contributions of the Thesis ... 2

1.2.1 Simulation of the architectural configuration 2

1.2.2 Network simulation and routing algorithm 2

1.2.3 Reconfiguration ... 4

1.2.4 Configuration scheme .. 4

1.2.5 Detection offaults ... 4

1.2.6 Analysis of Malek's algorithm on different configurations 5

1.3 Overview of the Thesis .. 6

CHAPTER 2 BACKGROUND ... 8

2.1 The Transputer : ... 8

2.2 The Occam Programming Language ... 10

2.2.1 Occam processes .. 10

2.2.2 ()ccamchannels ... 11

2.3 Fault Tolerance ... 12

2.4 Reconfiguration .. 13

2.4.1 Construction of an initial configuration ... 14

2.4.2 Achieving a given dimension .. 15

2. 5 Malek's Comparison Model .. 17

2.6 Summary .. 20

v

CHAPTER 3 A SIMULATOR FOR MESSAGE PASSING

MULTIPROCESSORS ... 21

3.1 Organization of the Simulator .. 21

3.2 Link:Task ... 24

3.3 Application Task ... 24

3.4 CommunicatorTask ... 25

3.5 Implementation of the Tasks25

3.5.1 Link task ... 25

3.5.2 Application task ... 25

3.5.3 Communicator task ... 26

3.6 Communication Operation .. 27

3. 7 Node Database ... 29

3.8 Parameters governing the Network Architecture31

3.9 Summary .. 34

CHAPTER 4 RECONFIGURATION IN A MULTIPROCESSOR

ENVIRONMENT .. 36

4.1 Reconfiguration of a Network of Nine Processors 36

4.1.1 Transforming a toroid into a three dimensional prism38

4.1.2 Transforming a three dimensional prism to a two dimensional mesh39

4.1.3 Transforming a two dimensional mesh to a star configuration and

a linear array ... 40

4.2 Summary .. 42

vi

. ,,

CHAPTER 5 CONFIGURATION OF A GENERAL NETWORK 43

5.1 The Structure of a Tracing Program under the TDS43

5.2 The Host Transputer ... 46

5. 3 The Exploratory Trace PROGRAM .. .48

5. 3.1 Introduction .. 48

5.3.2 Searching a neighboring transputer .. .49

5.3.3 Booting a neighboring transputer ... 50

5.4 Exploring a Tree of Transputers ... 52

5.5 Exploring a General Network of Transputers .. 54

5.6 Summary .. 56

CHAPTER 6 TESTING AND EVALUATION OF MALEK'S FAULT

DETECTION ALGORITHM , ... 57

6.1 Diagnostic Table ... 57

6.2 Implementation of the Algorithm ... 58

6.3 Extension of the Simulator to Test any Fault Detection Algorithm 64

6.4 Evaluation of Malek's Algorithm .. 64

6.5 Analysis of Different Configurations .. 65

6.6 Conclusions .. 72

CHAPTER 7 CONCLUSIONS AND FUTURE WORK 73

REFERENCES ... 76

Vll

APPENDICES

Appendix A ADA SOURCE CODE FOR THE SIMULATOR 79

Example 1 Message passing in a toroidal configuration 1 01

Example 2 Message passing in a mesh configuration 113

Appendix B RESULTS OF MALEK'S ALGORITHM 121

Appendix C CONFIGURATION CODE ... 146

(I) Searching a tree of transputers ... 146

(ll) Searching a general network of transputers 149

Vlll

LIST OF TABLES

Table 3.1 Link interconnection map .. .33

Table 6.1 Diagnostic table .. 58

Table 6.2 Table for diagnosis of healthy nodes .. 63

Table 6.3 Test cycle detecting the faulty node .. 63

Table 6.4 Comparison parameters for case 2 ... 67

Table 6.5 Comparison parameters for case 3 ... 69

Table 6.6 Comparison parameters for case 4 ... 70

Table 6. 7 Comparison parameters for case 5 ... 71

ix

LIST OF ILLUSTRATIONS

Figures

1.1 Toroidal configuration ... 3

1.2 A comparator and two compared units ... 6

2.1 Transputer with four bidirectional links .. 9

2.2 Generalized switch lattice .. 14

2.3 Linear array from a 3-cube .. 16

2.4 A comparator and two units ... 19

2.5 Comparison model graphs ... 19

3.1 Toroidal configuration of nine nodes ... 23

3.2 Node database ... 30

3.3 Mesh connected network .. 35

4.1 A toroidal mesh of nine processors .. .37

4.2 A toroid with switches inserted ... 38

4.3 Transformation of a toroid into a prism39

4.4 Transformation of a prism to a two dimensional mesh40

4.5 Transformation of a mesh to a star and linear configuration 43

5.1 Transputer development system .. 44

5.2 A tree oftransputers .. 52

5.3 A closed loop connection .. 55

6.1 Set of three processors ... 59

6.2 Pictorial view of the diagnosis of nine nodes 62

6.3 Nine nodes in a toroidal configuration ... 66
X

6.4 Star shaped configuration .. 67

6.5 Lattice structure with nine nodes .. 68

6.6 Lattice configuration for ten nodes ... 69

6.7 Five nodes connected in a pentagonal shape .. 71

Xl

CHAPTER 1

INTRODUCTION AND OVERVIEW

1.1 Motivation and Objectives

Recent years have brought the need for fault tolerant multicomputer systems that

are capable of supporting continuous setvice over long periods. Typical applications are

air traffic control and national defense message switching systems where clearly human

life is at stake, while for banking systems, ticket resetvations, telephone exchange

control, and other forms of message switching, investment and revenue are more

important. In fact, most real time computer control systems require fault tolerance of a

measure beyond that readily obtainable from conventional computer systems.

The basic objective of fault tolerance is to provide systems with the capability of

performing their intended work in the presence of faults. Fault tolerance is provided to

a system through fault masking (using enough redundancy to hide the effect of a fault)

or through a set of functions including fault detection, fault confinement, and system

reconfiguration.

The most convenient way to obtain a high level of fault tolerance is by using

multiprocessors. Other reasons why multiprocessor systems are given much

importance are better performance and a lower growth cost and serviceability.

Multiprocessor architectures can be classified in many different ways:

1

2

* Based on granularity of unit of concurrency: job level, proc~ss level, instruction

level, microinstruction level.

* Based on coupling between processors: loosely coupled or tightly coupled

multiprocessor computer networks.

* Based on data and instruction flow: SISD, SIMD, MIMD, etc.

A further classification of multiprocessors is based on whether they fall under the

category of shared memory systems or message passing systems.

This thesis describes a simulator to model some fault tolerance aspects of a

message-passing multiprocessor system. Specifically we apply this simulator to study

the operation of a comparison algorithm to detect faults and to analyze reconfiguration

and configufa.tion aspects of complex interconnections of processors.

1.2 Contributions of the Thesis

1.2.1 Simulation of the architectural configuration

The multiprocessor architectures which we consider are interconnections of

computer nodes. The computer nodes can be of any reasonable type, provided they

have at the most four serial links to form the connection edges for building a message

passing network. The simulator can be applied to any interconnection structure for any

number of processors by changing certain input parameters.

1.2.2 Network simulation and routing algorithm

To show an application of. the simulator we simulate a network of transputers

using an architecture such as the one shown in Figure 1.1. Every node has four links

3

which are used for message passing. Thus, while passing messages even if one or two

links fail, the message can still be rerouted via another path.

A transputer is a special type of microprocessor which has a few registers and

some local memory. It supports concurrent processing and has a built-in byte oriented

protocol. We have selected a transputer for our simulation because it is a promising

building block to construct modular multiprocessors. Its point-to-point communications

architecture made up of four links makes it particularly appropriate for high-bandwidth

interconnection structures.

ISJ IY
Figure 1.1 Toroidal configurartion

We have developed an algorithm for routing messages between different

processors in the network. The algorithm uses a store and forward scheme for the

4

delivery of messages. The messages are sent and received by processors with the help

of a special communicator task.

1.2.3 Reconfiguration

We apply a switched lattice method proposed by Snyder [Snyd82] to achieve

reconfigurability in the multiprocessor environment. We show how a transputer based

multiprocessor can move from one configuration to another with the aid of a

reconfiguration controller.

1.2.4 Configuration scheme

We have developed a configuration program in Occam which traces an

unknown network of transputers and determines its configuration. This program is

useful when a large number of transputers are connected to form networks in

multiprocessor arrays. These arrays can become quite large and complex. The program

can also be used to load code segments into a network whose configuration is not

known in advance.

1.2.5 Detection of faults

We extend the simulator to implement a specific fault detection algorithm. In

particular we implement a comparison algorithm to detect a faulty unit in a network of

transputers. However, the simulator can be applied for various other fault detection

algorithms.

5

This comparison algorithm is based on a model introduced by Malek, and can

be explained as follows:

As shown in Figure 1.2, let us consider a set of three processors. We want to

find which of the three units (1 or 2) is faulty. We proceed by assigning unit 3 the tasks

of a comparator. Unit 3 must be a healthy unit. Unit 3 assigns some tasks to nodes 1

and 2 and then compares their outputs. If it detects a mismatch it can determine that

there is a faulty unit. If the outputs match, we conclude that nodes 1 and 2 are fault­

free. We prove unit 3 to be healthy in a similar fashion.

We show how other fault detection algorithms can be implemented by changing

some input parameters of the simulator.

1.2.6 Analysis of Malek's algorithm on different configurations

We find out the comparison parameters, i.e. the number of comparison cycles

and the comparison edges required to detect a single faulty processor in different

environments. We consider five different cases, which describe different

multiprocessor architectures. Malek's algorithm is applied to each of these structures

and the comparison parameters are calculated for all these different configurations.

These results can be used to verify the operation of the simulator.

6

Comparator

Figure 1.2 A comparator and two compared units

1.3 Overview of the Thesis

Chapter 2 elaborates some background information on the transputer

architecture and Malek's algorithm. It also explains the switched lattice method

proposed by Snyder.

Chapter 3 describes the general structure of the simulator and the various data

structures used in it It also describes how communication is implemented.

Chapter 4 describes a reconfiguration scheme proposed by Snyder to restructure

the network of processors to adapt itself to different topological structures.

7

Chapter 5 explains a configuration scheme which explores an unknown

network of transputers. This is useful in confinning that the transputers have been

connected in a particular configuration as required for some particular task and that they

are all working properly.

Chapter 6 describes the simulation of Malek's comparison algorithm [Male80].

We also discuss how other algorithms can be implemented in this simulator. We further

present some results of applying Malek's algorithm to a selected set of multiprocessor

structures.

Chapter 7 presents our conclusions and future work.

Appendix A shows the source code for the simulator along with the input and

output files.

Appendix B shows the results of applying the simulator to detect a fault in a

network of transputers. We also show how the simulator can be applied to an alternate

configuration of multiprocessors.

Appendix C illustrates the configuration program which is used to trace an

unknown network of transputers.

CHAPTER 2

BACKGROUND

We present in this section some background information on the transputer

architecture and the model of our example network. The transputer fits well the

requirements of this simulator and will be used as an example processor.

A reconfiguration scheme based on a generalized switched lattice is also briefly

discussed to show how a transputer based multiprocessor can move from one

configuration to another. This is a type of function which would be of value for this

simulator.

A comparison method introduced by Malek for fault diagnosis of

multiprocessor systems using a graph theoretical model is also discussed. Given a

system of 'n' units modeled by a linear graph, one can locate the faulty unit using this

algorithm. The minimum number of comparison edges and test cycles required for fault

detection is given by two of Malek's theorems and can be used for the efficient

application of this algorithm in a complex network.

2.1 The Transputer

A transputer is a microprocessor designed for efficient concurrent execution.

This high performance is obtained by reducing the overhead involved in task switching

and by high bandwidth interconnections. The transputer has only a few registers and
8

9

two predefined queues for processes with two priority levels. In addition, the

transputer instruction set is small, which also accounts for its high perlormance.

The transputer implements the model of interprocess communication defined by

the Occam language [Poun86], which is based on the CSP notation [Hoar78]. A unique

feature of the transputer is that its I/0 hardware links function as communication

channels, i.e. the four serial links provide a path for message passing. Each transputer

has four serial bidirectional links (as shown in Figure 2.1) with a byte-oriented

protocol. This allows to use them as building blocks by interconnecting them in a

regular structure. This simple interconnection scheme is provided by a simple link

hardware protocol which is common to all members of the transputer family. The

transputer manufacturer, INMOS, provides an off the shelf line of link adapters which

allow to interconnect transputers with other devices.

Figure 2.1 Transputer with four bidirectional links

10

2.2 The Occam Programming Language

Occam is the transputer's programming language. The choice of the features in

Occam has been motivated by the need to suppon many communicating processes to

perform a common task. Occam enables a system to be described as a collection of

concurrent processes, which communicate with each other and with peripheral devices

through logical communication channels.

2.2.1 Occam processes

Writing an Occam application model begins by describing some problem as a

collection of tasks or events. A task or process is a program component that is executed

asynchronously. Occam programs are built from three primitive processes:

v := e Assign expression e to variable v.

c ! e Output expression e to channel c.

c? v Input from channel c to variable v.

These primitive processes combine to form constructs:

1. Sequential (SEQ)

The statements following this construct are executed one after another.

2. Parallel (PAR)

All components in the scope of this construct are performed concurrently. The

construct terminates when all constituent components are executed

3. Alternative (AL T)

In Occam programming, it is sometimes necessary for a process to receive an

input from any one of the several other component processes. For this purpose Occam

includes an AL T construct. Each component of an AL T construct stans with a guard.

1 1

The guard is an input possibly with a boolean expression. The earliest process which

satisfies its guard condition is executed first. If two or more processes satisfy their

guard condition then either process is executed first. The choice in this case is arbitrary.

4. Conditional (IF)

This construct is followed by a condition. If the condition is true, the primitives

encompassed by the construct are executed.

5. Repetition (WHILE)

A condition follows the WHILE and the primitives encompassed by the

construct are executed until the condition is false.

2.2.2 Occam channels

Message passing has been adopted in Occam for process communication

through the use of channels. Communication in Occam occurs when one process names

another as destination for output and the second process names the first as source for

input. When this happens the output values are copied from the first process to the

second. The transfer of information occurs only when both the source and destination

processes have invoked the input and output commands respectively. This implies that

either source or destination process may be suspended until the other process is ready

with a corresponding input or output. Thus the communication facility of Occam serves

as a synchronization mechanism. At the execution level the transputer reflects the

structure of the Occam language. The transputer is used to model Occam processes and

the interconnecting links are used to model Occam channels and vice versa. One can

have an arbitrary number of logical channels but for communication between processes

12

on different transputers, the maximum number of channels is four since there are only

four physical channels.

2.3 Fault Tolerance

A basic requirement of fault tolerance is redundancy. In fault-tolerant designs

redundancy is used to provide the information needed to mask out the effects of

failures. Redundancy is achieved through additional time, information or components.

One form of time redundancy involves extra executions of the same calculation,

perhaps by different methods. Comparisons or other operations on the multiple results

(identical when no errors are present) provide the basis for subsequent action. Time

redundancy is usually provided by software. Component redundancy is aimed at

providing continued service even when some component units fail and also constitutes

the basis for certain forms of fault detection, e.g. comparisons. Component replication

can occur at many levels in a system, e.g. circuit level, gate level, logic unit level and

even at higher levels such as buses, memory subsystem, processors, etc.

Hardware redundancy usually takes the form of dual-duplex configurations,

triple modular redundancy (TMR), or N-modular redundancy (NMR) voting schemes.

In addition, other schemes are also available, e.g. reconfigurable NMR. These schemes

provide a fine granularity for fault detection and isolation.

Multiprocessors are designed with various degrees of coupling, so we find for

instance tightly coupled systems in which interprocessor communication takes place

over a common global memory area and loosely coupled systems in which processors

13

communicate among themselves by sending and receiving messages. One aspect of

fault tolerance is easy to achieve in a loosely coupled system because messages are an

explicit way of communicating among processors and processes. In addition, loosely

coupled systems are not subjected to certain single point of failures such as failure of a

global bus, global memory states, etc. For these reasons, there is interest on fault

tolerant systems based on multiple processors and loosely coupled schemes. In addition

a large amount of current research is dedicated to this field for the following reasons:

* A message is an explicit form of communication, and makes it easier to provide error

detection, confinement, and recovery.

* Synchronization is not dependent on low level features (e.g. locks, indivisible

operations which are costly and difficult in multiprocessor environments)

* Message passing is the choice of synchronization and communication between objects

and object oriented programming is a methodology which is becoming more and more

popular.

2.4 Reconfiguration

There has been a considerable amount of research going on in the area of

reconfigurable systems ([Kart78], [Kung84], [Yala85]). Reconfiguration may be

needed in a system for various reasons. It could either be for reallocation of processors,

for efficient processor utilization, for generation of a new topology that matches a

certain algorithm, or to achieve fault tolerance. We consider the problem of

reconfiguring a multi-microprocessor system in order to adapt to a new topology. We

have chosen a transputer as the microprocessor for the reasons mentioned in Section

2.1.

14

The switch lattice approach proposed by Snyder [Snyd82] is two-dimensional.

In practice, however, higher dimensional configurations are often desired.

2.4.1 Construction of an initial configuration

An initial configuration must be easily reconfigurable. Change of the dimension

should not be very complicated. Further initialization must be easy to perform. From all

these considerations, an n-cube is considered to be a good choice for the starting

configuration of a network of processors. Thus, the initial switch lattice is an n-cube as

shown in Figure 2.2. There is a transputer on each node and there is a switch between

any two adjacent nodes. The switch itself has memory to store the connection

information which is a pattern of 1 's and O's to indicate the switch's on and off states.

u-
/

Os9
I

so

Figure 2.2 Generalized switch lattice

15

The n-cube can be reconfigured either into a one dimensional structure or into a

variety of higher dimensional structures depending on the application requirement. All

this can be done by turning the right switches on and off, which, in turn, can be done

through loading the switches memory by an external controller. Since the switches

work collectively towards an objective with ceitain configuration, they should be

syncronized.

2.4.2 Achieving a given dimension

One of the powerful properties of the generalized switch lattice is the ease with

which the dimension can be changed. A user can get the configurations of dimension

ranging from 1 to n. As an example a 3-cube can be easily changed to a two

dimensional topology by cutting down some edges, that is, by turning all the

corresponding switches off. Similarly, one can construct configurations of any

dimension. The parameters which a user should provide are the dimension and number

of processors needed. A condition has to be satisfied regarding the dimension and the

number of processors, i.e.

n~2d, where

d denotes the dimension and n is the number of processors.

To generalize the condition, a single processor is defined as 0-dimensional,

(a) If n < 2d , the controller issues an error message

(b) If n = 2d , no dimensional change is needed

(c) If n > 2d , the initial state needs to be reconfigured.

1 6

An example to illustrate the above conditions is explained with the help of

Figure 2.3. By turning switches Sl and S3 off, a 3-cube (a three dimensional structure)

can be changed to a two dimensional array. Similarly if switches S2 and S6 are turned

off a linear array can be formed as shown. The parameters chosen in this example are n

= 8 and d = 3. In general terms if n = 2d and we have a m-cube machine, m > d, one

can have two or more task sets in operation concurrently. This is applicable to any

subset of processors.

Sll

Sl,S3 OFF •
S5

S9

I t S2,S60FF

so

S2

SIO

S7

S8

P5 P7 P3 PI PO P2 P6 P4

Figure 2.3 Linear array from a 3-cube

17

2.5 Malek's Comparison Model

Various approaches have been proposed for self-diagnosis of multiprocessor

systems [Liu80], where the Preparata, Metze and Chien (PMC) model [Prep67] is the

most classical one. Examples of the comparison method were shown by Toy [Toy78]

and DeGonia [Degon78]. Malek [Male80] expanded the idea and introduced a

comparison connection assignment for fault diagnosis in multiprocessor systems,

where a pair of units is assumed to be compared by another unit.

Malek's method takes advantage of the homogeneity of multiprocessor systems

in which comparisons can be made easily. A comparison is performed such that a

processor, chosen to be a comparator, monitors a pair of processors executing the same

test input and compares their responses. Any mismatch during the comparison period

indicates some failure in the set of three processors.

A multiprocessor system is modeled by an undirected graph G(V ,E) where V is

a set of verticr.s that correspond to processing units and E is a set of bidirectionsl

communication links. Each pair of processors (vj, vk) is tested by a processor vi, by

comparing their outputs. A comparator is any unit vi in the system which compares a

pair of units vj and vk during the test cycle and forms a comparison edge C/,k through

two communication edges eij and ~ as shown in Figure 2.4. A mismatch indicates a

fault in either vj or vk. A set of tests can be described by a graph G(V,C) where Cis a

set of comparison edges C/ ,k defined as

1 8

C/ ,k = 0 if vi, vj and vk are fault free

= 1 if vi is fault free and either vj or vk is faulty

=X (don't care) if vi is faulty

A comparison model is illustrated in Figure 2.5 which shows a graph G(V,E)

and its corresponding graph G(V,C).

A basic assumption in Malek's model is that a faulty processor performs all of

its assigned tasks incorrectly and faults are permanent.

Malek's algorithm is appropriate for single fault diagnosis. We can also find the

number of comparison edges required and the number of comparison cycles to detect a

fault in a network of processors. These two parameters are respectively denoted by q1

and c1.

The case of fault detection is straightforward. In order to detect whether there is

a faulty unit in the system, every unit should be compared to some other one. In an

ideal case, if there is an even number of units and there are connections sufficient to

cover every pair separately by a single link, the number of required comparison edges

is equal to n/2. If the number of units is odd, then the obtainable minimum equals the

upper approximation of n/2.

3

V· J

19

Figure 2.4 A Comparator and two compared units

0

0
2

Graph G(V ,E)

1

0

2

Comparison Graph G(V,C)

Figure 2.5 Comparison model graphs

20

The upper and lower bounds for the number of comparison edges (q1) in order

to locate any fault in a multiprocessor system are [Male80] :

Also the bounds for the number of comparison cycles (ci) needed to detect a

faulty unit are

rn+ll I 2 ~cl ~n-1

where n is the number of units in the system being analyzed.

2.6 Summary

This chapter explains the transputer architecture and some fault tolerance aspects

of a multiprocessor system. We explain briefly the Occam language and its relevance to

the transputer. A reconfiguration scheme for a multiprocessor system to adapt itself to

any topological structure is also discussed. The switched lattice approach is used to

reconfigure our network of multiprocessors into two different topologies. We also

discuss Malek's comparison model to detect a faulty unit in a network of processors.

CHAPTER 3

A SIMULATOR FOR MESSAGE-PASSING MULTIPROCESSORS

In this section we present a description of a simulator for message-passing

multiprocessors. The processors are restricted to have at the most four interconnection

links. The interconnection network can be of any type and can be expanded to

accomodate any number of processors. We can simulate faults and use algorithms to

detect a faulty node in the network. In later chapters we discuss additional functions not

yet implemented

3.1 Organization of the Simulator

The network simulator provides a functional simulation environment which

considers the communication aspects of a multiprocessor system. Specifically, the

simulator is illustrated using a 3 X 3 network of nine nodes connected in a toroidal

configuration. This arrangement can describe many interconnections of computer nodes

by changing the link configurations through some input parameters for the program.

A processor is simulated as a collection of independent cooperating tasks. For

the programming of the simulator, the Ada language was considered to be a good

choice because of its concurrent facilities and structured approach [Booc83], [Buhr84].

The major relevant features of Ada are:

* concurrent programming : to express the concurrency that exists in a transputer

21

22

network (each node is able of independent execution) and to express the

concurrency that exists within a transputer (the processors and the links work

concurrently). In this way each component able of independent execution can be

simulated by a separate task.

* communication : to express the information transfers between the transputers of

a network, between the memory and the processor in a ncx:le.

* error handling mechanisms in order to deal with predefined system error

(arithmetic errors) and simulation errors(deadlocks, etc.)

* visibility features: Ada allows several ways to combine packages, including

packages at the same level that can see each other, packages that depend on

other packages, and nesting of packages. The required structuring depends on

the needs about type and function visibility, as well as other considerations such

as sharing of objects, reusability, performance, and readability.

Originally we intended to design all the component tasks separately (links,

communicators and applications) and then instantiate them under a common dummy

task; however, Ada made this approach difficult because of visibility constraints. For

this reason all component tasks of the processor are implemented separately within the

same procedure at the same level so that they can see each other. Thus a processor is

described by a collection of tasks.

Each processor task is simulated by the following tasks (Figure 3.1):

1. Four link tasks.

2. An application task.

3. A communicator task.

23

Figure 3.1 Toroidal configuration of nine nodes

24

The link task simulates the communication characteristics of a link. The basic

link operation is to transmit or receive requests. The application task is an abstraction of

a processor's computational activity. The communicator task provides the basic task

type to support the protocol communication and error detection primitives.

These three tasks correspond to components that are able of independent

execution and that are of significance for the objectives of this simulation.

3.2 Link Task

This type of task consists of three entries: a CONFIGURE_LINK entry which

is required by Ada to be able to identify the task and two entries SEND and RECEIVE

which allow the bidirectional sending and receiving of packets that represent messages.

The messages that we pass between different nodes are in the form of packets. Since

we are not studying the effect of data types each packet just contains integers in our

case. The link configuration of the grid is defined in a separate input file which defines

the link interconnections among the different nodes.

3.3 Application Task

The application task receives messages from other nodes to transmit to other

application tasks residing in different nodes. We have made the simulation user friendly

so that as the message travels from a source node to a destination node the user gets

informed at every stage about the status of the message and the path via which it

traverses.

25

3.4 Communicator Task

The communicator task performs various operations on the packets. It provides

the basic task type to support the protocol communication in the simulation

environment It builds its own database to calculate the offsets to be used in routing the

packets. The offsets determine which adjacent links are to be used by the packets for

their routing. The communicator task contains three entries. The first one is similar to

the one explained above in the link task, i.e. a CONFIGURE_LINK. Two other

entries are a TRANSMIT entry and a RECEIVE entry. The TRANSMIT entry is used

by the application task to request transmission of a packet to another node in the grid.

The RECEIVE entry is used by the corresponding link tasks to pass a received packet

to the communicator task residing in another node.

3.5 Implementation of the Tasks

3.5.1 Link task

The link task is a generic processor link. This task identifies the node to which a

particular link is connected. It also recognizes the links of the nodes to which a

particular link is connected. Functionally, it sends a packet to the communicator task of

another node.

3.5.2 Application task

The application task represents a user defmed computational activity. The

application part within each node in the multiprocessor system simulates a

computational activity. We create an input file in which requests for the various nodes

can be inserted by the user. In this case the request is in particular a user defined

26

activity which happens to be the SEND_TO operation. The SEND_TO defines the

source node and the destination node identity for a message to pass between any two

processors. A job is an intended action requested by the user. Requests consist of an

originating node number, a destination node number and the type of job (currently only

send_to is implemented). Jobs are then read from the input file and stored in the form

of a FIFO queue for each node. There could be various requests in the input file for

different nodes .
•

When an application task decides that the job obtained consists of a request to

send a message, it partially formats a packet and sends it to the communicator task. On

the other hand, if the application task receives a packet, it displays a message on the

terminal indicating that it has received a packet and prints its contents. This allows to

verify that a packet has reached its final destination. The packet usually has to traverse

intermediate nodes unless the destination node is adjacent to the source node. When it

moves through the intermediate nodes the message displays the node information and

the contents of it in a similar fashion as it would do for a destination node.

3.5.3 Communicator task

When a packet is passed to the communicator task through its TRANSMIT

entry, this task applies some routing functions (described in the next section) to

determine through which of its attached links the packet should be sent to another node.

When a packet is passed to the communicator task through its RECEIVE entry, the

communicator task fmds out if the packet is for the current node in which case it passes

it to the application task. If the packet is not for the current node, i.e. the destination

27

node identifier is different from the current node identifier, it then performs additional

routing functions to determine to which of its attached links the packet should be

forwarded.

3.6 Communication Operation

A packet is described by a record specifying the header and data portion of the

packet. When a packet to be sent to a destination node is originated in a node, the

communicator task attempts to find a route for it. For this purpose it invokes a

procedure, which determines through which of its links the packet should be sent. This

packet is then received at one of the adjacent nodes through the link attached to the

originating node.

When a packet received by a node is not directed to this node, i.e. the

destination field in the packet is different from the current node_id, it is forwarded to

another node using a local routing function. This routing function provides a check to

confirm that the packet has indeed reached the destination node.

The following events take place in the simulator when a message passes from

one node to another :

* A packet is received by a node and is stored in a buffer.

* The link of the receiving node notifies the task in charge of getting the received

packet that a packet has been received. A direct call to the task communicator is

used for this purpose.

* The communicator task stores the packet, performs some transformations on it,

28

i.e. it makes the necessary changes (described in Section 3.4) to continue the

required processing.

* If the destination_id field within the packet is the current node, the packet is then

passed into the application or any other specified destination task.

* If the packet is not for itself, i.e. the node_id of the current node is different from

the fii1al destination_id of th.e packet field, a forwarding function is ii1voked

If the destination node is in the same row of the network as the current node

(the one which just received the packet), a function is invoked to determine if the

destination node is to the right of the current node (a higher column number) in which

case the packet is forwarded to the right through the right link. If the packet is for a

node located to the left of the current node (a lower column number), the packet is

forwarded to the left using the left link of the node. If the current node and the

destination node are not aligned (neither in the same row nor in the same column), a

predefined routing policy is used to forward the packet. This could have been any

random direction. In our case we send the packet to the bottom.

nodes. This, however, is a centralized algorithm for the whole network and cannot be

applied locally to a specific node.

The pseudo code for the routing algorithm is as follows:

Find destination for the packet -- i.e. read destination field

if in the same row of the grid

then

if to the right

then forward_to_right

else forward_to_left

if in the same column of the grid

then

if above

29

then forward_to_top

else forward_to_bottom

if not in the same row or column

then

if in row above

then forward_to_top

else forward_to_bottom

3.7 Node Database

It has been mentioned in the previous sections that routing takes place in the

However the final link assignment for routing purposes is achieved by using the node

internal database.

A node database is shown in Figure 3.2. It consists of a list of the link

connections (the hardware connection is determined by the input parameters) and a

routing function.

30

Application task

Node identifier

Task communicator entry

Communicator task

Node identifier

Link up identifier

Link right identifier

Link down identifier

Link left identifier

Application entry

Link entry

Task link up

Link identifier

Partner link identifier

Communicator task

Link entry

Communicator entry

Task link left

Link identifier

Partner link identifier

Communicator task identifier

Link entry

Communicator entry

Figure 3.2 Node database

3 1

3.8 Parameters Governing the Network Architecture

The parameter which decides the link connection map is the file oriented user

interface. In other words, this input file describes the link interconnection map for a

multiprocessor network.

The link connection map for the example network is illustrated in Table 3.1. Every

node has four links and the links are numbered in a cyclic fashion. The first column

lists the nodes to which the links are attached. The second and third columns describe

the link interconnection structure for the network. The following example will help

understand the map in a more precise way. The first entry in the first row describes that

link number 0 (second column) of node number 0 (first column) is attached to link

number 26 (third column). Link number 26 happens to be a serial link for node number

6 as one can see from row number 27.

Row no. Node no. Link no. Link no.

1 0 0 26

2 0 1 7

3 0 2 12

4 0 3 9

5 1 4 30

6 1 5 11

7 1 6 16

8 1 7 1

32

9 2 8 34

10 2 9 3

11 2 10 20

12 2 u· 5

13 3 12 2

14 3 13 19

15 3 14 24

16 3 15 21

17 4 16 6

18 4 17 23

19 4 18 28

20 4 19 13

21 5 20 10

22 5 21 15

23 5 22 32

24 5 23 17

25 6 24 14

26 6 25 31

27 6 26 0

28 6 27 33

29 7 28 18

30 7 29 35

31 7 30 4

33

33 8 32 22

34 8 33 27

35 8 34 8

36 8 35 29

Table 3.1 Link connection map.

To implement a different architecture, this link map will have to be modified

according to the specifications of the network. The user would know the link

interconnection information, i.e. the individual link identifications of a pair of nodes to

be connected. The user would need to edit the link interconnection map for a different

architecture.

Furthermore, this simulator can be extended to implement any number of

nodes. For the example network, we declare two arrays which define the number of

nodes, viz.

application : array (O .. n) of application_task;

communicator: array (U .. n) of communicator_task;

The elements in these arrays defme the number of nodes. The user can change these

values to accomodate any number of nodes.

34

The source code for the simulator is illustrated in Appendix A. Our simulation can be

applied to any configuration. Two examples are tested and the results are shown in

Appendix A. In example 1 we consider a toroid of nine processors and in example 2 we

consider a mesh connected structure as the one shown in Figure 3.3.

3.11 Summary

This network simulator can be used to test fault detection algorithms. The

network simulator is basically a tool which can be applied to any configuration,

provided some of the variables and functions are altered. The simulator bases its

operation on a message passing system. The simulator can be extended to include

functions such as reconfiguration so that it achieves some fault tolerance aspects.

35

Figure 3.3 Mesh connected network

CHAPTER 4

RECONFIGURATION IN A MULTIPROCESSOR

ENVIRONMENT

To enhance the flexibility of the simulator the next step would be to consider a

reconfiguration scheme to generate a new topology. By reconfiguring a network of

processors one can achieve an efficient way of executing a particular algorithm which

needs a particular architecture. Also if a node fails in a network, then the network has to

be reconfigured for it to still function properly. One could isolate the faulty node and

keep the network running with the remaining nodes. The current network of processors

can be reconfigured into different architectures by a method suggested by Snyder

[Snyd82].

In this Chapter we explain a methodology to transform a multiprocessor

configuration to adapt to four different topological structures. It bases its operation on

the switched lattice discussed in Chapter 2 (Section 2.3).

4.1 Reconfiguration of a Network of Nine Processors

The simulation which we have developed can be applied to a specific

configuration as shown in Figure 4.1. This is basically a toroidal mesh of nine

transputers. Every processor in the system has four serial bidirectional links which are

used to connect to other processors in the network. We apply Snyder's switch lattice

method to adapt this configuration to four different topologies. We can implement this
36

37

approach in our simulator by defining a separate switching task which would control

the switching action for the various switches between any pair of nodes. In other words

the switching task would execute the functions of the external switching controller.

Figure 4.1 A toroidal mesh of nine processors

A switch is inserted in each of the links connecting the transputers in the toroid.

configurations can be formed. The switches are controlled by an external controller

which decides when they are to be turned on and off. Each switch has memory to store

the connection information which is a pattern of l's and O's to indicate the switch's on

and off states. Figure 4.2 shows the toroid with the switches.

38

Figure 4.2 A toroid with switches inserted

4.1.1 Transforming a toroid into a three dimensional prism

As explained previously we have nine processors in a two dimensional array.

So, n = 9 and d = 2, where n and d are the number of processors and the dimension

respectively. Thus we encounter the condition n > 2d (Section 2.3.2). Thus the initial

S 13 and S 14 the toroid gets transformed to a three dimensional prism. The

transformation is shown in Figure 4.3.

39

S12, S13, S14 OFF S7 ..

Figure 4.3 Transformation of a toroid into a prism

4.1.2 Transforming a three dimensional prism to a two dimensional

mesh

In the prism we have nine processors but the dimension has changed. The

parameters nand d will hence change. Now n = 9 and d = 3. Thus now our initial

configuration which is a prism can be reconfigured according to the condition

n > 2d. We turn off the switches SO, S2 and S4. This converts the prism to another two

dimensional structure which is an ordinary mesh as shown in Figure 4.4.

40

SO, S2, S4 OFF •

Figure 4.4 Transformatuion of a prism to a two dimensional mesh

4.1.3 Transforming a two dimensional mesh to a star configuration and

a linear array

The two dimensional mesh has the same parameters as those of a toroid. Now

we treat this new configuration as our initial state. We come up with two different

topologies by turning of a certain combination of switches. When switches S3, S6 and

S 16 are turned off , a star configuration and a linear array of processors is formed as

shown in Figure 4.5.

~
.....

Figure 4.5 Transformation of a mesh to a star and linear configuration

42

4.2 Summary

We describe a way ofreconfiguring our network by the switch lattice approach.

However, in this method the most complicated part is the time complexity of changing

from an initial state to another topology. The controller has to find out which switches

are to be turned on and off at any instant of time. There should be certain rules to be

followed in order to achieve the syncronization of the switches. We can implement this

reconfiguration scheme in the simulator by representing suitably the switches and the

controller.

CHAPTER 5

CONFIGURATION OF A GENERAL NETWORK

A transputer is a microprocessor which can be easily connected to form

networks in multiprocessor arrays. These arrays can be large and complex. We develop

a program which explores an unknown network of transputers and determines its

configuration. This is useful in confmning that the transputers have been connected in a

particular configuration, as required for some particular task, and that they are all

working properly. The exploration is achieved by a program which will find its way

around the network, exploring all the links on all the transputers to determine the

interconnections. The program can also be used to load code into· a network whose

configuration is not known in advan;::~. These functions could be included in the

simulator to increase its functionality and usefulness.

5.1 The Structure of a Tracing Program under the TDS

The transputer development system (IDS) recognizes two different types of

programs, known as EXE and as PROGRAM. An EXE program runs on the host

transputer, and may access the keyboard, the screen and the filing system of the host

machine. A PROGRAM runs on a network of one or more transputers and is loaded

from the host transputer via a transputer link. An example of such a system is shown in

Figure 5.1

43

1

I
0 2

PC B004

I
3

44

r--~----o---1

I
I

0 I

I
I
I
I
I I-

I

I I
T414 T414

T414 T414

I

-

r-

I
I

1 I
I
I
I

0 l
I
I I

o 1 I L----------....J
Figure 5.1 Transputer development system

An ffiM PC-AT is connected to a B004 evaluation board which has a single

transputer on it This transputer acts as the host processor for developing programs and

for loading multiple transputer networks. Link 2 of this evaluation board is connected

to an INMOS B003 evaluation board which has four transputers on it. When a program

is loaded onto a multiple transputer network an EXE program will be run on the host

transputer which monitors the output transmitted back from the PROGRAM and then

interacts with the PC to display the results. An example of a PROGRAM running on a

single transputer is as follows:

{ { { PROGRAM Exampl.e

{{{F

SC Exampl.e

PROCESSOR 0 T4

Exampl.e ()

} } }

45

} } }

When the above lines are compiled and extracted, a new fold is created:

... F CODE PROGRAM Examp~e

" ... " denotes the Occam folds. These folds can be used to accomodate a

hierarchical set of program elaborations. Each fold can contain program statements or

other folds. The open and close folds are denoted by II { { { 11 and II}}} 11 respectively.

This CODE PROGRAM fold will initialize and load a single transputer and

run the sc Examp~e. Now if an occam byte array Program contains the

contents of CODE PROGRAM fold, then the effect of

To Link Program

is to load and run the program on a transputer connected to link To Link . The exact

way in which a transputer loads the code is described in [Inmo88].

A tracing program searches a network of transputers as follows:

Suppose a transputer is already executing a trace program, and that it is connected to

another transputer which is not yet been loaded. The first transputer, which will be

called the 'parent' loads the second ('child') by outputting the code Program as

explained above. It then sends Program a second time, which the child stores as a

byte array in memory. The child is now in a position to load other transputers until the

entire network is loaded.

To achieve this, the trace program is made of two parts:

EXE Host - Runs on the host transputer

46

PROGRAM trace - Searches the network

The Host EXE reads the CODE PROGRAM trace fold, and stores a byte array

Program. After initializing the network, it loads the program onto the first tranputer

in the network by outputting Program on a suitable link. As the trace program

searches the network, the program running on the host transputer processes any data

returned to it from the trace program, interpreting and displaying the results.

5.2 The Host Transputer

The program (EXE) which runs on the host transputer looks like this:

SEQ

code.fo~d.reader (Screen,from.user.fi~er[O],

to.user.fi~er[O],programTab~e,

programLength,errorF~ag)

IF

errorF~ag

SKIP

TRUE

SEQ

Determine which ~.ink to e:z:am.ine

Reset subsystem, ~inks

-- Main Section

VAL Program IS [programTab~e FROM 0 FOR

PAR

47

programLength]

Tracer(Linkin[linkNumber],

LinkOut[linkNumber],Tointerface,

linkNumber,Delay,Program)

Interface(Tointerface,Screen,Heading,

linkNumber)

Display and file output using std.

procs

write.full.string

continue")

Keyboard ? word

(Screen, "*C*NType <any> to

The process code . fo~d. reader provided in the trace program attempts

to read a CODE PROGRAM fold which is already compiled. If an error occurs, the

boolean errorFlag is set to TRUE and the cause of the error is displayed on the

PC. It is assumed that the reset pins of the subsystem network are chained together,

and controlled by the host transputer. In order to reset the transputers correctly, the

reset pin must be held high for a sufficient amount of time.

The program asks the user which link of the host transputer is to be examined

(linkNumber). The link which is connected to the subsystem must be specified.

None of the other links will be tried during the course of the program. If two or more

links are connected to the same subsystem, then only one can be tried. The other link(s)

48

will receive data from the subsystem, as the trace program searches. To keep the host

transputer from getting interrupted, all the links are reset on completion of the program.

The channels Linkin, LinkOut perform the functions of the transputer's

serial links. This process attempts to load a transputer connected to link

linkNumber with the trace program. However, there may be nothing connected at

all, or the transputer connected may not have been reset, in which case the output will

fail. If the output of the code Program is not completed within a certain period of

time, then it is terminated and the link reset. If the code Program is successfully

output from the link, booting a transputer, then PROC 'l'racer sends more data as

described in section 5.3.3. The new transputer is given an identity number '0'. As the

search proceeds, PROC 'l'racer relays data back from the network to PROC

Interface. The Interface process has data which it receives from the

'l'racer.

5.3 The Exploratory Trace PROGRAM

5.3.1 Introduction

As described earlier the exploratory trace program is constructed as a

PROGRAM fold which consists of a separately compiled process SC 'l'race. This is

then extracted to produce a CODE PROGRAM Trace fold, which contains code to

boot a transputer and run sc 'l'race on that transputer. The trace is structured as

follows:

SEQ

49

Read in copy of program, identify boot 1ink

Initia1ize

SEQ I = 0 FOR N1inks

Try each 1ink in turn

Return contro1 to parent

Feed back fina1 1ink information to parent

When sc Trace starts to run on a transputer, it flrst identifies which link is

connected to its parent and inputs a copy of the program code, so that it too may boot

other transputers.

After initializing various flags (which keep track of which links have been

searched), the program selects a link and tries to send a search down the link, which

may (or may not) be connected to another transputer. If the program does not receive

any response, it will timeout and look elsewhere. Section 5.3.2 describes the way in

which a transputer searches a link to test whether a neighboring transputer is attached.

Sectio~ 5.3.3 explains this and shows how the program is loaded and run on the

neighbor.

5.3.2 Searching a neighboring transputer

A transputer can check whether link I is attached to an unbooted neighboring

transputer by using the write and read features of occarn. A transputer may load a word

of data at an address and then read it back as follows:

50

[4] CHAN OF ANY Link:rn, LinkOut

PLACE Link:rn AT 4

PLACE LinkOut AT 0

SEQ

LinkOut[:r] 0 (BYTE); Address; Data Write Data

LinkOut [:r] l (BYTE); Address Read Data

Link:rn[:r] ? word Data is returned

The Read and Write features are equivalent to a write and read constructs of a

high level language. If the address specified exists in memory, then the word returned

should match the data sent A convenient address could be Minint, the minimum 32-

bit integer of a transputer.

5.3.3 Booting a neighboring transputer

After having determined that a link is connected to an unbooted transputer, a

transputer loads a neighboring unbooted transputer by outputting the code Program

as mentioned in section 5.1. The newly booted neighbor will first read in a copy of the

program, and identify the boot link:

SEQ

ALT :r = 0 FOR 4 Determine

connected

-- to my parent

Link:rn [:r] ? programLength

parentLink .- :r

which link is

51

LinkXn[parentLink] ? [program~able FROM 0 FOR

programLength]

the host

LinkXn[parentLink] ? token; loadingData

loadingData[3] .- parentLink

LinkOut[parentLink] LoadingData.t; loadingData

Linkin [parentLink] ? token Synchronize.t from

The parent sends the length of the program, which enables the child to

determine which link is connected to the parent. The code Program is sent again,

and stored by the child as a byte array for future use. The parent also sends a set of data

which includes the parent identity number, the link attached to the child, and the

number of transputers found so far, nTransputers. The child returns the data,

with the link on which the child was booted.

The data returned by the child is referred to as l.oadingData.

l.oadingData contains information useful to follow the path of the trace. Its four

elements are, the identity number of the parent, the link which the parent used to boot

the child, the identity number of the child and the link on which the child was booted.

This array is transmitted back to the host transputer for display. The Tracer process,

running on the host, acknowledges receipt of the l.oadingData with a

Synchronize. t token, transmitted back to the new child.

52

5.4 Exploring a Tree of Transputers

We describe in this section an example which is traced by the algorithm. We

specifically explore a tree of transputers. The algorithm can also be extended to search a

network which has closed loops. This case is explained in section 5.5. An example of a

tree of transputers is shown in Figure 5.2.
I

c -
1

I
I

0 B -2

3 I I

1
3 I I I

0
2 0 - B004 A i-

2

~ i I I

I

- r-

I I
Figure 5.2 A tree of transputers

The trace program searches the branches of the tree sequentially. Excluding the

host transputer, each transputer in the tree will be in one of the following states:

(R) reset but unbooted

(0) booted, but not yet searching its links

(1) searching a link, to see if there is another transputer connected

(2) Booting a neighboring transputer

53

(3) relaying ~oadingData to the host

(4) all links have been explored

The network is explored as follows:

Suppose that link 3 of transputer A has booted transputer B by link 0, and B has input a

copy of the program from A. A enters stage 3, in which it will wait to transmit further

data. Transputer B starts stage 1, searching one of its links to see if any other transputer

is connected. Since link 0 is known to be connected to transputer A, link 1 is the flrst

link to be searched. As described in section 5.3.2 the transputer attempts to write and

read data to any transputer which may be attached to that link. The processor then waits

for a word (Minint), to be returned on input link 0, for a period of time, Delay,

before timing out. If nothing is returned, the program assumes this link is unattached,

and sets a boolean variable downLoad [0] to FALSE. The next link, link 2 is

searched in a similar manner.

Let us assume that a transputer is attached to link 1, and that it has returned the

value Minint in response to the search. Transputer B now attempts to load the

neighbor with code (stage 2), as described in the previous section. Let us call this new

child 'C'. C determines its parentLink, the code Program, and

loadingData (stage 0). It takes its identity number to be n'l'ransputers, and

increments n'l'ransputers by one, where n'l'ransputers is the number of

transputers found so far (the third element of loadingData).

54

At this point, transputer B enters stage 3 of the program, and acts simply to

pass on messages from C, even though it has not yet checked links 2 or 3. While

transputer C explores its environment, B does not attempt to timeout link 1. Let us

suppose that C is not connected to any other transputers. Having failed to find any

neighbors, transputer C returns control to B, by sending the token

ReturnControl.. t, together with the latest number of transputers found so far.

Transputer C then enters stage 4, and since it has tried all of its links, takes no further

part in the exploration. B sets downLoad [1] to TRUE, to note that a transputer has

been loaded from this link. Transputer B now returns to stage 1 of the program, and

similarly tries link 2, and finally link 3. When all links have been tried, B returns

control to A, together with the number of transputers found so far. The code for the

algorithm is illustrated in Appendix C.

5.5 Exploring a General Network of Transputers

The algorithm described in the previous section is valid for a tree of transputers.

In a real time system, however, the networks are more complicated than the tree

structure. There could be closed loops of connections involving more than one

transputer. An example of such a network is shown in Figure 5.3.

The basic algorithm is as before, but in addition there is a situation where a link

is connected back to a transputer which has already been booted. This is solved by

arranging for every transputer to look for all the links which have not yet been tried,

(using an ALT construct).

55

1 1

0 A
0

B T" 2

3 3

1
I 1

2 0
0 - B004 A 1-

2

1 3

t--

I
Figure 5.3 A closed loop connection

Suppose that link 2 of transputer A has booted transputer B on link 0, and is

waiting while B explores further. B outputs the write and read sequence on link 1

which a.rrives back at lin..lc 1 of transputer A. It must now be arranged that A will

recognize this sequence, even though it comes in on a different link to the one on which

Al.readyLoaded. t which has a value different from Min:rnt in order to be

recognized by B. In order that A does not try link 1 again later, a boolean

tryLink [:I] is maintained (initialized to be true). In our example, 'lryLink[l]

is set to FALSE.

56

We can also build a link connection map which illustrates which links are

connected to whom. A table, INT linkArray, is assigned for each transputer, in

which each link has a corresponding entry giving the identity of the neighbor attached

to that link (if any), and that neighbor's link, e.g.

linkArray[3] := [6,0]

would be set to indicate that link 3 is connected to link 0 of transputer 6. When a parent

boots a child, this information is transmitted in the loadinqData. The source code

for this example is shown in Appendix C.

5.6 Summary

We show in this chapter how a large array of transputers can be configured. A

program determines the interconnection structure of a network of processors. Two

different interconnection structures are considered: a tree and a generalized closed

connection structure. A similar function can be included in the simulator. This would be

implemented by tracing the path of the rendezvous between the communicator tasks at

different nodes.

CHAPTER 6

TESTING AND EVALUATION OF MALEK'S FAULT

DETECTION ALGORITHI\ti

We have already introduced the comparison model designed by Malek. A pair

of units is assumed to be compared by a matcher. In this section we show how our

simulator can be extended to implement Malek's algorithm and detect a faulty unit in the

grid. It also explains how the grid can be used as a tool to test other fault detection

algorithms.

6.1 Diagnostic Table

Tirree assumptions are made by Malek in the comparison model :

1. No unit compares itself with others.

2. A comparator compares a pair of adjacent units, i.e. there is no other unit on the path

from the comparator to the compared units.

3. A single comparator compares only two units at a time.

The basic diagnostic table is illustrated in Table 6.1.

We can see from the table that if the comparator is faulty, then no matter what

the status of the compared units the test outcome is always a 'don't care'.

57

58

Comparator Compared unit# 1 Compared unit# 2 Comparison

outcome

fault-free fault-free fault-free 0

fault-free fault-free faulty 1

fault-free faulty fault-free 1

fault-free faulty faulty 1

faulty fault-free fault-free X

faulty fault-free faulty X

faulty faulty fault-free X

faulty faul_ty faulty X

Table 6.1 Diagnostic Table

6.2 Implementation of the Algorithm

There are certain assumptions to be made before we apply the algorithm to our

network. We first assume that a maximum of two processors can fail in the network.

The probability of more than two units failing out of nine processors at any instant of

rime is very iow. However, we analyze me network based on a singie fauit assumption.

The other assumption is that while analyzing the faulty processor the rest of the

processors in the network remain healthy. The simulator can be extended to detect

multiple faults but the number of test cycles required increases proportionally.

The general principle behind detecting a faulty unit is explained as follows:

59

Let us assume that there are three sets of processors connected as shown in Figure 6.1.

We assume that unit 3, which acts as a comparator, is fault-free. The comparator

assigns some tasks to units 1 and 2. The comparator then compares the outcomes of

units 1 and 2. If there is a mismatch, we know that there is a fault in one of the units.

Comparator

Figure 6.1 Set of three processors.

We assign these tasks to processors using a file oriented user interface. In our

simulator, the assigning of tasks to different units by the comparator is equivalent to

sending a message to any of the units. The next step is to compare the outcome from

the two units under consideration. The simulator can introduce a fault by sending an

incorrect result back to the comparator. Once the comparator has received the messages

from both the units it can determine whether the results are the same. The messages that

are sent among the different processors are saved in a separate file. The simulator reads

the input file and determines the route via which the messages would be passed among

the processors. The file format is as follows:

Source

0

0

60

Command

send_to 1

send_to 3

Th\nl

20

30

The entry in the first column lists the name of the source node from where a

message gets transmitted. The entry in the second column shows the destination node

number. It also shows the task to be performed. In our case it is sending messages,

thus the type variable declaration send_to. The last entry is the actual data sent The data

in our case is an integer. We show how to detect a single fault by means of an example.

Let us assume that node 2 is faulty. Now the simulator's task is to show that it

is faulty. First of all, we have to prove that the rest of the nodes in the grid are healthy.

There could always be a possibility that one of the other nodes is faulty. There are in all

four comparison test cycles that are required to prove that the other nodes are healthy.

First we compare the outputs of nodes 1 and 3. The comparator in this case is

node 0. Node 0 sends some messages to nodes 1 and 3. Nodes 1 and 3 in return send

back the received messages to node 0. This could be considered as an

acknowledgement procedure. If the messages received by node 0 are the same as those

that had been transmitted, then we can conclude that nodes 1 and 3 are healthy nodes.

Table 6.2 shows the four test cycles required to prove that all the nodes other than node

2 are fault-free. The pictorial view of the nodes under consideration is also shown in

61

Figure 6.2. We can see from each of the test cycles in Table 6.2 that the comparator

receives the same messages that it had transmitted. Thus we can conclude that all the

compared units are fault-free.

Notice that only four test cycles are required to prove that node 2 is faulty. Out

of the eighteen connections required to form the grid only eight connections are used

for comparisons as one can see from Figure 6.2.

To detect the faulty node 2, the program simulates a fault in node 2 by assigning

it a task that sends a wrong message to the comparator. The test cycle required to detect

it is shown in Table 6.3. The results of executing the algorithm are shown in Appendix

B.

7

2 2 18

12
12

28

13 19

5 11

6

29 ~
16

Figure 6.2 Pictorial view of the diagnosis of nine nodes

17 23

01
N

Message

Comparator Compared Compared Message sent Message sent received by

c Unit A UnitB to A toB CfromA

0 1 3 10 10 10

3 0 4 20 20 20

4 5 7 30 30 30

7 6 8 40 40 40

Table 6.2 Table for diagnosis of healthy nodes

Message

Comparator Compared Compared Message sent Message sent received by

c Unit A UnitB to A toB CfromA

1 2 4 50 50 52

Table 6.3 Test cycle detecting the faulty node

Message

received by

CfromB

10

20

30

40

Message

received by

CfromB

50

Test

Outcome

0

0

0

0

Test

Outcome

1

0\
w

64

6.3 Extension of the Simulator to Test any Fault Detection Algorithm

The simulator can be used to test any other fault detection algorithm. To apply it

to other algorithms, there are certain things that need to be changed. First and foremost,

the fault detection algorithm should be based on a message passing system because our

simulator's operation is based on message passing. Since any diagnostic algorithm can

be expressed in terms of message-passing processes this not a limitation of the

simulator.

The current simulator supports only 'send_to' operations. If the algorithm

needs some calculations to be performed, then the user would have to implement some

extra subroutines to support the calculations. Furthermore the file oriented user

interface would also need to be altered. If the algorithm needs any mapping strategies,

then the interface which decides the input for the program also needs to be modified. As

explained in Section 3.6, the efficient executio11 of the algorithms would also depend on

the interconnection structure of the network.

6.4 Evaluation of Malek's Algorithm

In this section we present some results of executing Malek's algorithm on

different multiprocessor structures. We consider five different cases including the

specific multiprocessor structure which we have simulated. Essentially we find out the

number of comparisons and comparison edges required to detect a single faulty unit in a

network of processors.

65

As explained in Chapter 2, the upper and lower bounds for determining the

comparison cycles and the comparison edges are given by the following equations.

rn+ll 1 2 ~c1 ~n-1 (a)

n-L~J ~q1 ~n-1 (b)

where c = the number of comparisons required in order to locate any fault
I

in the system, and

q
1
= the number of comparison edges required in order to locate any

fault in the system.

We consider five different configurations and apply Malek's comparison

algorithm to them. The first three configurations have nine nodes. The fourth one has

ten nodes and the last one has five nodes. The parameters c1 and q
1

are found for each

configuration and they are found to lie within the bounds given by equations (a) and

(b).

We analyze in detail the first case which we have actually implemented with the

help of our simulator. The other four cases are analyzed similarly and their results are

shown in the tables that follow.

66

Case 1: Configuration with nine nodes connected in a toroidal fashion.

Figure 6.3 Nine nodes in a toroidal configuration.

The configuration which our simulator analyzes is shown in Figure 6.3. The

comparisons required to detect a faulty unit in this case are shown in Figure 6.2. We

assume that node 2 is faulty. Before analyzing node 2 we have to confirm that the

remaining nodes in the grid other than node 2 are healthy. Thus there are in all five

comparisons which need to be done to detect a faulty node. The equations for a

configuration where nine nodes are involved are as follows:

5 ~ c
1
~ 8 and 6 ~ q

1
~ 8 (c)

67

The bounds for these parameters are calculated from equations (a) and (b) given

in section 6.1. Thus from Figure 6.2 we find out that c
1
= 5 and q1 = 8.

Case 2 : Star shaped configuration with nine nodes

Figure 6.4 Star shaped configuration

Comparator Compared unit # 1 Compared unit# 2 Comparison edges

2 0 7 andc

7 2 8 c andl

2 0 3 aandm

0 1 2 eanda

5 1 4 handg

1 5 6 handi

Table 6.4 Comparison parameters for case 2

68

The comparison cycles and the comparison edges required to detect a single

faulty unit (in this case unit 6) for the configuration shown in Figure 6.4 are shown in

Table 6.4. We find out that there are six cycl~s required to detect a faulty unit and the

number of comparison edges required are eight, viz. a, c, e, g, h, i, 1 and m. Thus

c
1
= 6 and q

1
= 7. These values are within the bounds given by equation (c) in case 1.

Case 3: Lattice configuration with nine nodes

a c e g

Figure 6.5 Lattice structure with nine nodes

This coniigurarion is shown in Figure 6.5. v•ie require a wrai numoer of seven

cycles to detect a faulty node (in this case node 8). The number of comparison edges

required are eight. The results can be seen in Table 6.5. The comparison edges are

namely a, b, c, d, e, f, g, h. All the edges are utilized in this case. Thus c
1
= 7 and q

1
=

8.

69

Comparator Compared unit # 1 Compared unit# 2 Comparison edges

0 1 2 aandb

2 0 3 bandc

3 2 5 candd

5 3 4 dande

4 5 6 eandf

6 4 7 fandg

7 6 8 gandh

Table 6.5 Comparison parameters for case 3

Case 4: Lattice structure with ten nodes

b

Figure 6.6 Lattice configuration for ten nodes.

70

Comparator Compared unit# 1 Compared unit# 2 Comparison edges

4 0 8 aandb

4 0 5 aandd

5 2 6 gandh

6 2 9 i andj

6 2 7 i andl

7 3 6 mandl

0 1 4 canda

Table 6.6 Comparison parameters for case 4

For the configuration shown in Figure 6.6 we can see from Table 6.6 that we

require seven comparison cycles to determine a single fault (in this case node 1). The

number of comparison edges required are nine, viz. a, b, c, d, g, h, i, j, and 1. Thus c1

=7 andqt =9.

The bounds for this network however are different as there are ten nodes. They

are:

Case 5: Pentagonal configuration

The bounds for this configuration (Figure 6.7) will also change as there are

only five nodes in the network. The bounds would be as follows:

7 1

Figure 6.7 Five nodes connected in a pentagonal shape

Comparator Compared unit # 1 Compared unit# 2 Comparison edges

0 1 4 aande

4 0 3 eandd

1 0 2 aandb

Table 6.7 Comparison parameters for case 5.

As we can see from Table 6.7, there are only three comparison cycles required

to detect a faulty unit in the network (in this case node 2). The number of comparison

edges required to detect this faulty unit are four. Thus in this case CI = 3 and q1 = 4. The

comparison edges are a, b, d and e.

72

6.6 Conclusions

We have show in this Chapter, how a particular fault detection algorithm can be

tested with the help of our simulator. We also explain the flexibility of our network and

the different parameters that need to be changed in order for our network to test

different algorithms. Specifically we test Malek's algorithm to detect a faulty unit in a

network of transputers. We selected Malek's algorithm because it seems interesting due

to its simple way of detecting faults.

Appendix B shows the different results obtained in testing Malek's algorithm.

We test the algorithm to detect a single faulty unit in the network of transputers.

The number of comparison cycles required to locate a faulty processor and the

number of comparison edges required vary according to the complexity of the network.

When there are less number of processors, one requires less number of comparison

edges and comparison cycles to detect a faulty unit. This is obvious in case 5, where

we have a network of five processors. The parameters also depend on how tightly the

network is connected. For the cases where we consider nine nodes, we see that in case

1, the processors are fully connected to each other. In cases 2 and 3 not all the links of

the individual processors are utilized as the architectures do not require some of the

links. Thus for case 1, the number of comparison cycles and the comparison edges

required for fault detection are lower than those of cases 2 and 3.

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Multiprocessors are gaining importance nowadays in real time applications. We

have designe4 a simulator for multiprocessor systems of transputers or similar

processors. Essentially, we have developed a tool with the help of which we can test

various fault detection algorithms. The simulator is made flexible to some degree, in the

sense that it can adapt itself to any configuration and any number of processors by

changing only a few parameters. The simulator bases its operation on message passing.

and uses a store and forward scheme to pass messages between the processors. We

have analyzed Malek's comparison algorithm on different configurations of

multiprocessors.

We have limited the study of the network simulator only to the test of fault

detection algorithms. We only considered the case of a total node failure and assumed

that if there is a path to a healthy node, the interprocessor communication scheme is

operational. We did not concern ourselves with the effect of multiple node failures on

the distribution of the interprocessor traffic. However, in a real time system, node

failures may affect the overall system reliability. For example, with more nodes going

down, the burden of communications in certain nodes will vary according to the

various communication patterns and intensity, with an increase in delay among the

nodes of a system. This adds another dimension to the problem due to the fact that in

real time systems, it is not enough to deliver a correct result, but correctness is also

73

74

bound by the time limitation factors. Correctness implies the delivery of a correct result

within a limited time period. However, timing aspects cannot be measured with a

simulator of the type discussed here.

The existence of hardware replication allows to replicate a task to have a backup

unit, or having multiple functional copies of the same task engaged in some sort of

decision making scheme, e.g. byzantine voting. This software replication truly takes

advantage of the hardware replication present in the architecture. In these e,:ases, the

analysis becomes more complicated because we cannot address the problem of node or

communication failures generically, i.e. the distribution or configuration of the specific

tasks across the replicated hardware, together with the criticality of each particular task

defme the overall system reliability. This problem could be explored in greater detail

and depends in general, on the allocation schemes used, types of faults, etc.

The reconfiguration strategy discussed here is an interesting way to restructure

multiprocessor architectures using the switch lattice approach. By designing a

switching task in Ada to control the switches the simulator can be made to achieve fault

tolerance in a multiprocessor environment. As such, it could be useful to test different

fault tolerance mechanisms.

The configuration program is a useful vehicle for testing transputer based

applications. Tests for memory and for the links may be included in the basic program,

for example. If a hardware fault occurs, the program may report the location and nature

of the problem, while continuing to check other components in the network. By testing

75

the network repeatedly with a configuration program, any failure may be detected and

logged, while the rest of the network continues to be tested. This concept could be

implemented in the future to make the configuration program a complete diagnostic

package to detect any faults in a multiprocessor system. This is an offline method for

fault detection. It can be implemented in the simulator so that it can be used as a tool to

test various algorithms as well as to configure an unknown network of processors.

The simulator can be improved with respect to its usability. A user-friendly

interface could allow a user to defme different configurations, to insert faults, to collect

statistics, to control displays, and to use different fault detection or reconfiguration

algorithms.

REFERENCES

[Booc83] G. Booch, Software Engineering with Ada, The Benjamin/Cummings

Publishing Company, Inc., 1983.

[Buhr84] R. Buhr, System Design with Ada, Prentice Hall Inti., 1984.

[Degon78] P. K. DeGonia, R. C. Witt, D. R. Lampe, and E. L. Cole, Jr., "Micronet- A

self-healing network for signal processing", Digest of Papers-Government Microcircuit

Application Conf., Monterey, California, Nov. 1978, 370-377.

[Fern88]

1988.

E. B Fernandez, Class notes for Fault Tolerant Computer Systems, F.A.U.

[Hoar78] C.A.R. Hoare, "Communicating Sequential Processes", C. ACM, 21, 8,

1978, 666-677.

[Kart78] S. I. Kartashev and S. P. Kartashev, "Dynamic Architectures: Problems and

Solutions", Computer, Vol. 11, July 1978, 26-40.

[Kerr84] J. M. Kerridge and D. Simpson, "Three Solutions for a Robot Arm

Contrioller using Pascal-plus, Occam and Edison", Software Practice and Experience, 14,

1984, 3- 15.

76

77

[Kuhl86] J.G. Kuhl and S. M. Reddy, "Fault-Tolerance Considerations in Large,

Multiple-Processor Systems", IEEE Transactions on Computers, 1986, 56- 67.

[Kung84] H. T. Kung and M. S. Lam, "Wafer Scaled Integration and two Dimensional

Pipelined Implementations of Systolic Arrays", Proc. Conf. Advanced Research in VLSI,

MIT, Cambridge, Mass., Jan. 1984.

[Liu80] K. Y. Liu and Malek,"Graph theory models in fault diagnosis and fault

tolerance", Journal of Design Automation and Fault-Tolerant Computing, Vol. ill, Issue

3/4, 1980, 155-169.

[Maen81] J. Maeng, M. Malek, "A Comparison Connection Assignment for Self­

Diagnosis of Multiprocessor Systems", Proc. Inti. Conf. on Fault Tolerant Computing

Systems, 1981, 173- 175.

[Male80] M. Malek, "A Comparison Connection Assignment for Diagnosis of

Multiprocessor Systems", Proc. 7th Symp. on Computer Architecture., 1980, 31 - 36.

[Poun86] D. Pountain, "A Tutorial Introduction to Occam Programming", !NMOS

1986.

[Prep67] F. P. Preparata, G. Metze and R. T. Chien, "On the connection assignment

problem of diagnosable systems", IEEE Trans. on Elect. Comp., Vol. EC-16, No.6, Dec.

1967' 848-854.

78

[Snyd82] L. Snyder , "Introduction to the Configurable Highly Parallel Computer",

Computer, January 1982, 47-56

[Toy78] W. N. Toy, "Fault tolerant design of local ESS processors", Proc. of IEEE,

vol. 66, No. 10, Oct. 1978, 1126-1145.

[Yala85] S. Yalamanchalli, J. K. Agarwal, "Reconfiguration strategies for Parallel

Architectures", Computer, Dec. 1985, 44-61

WITH text_io;
USE text_io;
WITH calendar,
USE calendar;

APPENDIX A

Ada Source code for the simulator

PROCEDURE grid_sirnulation IS

PACKAGE int_io IS NEW integer_io(integer);
USE int_io;

--DECLARATIONS
-- (* global_declarations*)-­

SUBTYPE bit IS INTEGER RANGE 0 .. 1;
-- For the transputer links

TYPE header_type IS (control_hdr,diagnostic_hdr,data_hdr);
SUBTYPE node_id_type IS INTEGER;

TYPE protocol_class_type IS (transputer_protocol,unsuported_protocol,
protocol_ class_ error);

TYPE protocol_reply _class_ type IS(no_reply _expected,reply _expected);
SUBTYPE command_type IS INTEGER;
TYPE diag_info_type IS ARRA Y(0 .. 8) OF bit;

TYPE
tuff~r_head~r_~-p~ IS !li!CCRD -- !-I~ad~i" vf a Uitit5u."ii~~iuit t.u.ffe;f

TYPE

header : header_type;
source_id : node_id_type;
destination_id : node_id_type;
router_source_id : node_id_type;
router_destination_id: node_id_type;
protocol_class : protocol_class_type;
protocol_reply _class : protocol_reply _class_type;
END RECORD;

buffer_data_type IS RECORD -- DATA CONTENTS OF BUFFER
cornmand_info : command_type;
diag_info : diag_info_type;

79

80

END RECORD;
TYPE
packet_type IS RECORD

buffer_header : buffer_header_type;
buffer_data : buffer_data_type;

END RECORD;

PACKAGE hdr_io IS NEW enumeration_io(header_type);
USE hdr_io;

PACKAGE pro_io IS NEW enumeration_io(protocol_class_type);
USEpro_io;

matted_array:ARRA Y(0 . .35) OF INTEGER; --USED FOR LINK MAPPING
--** The matted array is part of the GRID hardware configuration
--** database. Each entry element in this array contains an
--** identifier for the link number connected to the ith link

TYPE compass_array _type IS ARRAY (0 . .3) OF INTEGER;
--(Used by a node to figure out to which of its link the message
-- is to be routed to) ..

grid_size : integer := 3 ; -- For a 3X3 grid (9 nodes)
this_link : integer ;
st_id : integer ;
partner_link : integer ;

--- * * *
TYPE job_k:ind IS (send_to,nop);
TYPE job_card_type;
TYPE jou_pi.f I:i ACCE:i:i jou_l:aru_i.ype;

--- * * *
TYPE job_card_type IS RECORD

doer : integer ; -- Node doing the job
class : job_kind; --Job type (WHAT)
dest : integer ; -- Destination NODE
dat : integer ; -- DATA
next : job_ptr :=null; -- Pointer to next JOB

END RECORD;

--- * * *
PACKAGE job_io IS NEWenumeration_ioGob_kind);

8 1

USEjob_io;

--- * * *
--(*file_declarations*)--

linkmap: file_type; --(* LINK CONNECTION MAP *)--
injobs : :file_type; --(* JOBS TO BE PERFORMED *)--

--- * * *
-- DEBUGG DECLARATIONS

debugg: boolean:=false;

--- * * *
--(*task_declarations*)--

-- Simulation of a transputer link. Tnis task is a generic basic
-- Transputer link

TASK TYPE link_task IS
ENTRY configure_link(node_id: in integer;

link_id: in integer; partner_link: in integer);
ENTRY transmit(f_packet: in packet_type);
ENTRY receive(f_packet: in packet_type);

END link_task;

-- Simulation of a communicator task.

TASK TYPE communicator_task IS
ENTRY configure_comm(id:in integer);
BNTK Y message_to_transmit(f_packet: in packet_type);--DATA TX
ENTRY message_received(f_packet :in packet_type);--DATA RX

END communicator_task;

-- Simulation of an application task. This task contains the basic
-- definitions for the application dependent tasks.

TASK TYPE application_task IS
ENTRY configure_appl(id:in integer);
ENTRY input(f_packet :in packet_type);
ENTRY output(f_packet: out packet_type);

END application_task;

82

--(*utilities_declarations*)--

PROCEDURE message_checker(message_in : in packet_type;
validation_result : out boolean);

FUNCTION find_direction_to_go(current_node_id: in integer;
going_to_node : in integer) return integer;

FUNCfiON fmd_next_link_id(f_compass :in compass_array_type;
f_destination_link_offset : in integer)
RETURN integer;

PROCEDURE read_initial_grid_configuration;

PROCEDURE initialize_job_queue;
PROCEDURE add_job_into_job_queue(f_node

f_do
f_dest
f_dat

PROCEDURE read_input_jobs ;

:in integer
: in job_kind

: in integer ;
: in command_ type) ;

PROCEDURE get_job_from_job_queue(f_node : in integer ;
f_job : out job_card_type ;
outcome: out boolean) ;

PROCEDURE print_job_card(f_job: in job_card_type);

------- FORMATTING ROUTINES FOR OUTPUT

PROCEDURE print_separation_line;

PROCEDURE print_packet(f_packet: in packet_type);

--(* task_instantiations*)--

link:array(0 . .35) of link_ task;
application:array(0 .. 8) of application_task;
communicator:array(0 .. 8) of communicator_task;

job_queue_status: ARRA Y(0 .. 8) OF BOOLEAN;

83

job_queue_ptrs: ARRA Y(0 .. 8) OF job_ptr; --Pointer to individual queues

ajob : job_card_type;
success : boolean;

-- Body of transputer link

task body link_task is
node_number : integer;
link_own_id : integer;
adjacent_link : integer;
tx_buffer : packet_type;
tx_buffer_empty : boolean := true;
rx_buffer : packet_type;
rx_buffer_empty : boolean := true;

BEGIN

--(*task_implementation*)--

ACCEPT configure_link(node_id: in integer;
link_id: in integer;
partner_link :in integer) DO

node_number := node_id; -- This link belongs to this node
link_own_id := link_id; -- This is the link own id
adjacent_link := partner_link; -- To which link is connected
new_iine;
put(" LINK TASK INSTANTIATED node number is");
put(node_number,4);
put(" THE LINK IDENTIFICATION NUMBER IS ");
put(link_own_id,4);
put(" ADY ACENT node number is");
·- -··'- ..1~- ----"'" 1!._1_ A\~
J:IU~\<Klji:l\;C!U_Uul\.,..,j,

new_line;

end configure_link;

link_loop: LOOP -- Infinite loop

SELECT

--Accept transmit operation (configuration dependent)

ACCEPT' transmit(f_packet:IN packet_type)DO

84

new_line;
put(" ***LINK ACCEPTED PACKET TO TRANSMIT*** LINK# IS");
put(link_own_id,2);
new_line;

tx_buffer := f_packet;

link(adjacent_link).receive(tx_buffer);

END transmii;

OR

-- Accept RECEIVE operation
ACCEPT receive(f_packet: IN packet_type)OO
new_line;
put(" *** LINK RECEIVED PACKET **** LINK #IS ");
put(link_own_id,2);
new_line;

rx_buffer := f_packet;

communicator(node_number).message_received(rx_buffer);

END receive;

END SELECI';

end loop link_loop;

end link_task;

'T"\ _ _1 ___ £> ____________ ! __ .._ __ ..., __ .. _

-- DIJUY V1 ~V11llllWll~c:lLU1 Lc:l.SA.

TASK BODY communicator_task IS

-- Internal Declarations

a_packet:packet_type;
node_number: integer;
my_compass: compass_array_type;
link_ base : integer; -- Base Number to calculate own links IDs.
an_ offset : integer; --Displacement to compute task number
for_link :integer; --Variable to identify receiving link

BEGIN

85

ACCEPT configure_comm(id:in integer)
DO

NULL;
node_number := id; -- Node Identification Number
NEW_LINE;
put(" COMMUNICATOR TASK INSTANTIATED node number is");
put(node_number,4);
new_line;

END configure_comm;

link_base := node_number*4 ;

for i in 0 . .3 loop
my_compass(i) := link_base + i; --Base Number+ offsets ...

end loop;

new_line;
put(" ***TASK COMMUNICATOR FULLY CONFIGURED*** NODE IS");
put(node_number,4);
new_line;

loop -- LOOP FOREVER

SELECT
ACCEPT message_to_transmit(f_packet: in packet_type)

00
NULL;
new_line;
put(" **>>>>>>Task communicator accepted message to

transmit'');
put(" at node number--->");
put(node_number,2);
new_line;

a_packet := f_packet;

an_offset := find_direction_to_go(node_number,
a_packet.buffer_header.destination_id);

for_link := find_next_link_id(my _compass,an_offset);

link(for_link).transmit(a_packet);

86

END message_to_transmit;

OR
ACCEPT message_received(f_packet : in packet_type)

DO
NULL;
new_line;
put(" **>>>>>>Task communicator accepted message received

");
put(" at node number--->");
put(node_number,2);
new_line;
-- Copy the packet into temp. variable
a_packet := f_packet;

-- Check it this node is the terminating node for the packet
-- Received, if so, pass it to the application, otherwise,
-- pass it to the appropriate link

IF a_packetbuffer_header.destination_id = node_number

THEN

print_separation_line;
new_line;
put(" Packet received by task communicator reached final destination");
put(" at NODE number");
put(node_number,2);
new_line;
print_separation_line;

-- Pass packet to the application task
application(node_number).input(a_packet);

ELSE
---w""i-tt.i~ Ot~R5

print_separation_line;
new_line;

=> -- For anomer node

put(" Packet received by task communicator is to be forwarded ");
put(" at NODE number");
put(node_number,2);
new_line;
print_separation_line;

-- 1. Calculate the offset to be used in routing this pkt.

an_offset := find_direction_to_go(node_number,
a_packet.buffer_header.destination_id);

87

-- 2. Find which of its links to be used ...

if debugg then

for_link := find_next_link_id(my _compass,an_offset);

-- 3. Link to be used is known now, so pass-it-on!!!

new_line;
put(" **>>>>>>Task communicator about to forward packet");
put(" at node number--->");
put(node_number,2);
new_line;

end if; --debugg

link(for_link).transmit(a_packet);

if debugg then
new_line;
put(" **>>>>>>Task communicator fowarded packet completed

");
put(" at node number--->");
put(node_number,2);
new_line;

end if; --debugg

--END CASE;
END IF;

END message_received;
ENDSELECf;

END LOOP ; --Loop forever

Ei'lu communicator_rasic;

-- Body of the Application Task

TASK BODY application_task IS

node_number:integer;
a_packet : packet_ type ; -- Packet to be sent or received
ajob : job_card_type ; -- What to do
success : boolean ; -- Outcome of request. ..

-- (* Internal Procedures *)--

88

PROCEDURE appl_build_packet(fjob : IN job_card_type ;
f_packet: OUT packet_type) IS

--* This procedure builds a packet originating in the APPLICATION TASK
--* and sends it to the TASK COMMUNICATOR. ..

f_header : buffer_header_type;
f_buffer_data : buffer_data_type;

BEGlN

-- The packet is build from the job card by extracting
-- the necessary information from it
-- This information is used to build the header first
-- and then to build the packet data portion

--BUILD THE BUFFER_HEADER
f_header.header := data_hdr
f_header.source_id := node_number;
f_header.destination_id := fjob.dest ;
f_header.router_source_id := 0; --Filled by COMMUNICATOR
f_header.router_destination_id:= 0; " " "
f_header.protocol_class := transputer_protocol;
f_header.protocol_reply _class := no_reply _expected ;

-- BUlLD BUFFER_DATA
f_buffer_data.command_info := fjob.dat ; -- Data to be send
f_buffer_data.diag_info := (0,0,0,0,0,0,0,0,0); -- N/ A

--AND PUT IT IN THE PACKET
f_packetbuffer_header := f_header;
f_packetbuffer_data := f_buffer_data;

END appl_build_packet;

BEGIN -- Application_ body _begins

accept configure_appl(id:in integer) do

node_number:=id; -- (* Accept the node identification number *)--
new_line;
put("*** APPLICATION TASK ACCEPTED ID node number is");

put(node_number);
new_line;

89

end configure_appl;

forever: LOOP --(* INFI'fl'l'E LOOP *)--

SELECf

-- Accept Input Data

ACCEPT input(f_packet: in packet_type) DO
new_line;

put(" ***APPLICATION TASK ACCEPIED INPUT***");
put(node_number,2);
new_line;

-- The application task received a packet, display a
-- message and the packet contents

new_line;
print_separation_line;
put(" PACKET RECEIVED BY THE APPLICATION TASK AT NODE

");
put(node_number,2);
new_line;
print_separation_line;
print_packet(f_packet);
print_separation_line;

end input;

OR

-- Accept Output Data (To be sent to another place)

ACCEPT output(f_packet : out packet_type) DO
new_line;

put(" ***APPLICATION TASK ACCEPTED OUTPUT ***");
put(node_number,2);
new_line;

NULL;

end output;

OR delay 1.1

90

END SELECT;

IF job_queue_status(node_number) then

getjob_fromjob_queue(node_number,ajob,success);

IF success then

new_line;
put(" JOB OBTAINED");
put(node_number,2);
new_line;

CASE ajob.class IS

WHEN send_to =>

new_line;
put(" Application about to attempt packet build ");
put(node_number,2);
new_line;

appl_build_packet(ajob,a_packet);

new_line;
put(" Application built packet ");
put(node_number,2);
new_line;

communicator(node_number).message_to_transmit(a_packet);

if debugg then

new_Jine;
put(" Application sent packet to COMMUNICATOR");
put(node_number,2);
new_line;
end if; --debugg

WHEN OTHERS =>NULL;
put_line(" UNRECOGNIZED JOB TYPE FOR APPLICATION

TASK");

END CASE;

END IF; -- IF SUCCESS

ELSE
delay 0.2;

if debugg then
new_line;

91

put(" ---_------");
put_line(" *** Queue tested and found empty for task ");
put(node_number,2);
put(" --------------------_---------------------------");

end if; --debugg

END IF; --QUEUE NOT EMPTY

END LOOP forever; --(* INFINITE LOOP FOR APPLICATION TASK *)--

END application_task:;

--(*utilities_implementation*)--

PROCEDURE message_checker (message_in: in packet_type;
validation_result: out boolean) IS

BEGIN
NULL;
new_line;
put(" message checker has been called");
new_line;

end message_checker;

FUNCTION find_direction_to_go(current_node_id: in integer;
going_to_node : in integer) return integer is

destination_link_offset : integer; -- Indicates to which direction
-- the packet should be routed

type relative_position_type is (in_the_same_row,
in_the_same_column,
not_aligned);

relative_position : relative_position_type;

92

function fmd_relative_position(current_node:in integer;
destination: in integer) return
relative_position_type IS

row_a, row_b :integer,
column_a, column_b : integer,
begin

-- Find row number identifier
row _a := current_node I grid_size;
row_b :=destination I grid_size;

-- Find column number identifier
column_a := current_node mod grid_size;
column_b := destination mod grid_size;

if row _a = row _b then return in_the_same_row; end if;
if column_a = column_b then return in_the_same_column; end if;

if not ((row_a = row_b) or (column_a = column_b)) then
return not_aligned;

end if;

end find_relative_position;

FUNCTION is_to_the_top(a:in integer,b:in integer)return boolean is

begin

if a>b then return true ; -- Destination is above source
else return false; -- Destination is below source

end if;
end is_to_the_top;

l'U1~Cu01~ is_to_me_rigiu(a:in inreger,b:in imeger)return boolean is

begin
if a<b then return true ; -- Destination is to the right

else return false; -- Destination is to the lefth
end if;

end is_to_the_right;

BEGIN
NULL;

relative_position:=find_relative_position(current_node_id,
going_to_node);

93

--NOW FIND WHICH CASE APPLIES

CASE relative_positi.on IS

when in_the_same_row =>

if is_to_the_right(cwrent_node_id, going_to_node)
then destinati.on_link_offset:= 1; --GO RIG1H
else destination_link_offset:= 3; --GO LEFf
end if;

when in_the_same_column =>

if is_to_the_top(current_node_id, going_to_node)
then destination_link_offset:= 0; --GO UP
else destination_link_offset:= 2; --GO DOWN
end if;

when not_aligned =>

destination_link_offset:= 2; --GO DOWN ALWAYS

END CASE;

RETURN destination_link_offset;

END find_directi.on_to_go;

FUNCTION find_next_link_id (f_compass: in compass_array_type;
f_destination_link_offset: in integer)
RETURN integer IS

a_link_id: integer;

BEGIN
a_link_id := f_compass(f_destination_lin.lc_offset);

return a_link_id;
END find_next_link_id;

PROCEDURE read_initial_grid_configuration IS
begin
NULL;
end read_initial_grid_configuration;

--- * * *
PROCEDURE initializejob_queue IS

94

BEGIN
--SET JOB QUEUE STATUS TO EMP1Y
FOR index IN 0 .. 8 LOOP
job_queue_status(index):= FALSE; --NO JOBS
job_queue_ptrs(index) := NULL ; -- NO JOBS
END LOOP;

END initialize_job_queue;

--- * * *
PROCEDURE add_job_into_job_queue(

f_node : in integer ;
f_do : in job_kind ;
f_dest : in integer ;
f_dat :in command_type) IS

new _job: job_ptr; --Job Card pointer
temp_ptr: job_ptr; -- Job Card pointer

BEGIN

-- Create job card
new _job:= NEW job_card_type; --Creates new job card

-- Copy input job information into the new job card
new _job.doer := f_node ; -- Job is for this node task
new _job.class := f_do ; -- Type of job to do
new _job.dest := f_dest ; -- Destination Node
new_job.dat := f_dat ; --Data associated with job
new_job.next :=NULL ; --Pointer to next JOB

IF job_queue_status(f_node) =FALSE then
job_queue_status(f_node) :=TRUE;
joi:>_queue_ptrs(i_no<ie) := new_joiJ; --LIN!(JOB CARD

ELSE
temp_ptr := job_queue_ptrs(f_node); --First JOB for task

find_last_job: LOOP
EXIT find_last_job WHEN temp_ptr.next = NULL;

temp_ptr := temp_ptr.next; -- Advance to next job
END LOOP find_last_job;

temp_ptr.next := new _job;

END IF;

95

END addjob_intojob_queue;

--- * * *
PROCEDURE read_inputjobs IS

for_node : integer,
do_this : job_kind;
to_node : integer,
some_data: integer,
BEGIN

-- OPEN INPUT JOB FILE
open(injobs,in_file," appljobs.file");

while not end_of_file(injobs) LOOP

get(injobs,for_node);
get(injobs,do_this);
get(injobs,to_node);
get(injobs,some_data);

--JOB FOR NODE ID
--JOB TYPE
--TOWHERE?

--DATA

addjob_into_job_queue(
for_node ·,
do_this ,
to_node ,
some_data);

END LOOP;

END read_inputjobs;
--- * * *
PROCEDURE getjob_fromjob_queue(

f_node : in integer ;
f_job : out job_card_type ;
outcome: out boolean) is

nojob : job_card_type :=(

BEGIN

doer=> 0 ,
dest => 0 ,
class => nop ,
dat =>0 ,
next =>NULL); -- Dummy JOB CARD

96

new_line;
put(" ***** Getting a job for node ");
put(f_node);
new_line;

IF not job_queue_status(f_node) TiffiN
fjob := nojob;
outcome:= FALSE; --Failure, no job in the queue
RETURN;
END IF;

fjob := job_queue_ptrs(f_node).all; --Copy all fields ...
outcome := TRUE; -- JOB transfer successful

job_queue_ptrs(f_node) := job_queue_ptrs(f_node).next;
IF job_queue_ptrs(f_node)= NULL then

job_queue_status(f_node):= FALSE;-- No more jobs

put_line(" last job taken ... queue is empty now");

END IF;

END getjob_fromjob_queue;
--- * * *

PROCEDURE printjob_card(f_job: in job_card_type)IS

BEGIN
new_line;
put_line(" ********* PRINTING JOB CARD **********");
put(" Node originating job is "); put(fjob.doer);
new_line;
put(" TYPE of JOB is"); put(f_job.class);
new_iine;
put(" Destination node is "); put(fjob.dest);
new_line;
put(" The data associated with this job is");put(fjob.dat);

END printjob_card;

--- * * *
PROCEDURE print_separation_line IS

BEGIN
new_line;
put(''--'');
new_line;
END print_separation_line;

97

--- * * *
PROCEDURE print_packet(f_packet: in packet_type) is

BEGIN
new_line;
put_line(" ******** PACKET HEADER ********");

put(" Header type ");
put(f_packet.buffer_header.header);
new_line;

put(" Source Node ");
put(f_packet.buffer_header.source_id);
new_l.ine;

put(" Destination Node ");
put(f_packet.buffer_header.destination_id);
new_line;

put(" Protocol Class ");
put(f_packet.buffer_header.protocol_class);
new_line;

put_line(" ******** PACKET DATA ********");

put(" Data value contained ");
put(f_packet.buffer_data.cornmand_info);
new_line;

END print_packet;

--- * * *
FUNCTION ·fmd_matted_link(id_a:in integer) return integer is

begin
return matted_array(id_a);
end find_matted_link;

--(*MAIN_BEGINS*)-­

BEGIN -- BEGINS GRID PROCEDURE

read_file_link_map:
declare

98

matted_link_id :integer;
link_index :integer;
a_node_id :integer; -- dummies
begin
open(linkmap, in_file, "link_map.file");

WHILE NOT END_OF _FILE(linkmap) LOOP
get(linkmap ,a_node_id);
get(linkmap ,link_index);
get(linkmap ,matted_link_id);
--Store value in me table
matted_array(link_index) := matted_link_id ;

END LOOP;

put_line(" * * * LINK DISTRIBUTION CONFIGURED * * * ");
end read_f:tle_link_map;

-- 1. Initialize the job queue
initialize_job_queue;
put_line(" Job queue initialized ");

-- 2. read all the jobs ...
read_input_jobs;

put_line(" All jobs inputted ");

--3. Verify jobs
new_line;
put_line(" printing status of the jobs_queue");
fori in 0 .. 8 loop
new _line; put(" status for node");put(i);put(" is ");
if job_queue_status(i) then put(" true ... some jobs");

end loop;

new_line;

else put(" false ... no jobs");
- - _, ~ 1'!',
cuu u,

put_line(" PRINTING STATUS OF POINTERS ");
for i in 0 .. 8 loop
new_line; put(" POINTER for node");put(i);put(" is");
if job_queue_ptrs(i)/=null then put(" NOT NULL some jobs");

else put(" NULL ... no jobs");
end if;

end loop;

for I in 0 .. 8 loop

99

-- check if there is a job
if job_queue_status(l) then -- there are some jobs for this node

new_line;
put(" There are some jobs for this node "); put(i);
--exaust: loop
--exit exaust when notjob_queue_status(i);
--getjob_fromjob_queue(i,ajob,success);

-- And print job card
--printjob_card(a job);
--end loop exaust;
end if;

end loop; --for I in 0 .. 8
new_line;
put(" * _ * _ * _ * _ * _ * _ * _ * _ * _ * _ * _ * _ * _ * _ * _ * _ * _ *");
new_line;
put(" * _ * _ * _ * _ * _ * _ * _ * _ * _ * _ * _ * _ * _ * _ * _ * _ * _ *");
new_line;

--- * * *

-- INITIALIZE THE LINK CONFIGURATION CHOOSEN
-- (* INITIALIZE THE GRID *)--

FOR node_id IN 0 .. 8 --(* For each node in the grid *)--

LOOP

application(node_id).configure_appl(node_id):

communicator(node_id).configure_comm(node_id);

st_id := 4 * (node_id); -- Calculate starting number for link
-- (base link identification number)

-- SINCE each node has four (4) link give each of the links of this
-- node an identification number following previously defined express.

FOR link_range IN 0 .. 3 LOOP --(* For each link in a node *)--

--SEARCH CONNECTION MAP FOR MAITED LINK
IDENTIFICATION

100

this_link:=link_range+st_id;

parmer_link:= find_matted_link(this_link);

link(this_link).configure_link(node_id,this_link,parmer_link);

END LOOP; --(* For each link in a node *)-­

END LOOP; --(* For each node in the grid *)-­

END grid_simulation ;

101

EXAMPLE 1

Message passing in a toroidal configuration

Input File for the Simulator

Source Node Operation Destination Node Data
0 send to ~ 08
8 send to 4 84
3 send to 5 35
7 send to 1 71

102

Link Map for the Simulation

Node no. Link no. Link no.
0 0 26
0 1 7
0 2 12
0 3 9
1 4 30
1 :J 11
1 6 16
1 7 1
2 8 34
2 9 3
2 10 20
2 11 5
3 12 2
3 13 19
3 14 24
3 15 21
4 16 6
4 17 23
4 18 28
4 19 13
5 20 10
5 21 15
5 22 32
5 23 17
6 24 14
6 25 31
6 26 0
v 33 ~~

7 28 18
7 29 35
7 30 4
7 31 25
8 32 22
8 33 27
8 34 8
8 35 29

103

Results of the Simulation

* * * LINK DISTRIBUTION CONFIGURED * * *
Job queue initialized
All jobs inputted

printing status of the jobs_queue

status for node 0 is true ... some jobs
status for node 1 is false ... no jobs
status for node 2 is false ... no jobs
status for node 3 is true ... some jobs
status for node 4 is false ... no jobs
status for node 5 is false ... no jobs
status for node 6 is false ... no jobs
status for node 7 is true ... some jobs
status for node 8 is true ... some jobs
PR~GSTATUSOFPOThiTERS

POThiTER for node 0 is NOT NULL some jobs
POINTER for node 1 is NULL ... no jobs
POINTER for node 2 is NULL ... no jobs
POINTER for node 3 is NOT NULL some jobs
POINTER for node 4 is NULL ... no jobs
POINTER for node 5 is NULL ... no jobs
POINTER for node 6 is NULL ... no jobs
POINTER for node 7 is NOT NULL some jobs
POIN1ER for node 8 is NOT NULL some jobs
There are some jobs for this node 0
There are some jobs for this node 3
There are some jobs for this node 7
There are some jobs for this node 8

***APPLICATION TASK ACCEPrED 1D node number is 0

COMMUNICATOR TASK INSTANTIATED node number is 0

*****TASK COMMUNICATOR FULLY CONFIGURED ***NODE IS 0

LINK TASK INSTANTIATED node number is 0 THE LINK IDENTIFICATION
NUMBER IS 0 ADJACENT node number is 26

LINK TASK INSTANTIATED node number is 0 THE LINK IDENTIFICATION
NUMBER IS 1 ADJACENT node number is 7

104

LINK TASK INSTANTIATED node number is 0 TilE LINK IDENTIFICATION
NUMBER IS 2 ADJACENT node number is 12

LINK TASK INSTANTIATED node number is 0 TilE LINK IDENTIFICATION
NUMBER IS 3 ADJACENT node number is 9

***APPLICATION TASK ACCEPTED ID node number is 1

COMMUNICATOR TASK INSTANTIATED node number is 1

*****TASK COMMl.fN1CATOR ruLL Y CONFiGURED*** NODE IS 1

LINK TASK INSTANTIATED node number is 1 TilE LINK IDENTIFICATION
NUMBER IS 4 ADJACENT node number is 30

LINK TASK INSTANTIATED node number is 1 TilE LINK IDENTIFICATION
NUMBER IS 5 ADJACENT node number is 11

LINK TASK INSTANTIATED node number is 1 TilE LINK IDENTIFICATION
NUMBER IS 6 ADJACENT node number is 16

LINK TASK INSTANTIATED node number is 1 TilE LINK IDENTIFICATION
NUMBER IS 7 ADJACENT node number is 1

***APPLICATION TASK ACCEPTED ID node number is 2

COMMUNICATOR TASK INSTANTIATED node number is 2

*****TASK COMMUNICATOR FULLY CONFIGURED ***NODE IS 2

LINK TASK INSTAJ.'ITIA TED node number is 2 THE LINK IDENTIFICATION
NUMBER IS 8 ADJACENT node number is 34

LINK TASK INSTANTIATED node number is 2 THE LINK IDENTIFICATION
:i:;"UiviDn:a 13 9 JWJACE1"7 node nUUJoer l:s 3

LINK TASK INSTANTIATED node number is 2 THE LINK IDENTIFICATION
NUMBER IS 10 ADJACENT node number is 20

LINK TASK INSTANTIATED node number is 2 THE LINK IDENTIFICATION
NUMBER IS 11 ADJACENT node number is 5

*** APPLICATION TASK ACCEn-.i::.D ID node number is 3

COMMUNICATOR TASK INSTANTIATED node number is 3

*****TASK COMMUNICATOR FULLY CONFIGURED ***NODE IS 3

105

LINK TASK INSTANTIATED node number is 3 THE LINK IDENTIFICATION
NUMBER IS 12 ADJACENT node number is 2

LINK TASK INSTANTIATED node number is 3 THE LINK IDENTIFICATION
NUMBER IS 13 ADJACENT node number is 19

LINK TASK INSTANTIATED node number is 3 THE LINK IDENTIFICATION
NUMBER IS 14 ADJACENT node number is 24

LINK TASK INSTANTIATED node number is 3 THE LINK IDENTIFICATION
Nillv1BER iS 15 ADJACENT node number is 21

***APPLICATION TASK ACCEP'IED ID node number is 4

COMMUNICATOR TASK INSTANTIATED node number is 4

*****TASK COMMUNICATOR FULLY CONFIGURED*** NODE IS 4

LINK TASK INSTANTIATED node number is 4 THE LINK IDENTIFICATION
NUMBER IS 16 ADJACENT node number is 6

LINK TASK INSTANTIATED node number is 4 THE LINK IDENTIFICATION
NUMBER IS 17 ADJACENT node numberis 23

LINK TASK INSTANTIATED node number is 4 THE LINK IDENTIFICATION
NUMBER IS 18 ADJACENT node number is 28

LIN'6: TASK INSTANTIATED node number is 4 THE LINK IDENTIFICATION
NUMBER IS 19 ADJACENT node number is 13

*** APPLICATION TASK ACCEPTED ID node number is 5

COMMUNICATOR TASK INSTANTIATED node number is 5

LINK TASK INSTANTIATED node number is 5 THE LJN'.t(IDENTIFICATION
NUMBER IS 20 ADJACENT node number is 10

LINK TASK INSTANTIATED node number is 5 THE LINK IDENTIFICATION
NUMBER IS 21 ADJACENT node number is 15

LINK TASK INSTANTIATED node number is 5 THE LINK IDENTIFICATION
NUMBER IS 22 ADJACENT node number is 32

LINK TASK INSTANTIATED node number is 5 THE LINK IDENTIFICATION
NUMBER IS 23 ADJACENT node number is 17

106

*** APPLICATIONTASK ACCEPI'EDID nodenumberis 6

COMMUNICATOR TASK INSTANTIATED node number is 6

*****TASK COMMUNICATOR FULLY CONFIGURED*** NODE IS 6

LINK TASK INSTANTIATED node number is 6 THE LINK IDENTIFtCATION
NUMBER IS 24 ADJACENT node number is 14

LINK TASK INSTANTIATED node number is 6 THE LINK IDENTIFICATION
N""UMBER iS 25 ADJACE:Ni node number is 31

LINK TASK INSTANTIATED node number is 6 THE LINK IDENTIFICATION
NUMBER IS 26 ADJACENT node number is 0

LINK TASK INSTANTIATED node number is 6 THE LINK IDENTIFICATION
Nill\.ffiER IS 27 ADJACENT node number is 33

***APPLICATION TASK ACCEPI'ED ID node number is 7

COMMUNICATOR TASK INSTANTIATED node number is 7

*****TASK COMMUNICATOR FULLY CONFIGURED ***NODE IS 7

LINK TASK INSTANTIATED node number is 7 THE LINK IDENTIFICATION
NUMBER IS 28 ADJACENT node number is 18

LINK TASK INSTANTIATED node number is 7 THE LINK IDENTIFICATION
NUMBER IS 29 ADJACENT node number is 35

LINK TASK INSTANTIATED node number is 7 'IHE LINK IDE:N11FICA TION
NUMBER IS 30 ADJACENT node number is 4

LINK TASK INSTANTIATED node number is 7 THE LINK IDENTIFICATION
ii"u1vuir:R 15 3i AUiACEr..1 node number is 2.5

*** APPLICATION TASK ACCEPI'ED ID node number is 8

COMMUNICATOR TASK INSTANTIATED node number is 8

*****TASK COMMUNICATOR FULLY CONFIGURED ***NODE IS 8

LINK TASK INSTANTIATED node number is 8 THE LINK IDENTIFICATION
NUMBER IS 32 ADJACENT node number is 22

LINK TASK INSTANTIATED node number is 8 THE LINK IDENTIFICATION
NUMBER IS 33 ADJACENT node number is 27

107

LINK TASK INSTANTIATED node number is 8 THE LINK IDENTIFICATION
NUMBER IS 34 ADJACENT node number is 8

LINK TASK INSTANTIATED node number is 8 THE LINK IDENTIFICATION
NUMBER IS 35 ADJACENT node number is 29

***** Getting a job for node 0
last job taken ... queue is empty now

JOB OBTAINED 0

Application about to attempt datagram build 0

Application built datagram 0

**>>>>Task communicator accepted message to transmit at node number---> 0

LINK ACCEPTED DATAGRAM TO TRANSMIT LINK# IS 2

LINK RECEIVED DATAGRAM* LINK# IS 12

**>>>>>Task communicator accepted message received at node number---> 3

Datagram received by task communicator is to be forwarded at NODE number 3

LINK ACCEPTED DATAGRAM TO TRANSMIT LINK# IS 14

LINK RECEIVED DATAGRAM* LINK# IS 24

**>>>>>Task communicator accepted message received at node number---> 6

Datagram received by task communicator is to be forwarded at NODE number 6

LINK ACCEPTED DATAGRAM TO TRANSMIT LINK# IS25

LINK RECEIVED DATAGRAM* LINK# IS 31

**>>>>>Task communicator accepted message received at node number---> 7

108

Datagram received by task communicator is to be forwarded at NODE number 7

***LINK ACCEPTED DATAGRAM TO TRANS:MIT ***LINK# IS29

LINK RECEIVED DATAGRAM* LINK# IS 35

**>>>>>Task communicator accepted message received at node number---> 8

Datagram received by task communicator reached final destination at NODE number 8

APPLICATION TASK ACCEPTED INPUT 8

DATAGRAM RECEIVED BY THE APPLICATION TASK AT NODE 8

******** DATAGRAM HEADER********
Header type DATA_HDR
Source Node 0
Destination Node 8
Protocol Class TRANSPUTER_PROTOCOL
********DATAGRAM DATA ********
Data value contained 8

***** Getting a job for node 8
last job taken ... queue is empty now

JOB OBTAINED 8

Application about to attempt datagram build 8

Application built datagram 8

**>>>>Task communicator accepted message to transmit at node number---> 8

LINK ACCEPTED DATAGRAM TO TRANSMIT LINK# IS34

109

LINK RECEIVED DATAGRAM* LINK# IS 8

**>>>>>Task communicator accepted message received at node number---> 2

Datagram received by task communicator is to be forwarded at NODE number 2

>ic>icoic LINK ACCEPTED DATAGRA1v1 TO TRAt~SivllT ~=*::' LIN".t(# iS10

LINK RECEIVED DATAGRAM* LINK# IS 20

**>>>>>Task communicator accepted message received at node number---> 5

Datagram received by task communicator is to be forwarded at NODE number 5

LINK ACCEPTED DATAGRAM TO TRANSMIT LINK# IS23

LINK RECEIVED DATAGRAM* LINK# IS 17

**>>>>>Task communicator accepted message received at node number---> 4

Datagram received by task communicator reached final destination at NODE number 4

*;;.:::;::.:::.:Getting aJou !Of uuUc 3
last job taken ... queue is empty now

JOB OBTAINED 3

Application about to attempt datagram build 3

Application built datagram 3

**>>>>Task communicator accepted message to transmit at node number---> 3

LINK ACCEPTED DATAGRAM TO TRANSMIT LINK# IS 13

LINK RECEIVED DATAGRAM* LINK# IS 19

110

***** Getting a job for node 7
last job taken ... queue is empty now

JOBOBTAINED 7

Application about to attempt datagram build 7

Application built datagram 7

**>>>>Task communicator accepted message to transmit at node number---> 7

LINK ACCEPTED DATAGRAM TO TRANSMIT LINK# IS28

LINK RECEIVED DATAGRAM* LINK#IS 18

*** APPLICATION TASK ACCEPTED INPUT*** 4

DATAGRAM RECEIVED BY THE APPUCATION TASK AT NODE 4

********DATAGRAM HEADER********
Header type DATA_HDR
Source Node 8
Destination Node 4
Protocol Class TRANSPUTER_PROTOCOL
******** DATAGRAM DATA ********
Data value contained 84

Datagram received by task communicator is to be forwarded at NODE number 4

LINK ACCEP1ED DATAGRAM TO TRANSMIT LINK# IS17

LINK RECEIVED DATAGRAM* LINK# IS 23

**>>>>>Task communicator accepted message received at node number---> 5

111

Datagram received by task communicator reached final destination at NODE number 5

APPLICATION TASK ACCEPfED INPUT 5

DATAGRAM RECEivED BY THE APPLICATiON TASK AT NODE 5

********DATAGRAM HEADER********
Header typeDATA_HDR
Source Node 3
Destination Node 5
Protocol Class TRANSPUTER_PROTOCOL
********DATAGRAM DATA ********
Data value contained 35

**>>>>>Task communicator accepted message received at node number---> 4

Datagram received by task communicator is to be forwarded at NODE number 4

LINK ACCEPTED DATAGRAM TO TRANSMIT LINK# IS 16

**>>>>>Task communicator accepted message received at node number---> 1

Datagram received by task communicator reached final destination at NODE number 1

APPLICATION TASK ACCEPTED INPUT 1

112

DATAGRAM RECEIVED BY THE APPUCATION TASK AT NODE 1

******** DATAGRAM HEADER********
Header type DATA_HDR
Source Node 7
Destination Node 1
Protocol Class TRANSPUTER_PROTOCOL
******** DATAGRAM DATA ********
Data value contained 71

113

EXAMPLE 2

Message passing in a mesh configuration

Input File for a Mesh Connection

0
Operation Destination Node Data Source Node
send to 8 08

114

Link Map for the Mesh

Node no. Link No. Link No.
0 1 7
0 2 12
1 5 11
1 6 16
1 7 1
2 10 20
2 11 5
3 12 2
3 13 19
3 14 24
4 16 _6

4 17 23
4 18 28
4 19 13
5 20 10
5 22 32
5 23 17
6 24 14
6 25 31
7 28 18
7 29 35
7 31 25
8 32 22
8 3;, 29

115

Results of the Mesh Interconnection

* * * LINK DISTRIBUTION CONFIGURED * * *
Job queue initialized
All jobs inputted

printing status of the jobs_queue

status for node 0 is true ... some jobs
status for node 1 is false ... no jobs
status for node 2 is false ... no jobs
status for node 3 is false ... no jobs
status for node 4 is false ... no jobs
status for node 5 is false ... no jobs
status for node 6 is false ... no jobs
status for node 7 is false ... no jobs

status for node 8 is false ... no jobs
PRINTING STATUS OF POINTERS

POINTER for node 0 is NOT NULL some jobs
POINTER for node 1 is NULL ... no jobs
POINTER for node 2 is NULL ... no jobs
POINTER for node 3 is NULL ... no jobs
POINTER for node 4 is NULL ... no jobs
POINTER for node 5 is NULL ... no jobs
POINTER for node 6 is NULL ... no jobs
POINTER for node 7 is NULL ... no jobs
POINTER for node 8 is NULL ... no jobs
There are some jobs for this node 0
* * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * *

*** APPLICATION TASK ACCEPTED ID node number is 0

COMMUNICATOR TASK INSTATIA TED node number is 0

*****TASK COMMUNICATOR FULLY CONFIGURED ***NODE IS 0

LINK TASK INSTANTIATED node number is 0 THE LINK IDENTIFICATION
NUMBER IS 0 ADYACENT node number is NULL

LINK TASK INSTANTIATED node number is 0 THE LINK IDENTIFICATION
NUMBER IS 1 ADYACENT node number is 7

LINK TASK INSTANTIATED node number is 0 THE LINK IDENTIFICATION
NUMBER IS 2 ADYACENT node number is 12

116

LINK TASK INSTANTIATED node numberis 0 THE LINK IDENTIFICATION
NUMBER IS 3 ADY A CENT node number is NULL

*** APPLICATION TASK ACCEPTED ID node number is 1

COMMUNICATOR TASK INSTANTIATED node number is 1

*****TASK COMMUNICATOR FULLY CONFIGURED ***NODE IS 1

LINK TASK INSTANTIATED node number is 1 THE LINK IDENTIFICATION
NUMBER IS 4 ADY A CENT node number is NULL

LINK TASK INSTANTIATED node number is 1 THE LINK IDENTIFICATION
NUMBER IS 5 ADY A CENT node number is 11

LINK TASK INSTANTIATED node number is 1 THE LINK IDENTIFICATION
NUMBER IS 6 ADY ACENT node number is 16

LINK TASK INSTANTIATED node number is 1 THE LINK IDENTIFICATION
NUMBER IS 7 ADY A CENT node number is 1

*** APPLICATION TASK ACCEPTED ID node number is 2

COMMUNICATOR TASK INSTANTIATED node number is 2

*****TASK COMMUNICATOR FULLY CONFIGURED*** NODE IS 2

LINK TASK INSTANTIATED node number is 2 THE LINK IDENTIFICATION
NUMBER IS 8 ADYACENT node number is NULL

LINK TASK INSTANTIATED node number is 2 THE LINK IDENTIFICATION
NUMBER IS 9 ADYACENT node number is NULL

LINK TASK INSTANTIATED node number is 2 THE LINK IDENTIFICATION
NUMBER IS 10 ADYACENT node number is 20

LINK TASK INSTANTIATED node number is 2 THE LINK IDENTIFICATION
NUMBER IS 11 ADYACENT node number is 5

*** APPLICATION TASK ACCEPTED ID node number is 3

COMMUNICATOR TASK INSTANTIATED node number is 3

*****TASK COMMUNICATOR FULLY CONFIGURED ***NODE IS 3

LINK TASK INSTANTIATED node number is 3 THE LINK IDENTIFICATION
NUMBER IS 12 ADYACENT node number is 2

117

LINK TASK INSTANTIATED node number is 3 THE LINK IDENTIFICATION
NUMBERIS 13 ADYACENT nodenumberis 19

LINK TASK INSTANTIATED node number is 3 THE LINK IDENTIFICATION
NUMBERIS 14 ADYACENT nodenumberis 24

LINK TASK INSTANTIATED node number is 3 THE LINK IDENTIFICATION
NUMBER IS 15 ADYACENT node number is 1

***APPLICATION TASK ACCEPTED ID node number is 4

COMMUNICATOR TASK INSTANTIATED node number is 4

*****TASK COMMUNICATOR FULLY CONFIGURED*** NODE IS 4

LINK TASK INSTANTIATED node number is 4 THE LINK IDENTIFICATION
NUMBERIS 16 ADYACENT nodenumberis 6

LINK TASK INSTANTIATED node number is 4 THE LINK IDENTIFICATION
NUMBERIS 17 ADYACENT nodenumberis 23

LINK TASK INSTANTIATED node number is 4 THE LINK IDENTIFICATION
NUMBER IS 18 ADYACENT node number is 28

LINK TASK INSTANTIATED node number is 4 THE LINK IDENTIFICATION
NUMBERIS 19 ADYACENT nodenumberis 13

***APPLICATION TASK ACCEPTED ID node number is 5

COMMUNICATOR TASK INSTANTIATED node number is 5

*****TASK COMMUNICATOR FULLY CONFIGURED*** NODE IS 5

LINK TASK iNSTAI~T.tAt.!:!D n<Xie number is 5 t.tiELli'll(iDE:N tll'tCA.TION
NUMBER IS 20 ADYACENT node number is 10

LINK TASK INSTANTIATED node number is 5 THE LINK IDENTIFICATION
NUMBER IS 21 ADYACENT node number is 7

LINK TASK INSTANTIATED node number is 5 THE LINK IDENTIFICATION
NUMBER IS 22 ADYACENT node number is 32

LINK TASK INSTANTIATED node number is 5 THE LINK IDENTIFICATION
NUMBER IS 23 ADY A CENT node number is 17

*** APPLICATION TASK ACCEPTED ID node number is 6

118

COMMUNICATOR TASK INSTANTIATED node number is 6

*****TASK COMMUNICATOR FUll.. Y CONFIGURED ***NODE IS 6

LINK TASK INSTANTIATED node number is 6 TilE LINK IDENTIFICATION
NUMBERIS 24 ADYACENT nodenumberis 14

LINK TASK INSTANTIATED node number is 6 THE LINK IDENTIFICATION
NUMBER IS 25 ADYACENT node number is 31

LINK TASK INSTANTIATED node number is 6 T.tffi Lll'fK IDENTIFiCATION
NUMBER IS 26 ADYACENT node number is NULL

LINK TASK INSTANTIATED node numberis 6 THE LINK IDENTIFICATION
NUMBER IS 27 ADYACENT node number is NULL

*** APPLICATION TASK ACCEPTED ID node number is 7

COMMUNICATOR TASK INSTANTIATED node number is 7

*****TASK COMMUNICATOR FUll.. Y CONFIGURED*** NODE IS 7

LINK TASK INSTANTIATED node number is 7 TilE LINK IDENTIFICATION
NUMBER IS 28 ADYACENT node number is 18

LINK TASK INSTANTIATED node number is 7 TilE LINK IDENTIFICATION
NUMBER IS 29 ADYACENT node number is 35

LINK TASK INSTANTIATED node number is 7 TilE LINK IDENTIFICATION
NUMBER IS 30 ADYACENT node number is NULL

LINK TASK INSTANTIATED node number is 7 THE LINK IDENTIFICATION
NUMBER IS 31 ADYACENT node number is 25

COMMUNICATOR TASKINSTANTIATEDnodenumberis 8

*****TASK COMMUNICATOR FUll.. Y CONFIGURED*** NODE IS 8

LINK TASK INSTANTIATED node number is 8 TilE LINK IDENTIFICATION
NUMBER IS 32 ADY A CENT node number is 22

LINK TASK INSTANTIATED node number is 8 TilE LINK IDENTIFICATION
NUMBER IS 33 ADY A CENT node number is 12

LINK TASK INSTANTIATED node number is 8 TilE LINK IDENTIFICATION
NUMBER IS 34 ADYACENT node number is 13

119

LINK TASK INSTANTIATED node number is 8 THE LINK IDENTIFICATION
NUMBER IS 35 ADYACENT node number is 29

***** Getting a job for node 0
last job taken ... queue is empty now

JOBOBTAINED 0

Application about to attempt datagram build 0

Application built datagram 0

**>>>>>>Task communicator accepted message to transmit at ncxle number---> 0

LINK ACCEPTED DATAGRAM TO TRANSMIT LINK# IS 2

LINK RECEIVED DATAGRAM* LINK# IS 12

**>>>>>>Task communicator accepted message received at node number---> 3

Datagram received by task communicator is to be forwarded at NODE number 3

LINK ACCEPTED DATAGRAM TO TRANSMIT LINK# IS 14

LINK RECEIVED DATAGRAM* LINK# IS 24

**>>>>>>Task communicator accepted message received at node number---> 6

Datagram received by task communicator is to be forwarded at NODE number 6

LINK ACCEPTED DATAGRAM TO TRANSMIT LINK# IS25

LINK RECEIVED DATAGRAM* LINK# IS 31

**>>>>>>Task communicator accepted message received at node number---> 7

Datagram received by task communicator is to be forwarded at NODE number 7

120

LINK ACCEPTED DATAGRAM TO TRANSMIT LINK# IS29

LINK RECEIVED DATAGRAM* LINK# IS 35

**>>>>>>Task communicator accepted message received at node number---> 8

Datagram received by task communicator reached final destination at NODE number 8

APPLICATION TASK ACCEPTED INPUT 8

DATAGRAM RECEIVED BY THE APPLICATION TASK AT NODE 8

******** DATAGRAM HEADER ********
Header type DATA_HDR
Source Node 0
Destination Node 8
Protocol Class TRANSPUTER_PROTOCOL
******** DATAGRAM DATA ********
Data value contained 8

APPENDIX B

Malek's Algorithm Results

* * * LINK DISTRIBUTION CONFIGURED * * *
Job queue initialized
All jobs inputted

printing status of the jobs_queue

status for node 0 is true ... some jobs
status for node 1 is true ... some jobs
status for node 2 is false ... no jobs
status for node 3 is true ... some jobs
status for node 4 is false ... no jobs
status for node 5 is false ... no jobs
status for node 6 is false ... no jobs
status for node 7 is false ... no jobs
status for node 8 is false ... no jobs
PRINTING STATUS OF POINTERS

POINTER for node 0 is NOT NULL some jobs
POINTER for node 1 is NOT NULL some jobs
POINTER for node 2 is NULL ... no jobs
POINTER for node 3 is NOT NULL some jobs
POINTER for node 4 is NULL ... no jobs
POINTER for node 5 is NULL ... no jobs
POINTER for node 6 is NULL ... no jobs
POINTER for node 7 is NULL ... no jobs
POIN1ER for node 8 is NULL ... no jobs
There are some jobs for this node 0
There are some jobs for this node 1
There are some jobs for this node 3
* * * * * * * * * * * * * * * * * * *_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*

***** Getting a job for node 0

JOBOBTAINED 0

Application about to attempt packet build 0

Application bui!t packet 0

**>>>>>Task communicator accepted message to transmit at node number---> 0

LINK ACCEPTED PACKET TO TRANSMIT LINK# IS 1

121

122

LINK RECEIVED PACKET *LINK# IS 7

**>>>>>>Task communicator accepted message received at node number---> 1

Packet received by task communicator reached final destination at NODE number 1

APPLICATION TASK ACCEPTED INPUT 1

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 1

******** PACKET HEADER ********
Header typeDATA_HDR
Source Node 0
Destination Node 1
Protocol Class TRANSPUTER_PROTOCOL
******** PACKET DATA ********
Data value contained 10

***** Getting a job for node 1
last job taken ... queue is empty now

JOB OBTAINED 1

Appiicarion aiJout w arrempr packer ouild i

Application built packet 1

**>>>>>>Task communicator accepted message to transmit at node number---> 1

***LINK ACCEPTED PACKET TO TRANSMIT ***LINK# IS 7

LINK RECEIVED PACKET* LINK# IS 1

**>>>>>>Task communicator accepted message received at node number---> 0

123

Packet received by task communicator reached final destination at NODE number 0

APPLICATION TASK ACCEPTED INPUT 0

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 0

******** PACKET HEADER ********
Header typeDATA_HDR
Source Node 1
Destination Node 0
Protocol Class TRANSPUTER_PROTOCOL
******** PACKET DATA ********
Data value contained 10

***** Getting a job for node 0
last job taken ... queue is empty now

JOB OBTAINED 0

Application about to attempt packet build 0

Application built packet 0

**>>>>>>Task communicator accepted message to transmit at node number---> 0

LINK ACCEPTED PACKET TO TRANSMIT LINK# IS 2

LINK RECEIVED PACKET* LINK# IS 12

**>>>>>>Task communicator accepted message received at node number---> 3

Packet received by task communicator reached final destination at NODE number 3

APPLICATION TASK ACCEPTED INPUT 3

124

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 3

******** PACKET HEADER ********
Header type DATA_HDR
Source Node 0
Destination Node 3
Protocol Class TRANSPUTER_PROTOCOL
:;c:;c,;::;c,;.,..,;.:;. PACKET DATA ********
Data value contained 10

*****Getting a job for node 3
last job taken ... queue is empty now

JOB OBTAINED 3

Application about to attempt packet build 3

Application built packet 3

**>>>>>>Task communicator accepted message to transmit at node number---> 3

LINK ACCEPTED PACKET TO TRANSMIT LINK# IS 12

LINK RECEIVED PACKET* LINK# IS 2

**>>>>>>Task communicator accepted message received at node number---> 0

Packet receive<i oy task communicaror reaciu::d fmal Ut:srinarion at :NODE numoer u

APPLICATION TASK ACCEPTED INPUT 0

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 0

******** PACKET HEADER ********
Header type DATA_HDR

125

Source Node 3
Destination Node 0
Protocol Class TRANSPUTER_PROTOCOL
********PACKET DATA ********
Data value contained 10

....

126

* * * LINK DISTRIBUTION CONFIGURED * * *
Job queue initialized
All jobs inputted

printing status of the jobs_queue

status for node 0 is true ... some jobs
status for node 1 is false ... no jobs
status for ncde 2 is false ... no jobs
status for node 3 is true ... some jobs
status for node 4 is true ... some jobs
status for node 5 is false ... no jobs
status for node 6 is false ... no jobs
status for node 7 is false ... no jobs
status for node 8 is false ... no jobs
PRllflTNGSTATUSOFPO~RS

POINTER for node 0 is NOT NULL some jobs
POINTER for node 1 is NULL ... no jobs
POINTER for node 2 is NULL ... no jobs
POINTER for node 3 is NOT NULL some jobs
POINTER for node 4 is NOT NULL some jobs
POINTER for node 5 is NULL ... no jobs
POINTER for node 6 is NULL ... no jobs
POINTER for node 7 is NULL ... no jobs
POINTER for node 8 is NULL ... no jobs
There are some jobs for this node 0
There are some jobs for this node 3
There are some jobs for this node 4
* * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * *
***** Getting a job for node 3

;o:a o:aTAIDC.U 3

Application about to attempt packet build 3

Application built packet 3

**>>>>>>Task communicator accepted message to transmit at node number---> 3

LINK ACCEPTED PACKET TO TRANSMIT LINK# IS 12

LINK RECEIVED PACKET* LINK# IS 2

**>>>>>>Task communicator accepted message received at node number---> 0

127

Packet received by task communicator reached final destination at NODE number 0

APPLICATION TASK ACCEPTED INPUT 0

PACKET RECEiVED BY THE APPLICATION TASK AT NODE 0

******** PACKET HEADER ********
Header type DATA_HDR
Source Node 3
Destination Node 0
Protocol Class TRANSPUTER_PROTOCOL
******** PACKET DATA ********
Data value contained 20

***** Getting a job for node 0
last job taken ... queue is empty now

JOB OBTAINED 0

Application about to attempt packet build 0

Application built packet 0

**>>>>>>Task communicator accepted message to transmit at node number---> 0

LINK ACCEPTED PACKET TO TRANSMIT LINK# IS 2

LINK RECEIVED PACKET* LINK# IS 12

**>>>>>>Task communicator accepted message received at node number---> 3

Packet received by task communicator reached final destination at NODE number 3

APPLICATION TASK ACCEPTED INPUT 3

128

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 3

******** PACKET HEADER ********
Header type DATA_HDR
Source Node 0
Destination Node 3
Protocol Class TRANSPUTER_PROTOCOL
******** PACKET DATA ********
Data value contained 20

***** Getting a job for node 3
last job taken ... queue is empty now

JOBOBTAINED 3

Application about to attempt packet build 3

Application built packet 3

**>>>>>>Task communicator accepted message to transmit at node number---> 3

LINK ACCEPTED PACKET TO TRANSMIT LINK# IS 13

LINK RECEIVED PACKET* LINK# IS 19

**>>>>>>Task communicator accepted message received at node number---> 4

Packet received by task communicator reached final destination at NODE number 4

APPLICATION TASK ACCEPTED INPUT 4

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 4

129

******** PACKET HEADER ********
Header type DATA_HDR
Source Node 3
Destination Node 4
Protocol Class TRANSPUTER_PROTOCOL
******** PACKET DATA ********
Data value contained 20

***** Getti..r1g a job for node 4
last job taken ... queue is empty now

JOBOBTAINED 4

Application about to attempt packet build 4

Application built packet 4

**>>>>>>Task communicator accepted message to transmit at node number---> 4

LINK ACCEPTED PACKET TO TRANSMIT LINK# IS19

LINK RECEIVED PACKET* LINK# IS 13

**>>>>>>Task communicator accepted message received at node number---> 3

Packet received by task communicator reached final destination at NODE number 3

APPLICATION TASK ACCEPTED INPUT 3

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 3

130

******** PACKET HEADER ********
Header type DATA_HDR
Source Node 4
Destination Node 3
Protocol Class TRANSPUTER_PROTOCOL
******** PACKET DATA ********
Data value contained 20

131

* * * LINK DISTRIBUTION CONFIGURED * * *
Job queue initialized
All jobs inputted

printing status of the jobs_queue

status for node 0 is false ... no jobs
status for node 1 is false ... no jobs
status for node 2 is false ... no jobs
status for node 3 is false ... no jobs
status for node 4 is true ... some jobs
status for node 5 is true ... some jobs
status for node 6 is false ... no jobs
status for node 7 is true ... some jobs
status for node 8 is false ... no jobs
P~GSTATUSOFPOThiTERS

POINTER for node 0 is NULL ... no jobs
POINTER for node 1 is NULL ... no jobs
POINTER for node 2 is NULL ... no jobs
POINTER for node 3 is NULL ... no jobs
POINTER for node 4 is NOT NULL some jobs
POINTER for node 5 is NOT NULL some jobs
POINTER for node 6 is NULL ... no jobs
POINTER for node 7 is NOT NULL some jobs
POINTER for node 8 is NULL ... no jobs
There are some jobs for this node 4
There are some jobs for this node 5
There are some jobs for this node 7
* * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * *

***** Getting a job for node 4

Application about to attempt packet build 4

Application built packet 4

**>>>>>>Task communicator accepted message to transmit at node number---> 4

LINK ACCEPTED PACKET TO TRANSMIT LINK# IS 17

LINK RECEIVED PACKET* LINK# IS 23

**>>>>>>Task communicator accepted message received at node number---> 5

132

Packet received by task communicator reached final destination at NODE number 5

*** APPUCATION TASK ACCEPTED INPUT*** 5

PACKET RECEIVED BY THE APPUCATION TASK AT NODE 5

******** PACKET HEADER ********
Header type DATA_HDR
Source Node 4
Destination Node 5
Protocol Class TRANSPUTER_PROTOCOL
******** PACKET DATA ********
Data value contained 30

***** Getting a job for node 5
last job taken ... queue is empty now

JOB OBTAlNED 5

Application about to attempt packet build 5

Application built packet 5

**>>>>>>Task communicator accepted message to transmit at node number---> 5

LINK ACCEPTED PACKET TO TRANSMIT LINK# IS23

*** LINK RECEIVED PACKET **** LINK# IS 17

**>>>>>>Task communicator accepted message received at node number---> 4

Packet received by task communicator reached final destination at NODE number 4

*** APPUCATION TASK ACCEPTED INPUT*** 4

133

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 4

******** PACKET HEADER********
Header typeDATA_HDR
Source Node 5
Destination Node 4
Protocol Class TRANSPUTER_PROTOCOL
********PACKET DATA ********
Data value contained 30

***** Getting a job for node 4
last job taken ... queue is empty now

JOB OBTAINED 4

Application about to attempt packet build 4

Application built packet 4

**>>>>>>Task communicator accepted message to transmit at node number---> 4

LINK ACCEPTED PACKET TO TRANSMIT LINK# IS18

*** LINK RECEIVED PACKET **** LINK# IS 28

**>>>>>>Task communicator accepted message received at node number---> 7

Packet received by task communicator reached final destination at NODE number 7

APPLICATION TASK ACCEPTED INPUT 7

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 7

134

*'.'****** PACKET HEADER ********
Header typeDATA_HDR
Source Node 4
Destination Node 7
Protocol Class TRANSPU1ER_PROTOCOL
******** PACKET DATA ********
Data value contained 30

***** Getting a job for ncde 7
last job taken ... queue is empty now

JOB OBTAINED 7

Application about to attempt packet build 7

Application built packet 7

**>>>>>>Task communicator accepted message to transmit at ncx:le number---> 7

LINK ACCEPTED PACKET TO TRANSMIT LINK# IS28

LINK RECEIVED PACKET* LINK# IS 18

**>>>>>>Task communicator accepted message received at ncx:le number---> 4

Packet received by task communicator reached final destination at NODE number 4

*** APPLICATION TASK ACCEPTED INPUT*** 4

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 4

135

******** PACKET HEADER ********
Header type DATA_HDR
Source Node 7
Destination Node 4
Protocol Class TRANSPUTER_PROTOCOL
******** PACKET DATA ********
Data value contained 30

136

* * * LINK DISTRIBUTION CONFIGURED * * *
Job queue initialized
All jobs inputted

printing status of the jobs_queue

status for node 0 is false ... no jobs
status for node 1 is false ... no jobs
status for node 2 is false ... no jobs
status for node 3 is false ... no jobs
status for node 4 is false ... no jobs
status for node 5 is false ... no jobs
status for node 6 is true ... some jobs
status for node 7 is true ... some jobs
status for node 8 is true ... some jobs
P~GSTATUSOFPO~~RS

POINTER for node 0 is NULL ... no jobs
POINTER for node 1 is NULL ... no jobs
POINTER for node 2 is NULL ... no jobs
POINTER for node 3 is NULL ... no jobs
POINTER for node 4 is NULL ... no jobs
POINTER for node 5 is NULL ... no jobs
POINTER for node 6 is NOT NULL some jobs
POINTER for node 7 is NOT NULL some jobs
POINTER for node 8 is NOT NULL some jobs
There are some jobs for this node 0
There are some jobs for this node 1
There are some jobs for this node 3
* * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * *

***** Getting a job for node 7

JOB OBTAiNciJ 7

Application about to attempt packet build 7

Application built packet 7

**>>>>>>Task communicator accepted message to transmit at node number---> 7

LINK ACCEPTED PACKET TO TRANSMIT LINK# IS29

LINK RECEIVED PACKET* LINK# IS 35

**>>>>>>Task communicator accepted message received at node number---> 8

137

Packet received by task communicator reached final destination at NODE number 8

APPLICATION TASK ACCEPTED INPUT 8

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 8

******** PACKET HEADER ********
Header typeDATA_HDR
Source Node 7
Destination Node 8
Protocol Class TRANSPUTER_PROTOCOL
******** PACKET DATA ********
Data value contained 40

***** Getting a job for node 8
last job taken ... queue is empty now

JOBOBTAINED 8

Application about to attempt packet build 8

Application built packet 8

**>>>>>>Task communicator accepted message to transmit at node number---> 8

LINK ACCEPTED PACKET TO TRANSMIT LINK# IS35

*** LINK RECEIVED PACKET **** LINK# IS 29

**>>>>>>Task communicator accepted message received at node number---> 7

Packet received by task communicator reached final destination at NODE number 7

APPLICATION TASK ACCEPTED INPUT 7

138

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 7

******** PACKET HEADER ********
Header type DATA_HDR
Source Node 8
Destination Node 7
Protocol Class TRANSPUTER_PROTOCOL
******** PACKET DATA ********
Data value contained 40

***** Getting a job for node 7
last job taken ... queue is empty now

JOBOBTAINED 7

Application about to attempt packet build 7

Application built packet 7

**>>>>>>Task communicator accepted message to transmit at node number---> 7

LINK ACCEPTED PACKET TO TRANSMIT LINK# IS31

LINK RECEIVED PACKET* LINK# IS 25

**>>>>>>Task communicator accepted message received at node number---> 6

Packet received by task communicator reached final destination at NODE number 6

APPLICATION TASK ACCEPTED INPUT 6

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 6

139

******** PACKET HEADER ********
Header type DATA_IIDR
Source Node 7
Destination Node 6
Protocol Class TRANSPUTER_PROTOCOL
******** PACKET DATA ********
Data value containecl 40

***** Getting a job for node 6
last job taken ... queue is empty now

JOB OBTAINED 6

Application about to attempt packet build 6

Application built packet 6

**>>>>>>Task communicator accepted message to transmit at node number---> 6

LINK ACCEPTED PACKET TO TRANSMIT LINK# IS25

LINK RECEIVED PACKET* LINK# IS 31

**>>>>>>Task communicator accepted message received at node number---> 7

Packet received by task communicator reached final destination at NODE number 7

APPLICATION TASK ACCEPTED INPUT 7

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 7

140

*****,..** PACKET HEADER ********
Header type DATA_HDR
Source Node 6
Destination Node 7
Protocol Class TRANSPUTER_PROTOCOL
******** PACKET DATA ********
Data value contained 40

141

* * * LINK DISTRIBUTION CONFIGURED * * *
Job queue initialized
All jobs inputted

printing status of the jobs_queue

status for node 0 is false ... no jobs
status for node 1 is true ... some jobs
status for node 2 is true ... some jobs
status for node 3 is false ... no jobs
status for node 4 is true ... some jobs
status for node 5 is false ... no jobs
status for node 6 is false ... no jobs
status for node 7 is false ... no jobs
status for node 8 is false ... no jobs
PRllfliTNGSTATUSOFPOThiTERS

POThiTER for node 0 is NULL ... no jobs
POThiTER for node 1 is NOT NULL some jobs
POThiTER for node 2 is NOT NULL some jobs
POINTER for node 3 is NULL ... no jobs
POINTER for node 4 is NOT NULL some jobs
POINTER for node 5 is NULL ... no jobs
POThiTER for node 6 is NULL ... no jobs
POINTER for node 7 is NULL ... no jobs
POINTER for node 8 is NULL ... no jobs
There are some jobs for this node 1
There are some jobs for this node 2
There are some jobs for this node 4
* * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * *

***** Getting a job for node 1

;o:a o:a1 AU.WU 1

Application about to attempt packet build 1

Application built packet 1

**>>>>>>Task communicator accepted message to transmit at node number---> 1

***LINK ACCEPTED PACKET TO TRANS:MIT ***LINK# IS 5

*** LINK RECEIVED PACKET **** LINK# IS 11

**>>>>>>Task communicator accepted message received at node number---> 1

142

Packet received by task communicator reached final destination at NODE number 2

*** APPUCATION TASK ACCEPTED INPUT*** 2

PACKET RECEiVED BY THE APPLICATION TASK AT NODE 2

******** PACKET HEADER ********
Header typeDATA_HDR
Source Node 1
Destination Node 2
Protocol Oass TRANSPUTER_PROTOCOL
******** PACKET DATA ********
Data value contained 50

***** Getting a job for node 2
last job taken ... queue is empty now

JOBOBTAINED 2

Application about to attempt packet build 2

Application built packet 2

**>>>>>>Task communicator accepted message to transmit at node number---> 2

LINK ACCEPTED PACKET TO TRANSMIT LINK# ISll

LINK RECEIVED PACKET *LINK# IS 5

**>>>>>>Task communicator accepted message received at node number---> 1

Packet received by task communicator reached final destination at NODE number 1

APPLICATION TASK ACCEPTED INPUT 1

143

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 1

******** PACKET HEADER ********
Header typeDATA_HDR
Source Node 2
Destination Node 1
Protocol Class TRANSPUTER_PROTOCOL
********PACKET DATA ********
Data value contained 52 •• Data received is wrong

***** Getting a job for node 1
last job taken ... queue is empty now

JOBOBTAINED 1

Application about to attempt packet build 1

Application built packet 1

**>>>>>>Task communicator accepted message to transmit at node number---> 1

LINK ACCEPTED PACKET TO TRANSMIT LINK# IS 6

LINK RECEIVED PACKET* LINK# IS 16

**>>>>>>Task communicator accepted message received at node number---> 4

Packet received by task communicator reached final destination at NODE number 4

APPLICATION TASK ACCEPTED INPUT 4

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 4

144

******** PACKET HEADER ********
Header type DATA_IIDR
Source Node 1
Destination Node 4
Protocol Class TRANSPUTER_PROTOCOL
******** PACKET DATA ********
Data value contained 50

***** Getting a job for node 4
last job taken ... queue is empty now

JOBOBTAINED 4

Application about to attempt packet build 4

Application built packet 4

**>>>>>>Task communicator accepted message to transmit at node number---> 4

LINK ACCEPTED PACKET TO TRANSMIT LINK# IS16

LINK RECEIVED PACKET* LINK# IS 6

**>>>>>>Task communicator accepted message received at node number---> 1

Packet received by task communicator reached final destination at NODE number 1

APPLICATION TASK ACCEPTED INPUT 1

PACKET RECEIVED BY TilE APPLICATION TASK AT NODE 1

145

******** PACKET HEADER ********
Header typeDATA_HDR
Source Node 4
Destination Node 1
Protocol Class TRANSPUTER_PROTOCOL
******** PACKET DATA ********
Data value contained 50

APPENDIX C

Configuration Code

(I) Searching a tree of transputers

If a transputer is booted on link parent link, then the algorithm discussed in

Chapter 4 may be expressed as follows:

SEQ

SEQ I = 0 FOR 4

downLoad[I]:= FALSE

nTransputers:= LoadingData[2]

id := nTransputers

nTransputers:= nTransputers + 1

SEQ I = 0 FOR 4 -- Try each link in turn

IF

I = parentLink

SKIP

TRUE

SEQ

waiting

badOut

·= l

:= FALSE

:= FALSE

... Search neighboring transputer (set

waiting) (i)

... Boot neighbour,and wait while config

explores (iii)

LinkOut[parentLink] ! ReturnControl.t; nTransputers

146

147

Note:

(i) Testing a neighbour:

SEQ

OutputToken.t (LinkOut[I], 0 (BYTE), Delay,

Outputint.t (LinkOut [I], Minint, Delay,

Outputint.t (LinkOut [I], Minint, Delay,

OutputToken.t (LinkOut[I], 1 (BYTE), Delay,

Outputint.t (LinkOut [I], Minint, Delay,

Clock '? time

ALT

Linkin[I] '? token -- Value returned

SEQ

stage := 2

waiting := TRUE

Clock '? AFTER time PLUS Delay

SKIP

badOut) -- (ii)

badOut)

badOut)

badOut)

badOut)

Note that the return of the value Minint indicates that a successful write and read

has taken place (the boolean badOut also indicates that this transputer has output

the write and read). waiting is now set to tme and the algorithm enters the nest

loop.

(ii) The process Output Token. t, Output Int. t, OutputString. t are

based on the output or fail routine. For example:

PROC OutputToken.t (CHAN OF ANY ToLink, VAL BYTE Token,

VAL INT Delay, BOOL stopping)

INT time :

TIMER Clock

VAL [1] BYTE String RETYPES Token

IF

stopping

SKIP

TRUE

SEQ

Clock ? time

148

tirae := t:Lue PLUS Delay

OutputOrFail.t (ToLink,String,Clock,time,stopping)

(iii) Given the success of (i) (waiting is set to TRUE), now try to boot the

neighbouring transputer:

SEQ

Try to boot neighbouring transputer

WHILE waiting -- config explores branch off neighbour

Linkin[I] ? token

CASE token

LoadingData.t

ReturnControl.t

Booting is performed as follows:

VAL [] BYTE InitialData RETYPES [Id, I, nTransputers, 0]

VAL Program IS [programTable FROM 0 FOR programLength] :

OutputString.t (LinkOut[I], Program, Delay,

Outputint.t (LinkOut[I], SIZE Program, Delay,

OutputString.t (LinkOut[I], Program, Delay,

Outputint.t (LinkOut [I], LoadingData.t, Delay,

OutputString.t (LinkOut[I], InitialData, Delay,

badOut)

badOut)

badOut)

badOut)

badOut)

(iv) The loadingData is returned to the host (for immediate display) and is

acknowledged by the token Syncronize. t. On receipt of the data, the host

process returns the token Syncronize. t. This synchronization is important, for

149

it guarantees that all transputers at stage 3 are ready to be probed on any link J, and

are not still engaged in returning loadingData.

LoadingData.t

[LoadingDataLength] INT passOnData

SEQ

Linkin[I] ? passOnData

LinkOut[parentLink) LoadingData.t; passOnData

Linkin[parentLink]

LinkOut[I)

? token -- Synchronize.t

Synchronize.t

stage := 3

(v) The return of control indicates that the tree off link I has been completely

explored. This process may now explore other links.

ReturnControl.t

SEQ

Linkin[I] ? nTransputers

downLoad[I) := TRUE

waiting := FALSE

The searching procedure is initiated by PROC Tracer booting the first transputer

in the tree, and telling it that nTransputers = 0. When that transputer finally

returns control to Tracer, the total number of transputers in the network will be
n>Mlt"nPn <>nn t},p. nPhllnrlc- unll n<>VP. hPP!n rOn"'nlPtPhr <!P<01"t"nPn -- ... -----1 --- --- --- ... · · ---- · · -- --- · - ----- - ----r-- ... --J --~ ---- -·

(ll) Searching a general network of transputers

The central part of the program looks like this:

SEQ

Initialize downLoad, id, nTransputers as before

Initialize tryLink, .linkArray

SEQ I = 0 FOR 4

IF

(i)

150

NOT tryLink[I]

SKIP

TRUE

SEQ

stage := 1

waiting:= FALSE

badOut ·= FALSE

SEQ

Initialize as before

Search neighbour (ii)

Boot neighbour, and wait for reply (iv)

tryLink[I] := FALSE

LinkOut[parentLink] ! ReturnControl.t; nTransputers

(i) Initialize tryLink [I] to TRUE for all links except the link back to the parent.

The elements 0 and 1 of the array loadingData contain the identity and link of

the parent transputer.

SEQ I = 0 FOR 4

tryLink[I] := TRUE

tryLink[parentLink] := FALSE

linkArray[parentLink] := [loadingData FROM 0 FOR 2]

(H) TherP. i~ nCJw the !_10S~ihility th:~t twCJ Hnlc:s CJn th~ s~-!!!~ ~-!lS:!_)IJt~r ~.!'le ~on_ne~ted.

Hence, the read and write must be done in parallel to listening on all other links:

PAR

Search neighbouring transputer

SEQ

Clock ? time

ALT

ALT J = 0 FOR Nlinks

(J <> I) AND tryLink[J] & Linkin[J] ? searchString

SEQ

151

linkArray[J] := [id, I]

linkArray[I] ·= [id, J]

tryLink[J] ·= False

Linkin[I] ? token

CASE token

Minint as before

AlreadyLoaded

ELSE -- error

Time out as before

(iii)

(vi)

(iii) If there is a closed loop, we get the situation that one transputer probes another

which replies AlreadyLoaded. t. The two ends then exchange the id and linl<:.

PAR

LinkOut[link] [id, link]

Linkin[link] ? linkArray[link]

(iv) As before, waiting is only set to be true if a neighboring transputer has been

found. The case when two links are connected on the same transputer need not be

considered.

SEQ

Try to boot neighbouring transputer as before

WHILE waiting

Clock ? time

ALT

ALT J = 0 FOR Nlinks

(J <> I) AND tryLink[J] & Linkin[J] ? searchString

Reply 'AlreadyLoaded.t' (iii)

Linkin ? token

CASE token

LoadingData.t

ReturnControl.t

(v)

(as in the case for a tree)

152

ELSE -- error

Time out

(vi)

(vii)

(v) In addition to passing the loading data back, a track of the children id's boot link

is also kept:

IF

stage = 2

linkArray[I] ·= [passOnData FROM 2 FOR 2]

TRUE

SKIP

(vi) A bad communication has taken place on this link by making a record in

linkArray. We use a special token TokenError. v to indicate that an

unexpected token has been returned.

SEQ

waiting := FALSE

linkArray [I] := [stage, TokenError.v]

(vii) A timeout at stage 1 implies that the link is unattached. However, if a timeout

occurs at a later stage, assuming Delay is long enough to allow for the booting of a

child, then the neighbor has not yet been successfully loaded. We report this as an

error.

SEQ

T"\~1 ~·· ----.:t

linkArray[I] := [stage, TirneOutError.v]

waiting := FALSE

Returning the Local Link Map

Having explored the local connections of each link on a transputer, and returned

control to the parent, we send back the information linkArray back to the host

transputer.

CHAN OF ANY ToParent IS LinkOut[parentLink]

153

SEQ

stage ·= 4

ToParent NetworkData.t; id; linkArray

SEQ I 0 FOR 4

IF

NOT .:io~~' Load [I]

SKIP

download[I]--Pass on network info from daughter processes

SEQ

ToP a rent

reading := TRUE

WHILE reading

SEQ

Linkin[I] ? token

CASE token

NetworkData.t

NoMoreData.t

ELSE

NoMoreData.t

(i) Pass on the identity and link array.

NetworkData.t -- pass on id and info

Tl\T'l' T"'::oqq()nTn --·- .----------
[4] [2] INT passOnLinkArray

SEQ

Linkin[I] ? passOnid; passOnLinkArray

(i)

(ii)

(iii)

ToParent ! NetworkData.t; passOnid; passOnLinkArray

(ii) There is no more data to transmit from this branch

NoMoreData.t

reading := FALSE

154

(iii) This is an error. Return a modified linkArray report.

ELSE

SEQ

reading := FALSE

linkArray[I] := [stage, TokenError.v]

ToParent ! NetworkData.t; id; linkArray

