e T

S et
P B S S o N A SR S e ~

ol e ke A\ e e e

e ey w,‘@u
S

e
P o o i e e ot A
e

o P s Pt s, i Y

e ».,,._-‘\,- -
S S,

Am:.:'_. e e
D s

e
e

U s
~»— «r-mc-. e e

s —x,—»’-‘@val»r<w e

B s

R —
e e S i s i
i e A e Pttt e o

RS
N ot o e o e
s A

T s s
R S e i il B s
e e e e L o O e S

e A o ot e 2 e T e
ey

— e
e e e e S e

o

et

,,,_,,__. e
——

o y«‘M——’e— e e P e e

e S
R e R e e
e

e e e el
S e S et

P e et
e gt i

R e e D S Aot H e o i
R e

A MULTIPROCESSOR SIMULATOR TO TEST
FAULT DETECTION AND RECONFIGURATION
ALGORITHMS

by
Unmesh Bhathija

A Thesis Submitted to the Faculty of the
College of Engineering
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Engineering

Florida Atlantic University
Boca Raton, Florida
August 1990

A MULTIPROCESSOR SIMULATOR TO TEST
FAULT DETECTION AND RECONFIGURATION ALGORITHMS
by
Unmesh Bhathija

This thesis was prepared under the direction of the candidate's thesis advisor, Dr.
Eduardo B. Fernandez, Department of Computer Engineering and has been approved
by the members of his supervisory committee. It was submitted to the faculty of the
College of Engineering and was accepted in partial fulfillment of the requirements for
the degree of Master of Science in Computer Engineering.

SUPERVISORY COMMITTEE:

Thesis Chairman ’

Dr. Eduardo B. Fernandez

Q :

Dr. Ravi Shankar

ool 0 fllollor

Dr. Taghi M. Khoshgoftéaf

HMeonate) Wi b

Chairpegsth, Department of Computer Engineering

— —
Deari, College of Engineering

A G /7550
Dean of Graduate Studies / /Date

i

ACKNOWLEGEMENTS

I would like to express my sincere gratitude to Dr. Eduardo B. Fernandez for his

valuable guidance and most patient help during the period of this work.

I would also like to extend my thanks to Dr. Ravi Shankar and Dr. Taghi Khoshgoftaar

for their suggestions.

I am extremely thankful to my parents, for making lots of sacrifices in their lives for my
overall upbringing and education without which the entire course of my life would have
been different. Finally, I would like to thank my wife, Shubhada (Yamu) without

whose support it would have been almost impossible to finish this thesis.

iii

ABSTRACT

Author: Unmesh Bhathija

Title: A Multiprocessor Simulator to test Fault Detection and
Reconfiguration Algorithms

Institution: Florida Atlantic University

Thesis Advisor Dr. Eduardo B. Fernandez

Degree: Master of Science in Computer Engineering

Year: 1990

In recent years multiprocessor systems are becoming increasingly important in critical
applications. In particular, their fault tolerance properties are of great importance for
their ability to be used in these type of applications. We have developed a
multiprocessor simulator that can be used to test different fault detection algorithms.
The processors must have four communication links. This simulator operates by
passing messages between processors. An algorithm was developed for routing the
messages among the processors. The simulator can also be used to try different
reconfiguration strategies. In particular we have tested Malek's comparison algorithm
using different multiprocessor configurations. We also developed a program which

determines the configuration of an unknown network of transputers.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION AND OVERVIEWccoiiiiiiiianann, 1
1.1 Motivation and ObJECHVEScoiieririerniieiiiiiieiarareeiasoseceaeoennsnannnnns 1
1.2 Contributions of the ThesiS.......cocviiiniiiiiiiiiiiiiiiiiiiiii e 2
1.2.1 Simulation of the architectural configuration........ccccceeviciericnnnannnns 2
1.2.2 Network simulation and routing algorithm..............c.ccoociiiiiiii.. 2
1.2.3 RecONfigUIAtON .. uuuuvuuiiieiieiarieiiinnaereneeacearenseassoncnrasasaansnsnn 4
1.2.4 Configuration SChemecccoiviiiiniiiiiiiiiiiiaiiiieceaeeeeeaeenaneannnnn, 4
1.2.5 Detection Of faults.......ocoiiiiiiiiiiiiiiiiiiiiiiiiiirirer e e enanaas 4
1.2.6 Analysis of Malek's algorithm on different configurations 5
1.3 Overview Of the Thesis.......ccccoriimuiiiiiiiniiiiiiriciee e e ereaae, 6
CHAPTER 2 BACKGROUND....ccciiiiiiiiiiiiiiiiinn st 8
2.1 The TraNSPUIET . .euevueieiteteeeeteetaerneteenineenensensanensnsneenssneeeasennes 8
2.2 The Occam Programming Language.......cccccceeeeeivvieereenereeiiiieiineeeeeenees 10
2.2.1 OCCAIM PTOCESSES ¢ tuutunrnrensararansansereneensenssessansonseesssenensenssassenns 10
2.2.2 Occam channelsoouoiiniiiiiiiiiiii i e e 11
2.3 Fault TOIEIanCe.ouviuiiiuiiiiiiiiieeiitiiieeeee et enrareietaeatesenanasneensnsnns 12
2.4 ReCONIGUIAtION .. uuuitiieiniiieiaetaeiaeaeieneananaensesssessansnsanssnsnsssenenrnnns 13
2.4.1 Construction of an initial configuration..........cccceeereecciiereniinenannnns 14
2.4.2 Achieving a given dimension.........c.ociieviiiiiiiiiiieiee e eneae, 15
2.5 Malek's Comparison Model........ccoiuviiuiniiiiiiiiiiiiiiiiererereneneeeens 17
2.6 SUIIMMATY . uitiiitiiiiiieiieeetttttetaeataranascnrasssaensosssessensnasensasenasensnenns 20

16,1

CHAPTER 3 A SIMULATOR FOR MESSAGE PASSING

MULTIPROCESSORS . . e e, 21
3.1 Organization of the SIMUAtorc.ooiiiiiiiiiiiiiiiiii 21
3.2 LINK Task . c.euuiiieiiiiiiiiiiii ittt e e e e ettt et e e et b s e eas 24
3.3 Application Task.......ccoouiiiiiiiiiiiiiiii e 24
3.4 Communicator Task.......ociiiiiiiiiiiiniiiii i e 25
3.5 Implementation of the Tasks.....cccooooiiiiiiiiiiiiiiiiiiiiniiiniiiee. 25
3.5.1 LANK taSK . ovininiiiiiieiiiai et a e e e e e e en e en e e 25
3.5.2 Application taSK «...c.einiiiiiiiiiiiceiiiii e reieeaetteee e e araaaeaaennas 25
3.5.3 CommuitiCator taSKcouvuieiuininiiiniieeiirneneneeeesaeneesaeaceaaaaas 26
3.6 Communication OPETatioNiceerreiaerieniariuensireneiesosonseaseesnrasarensasnns 27
3.7 NodeDatabasec.cinereiiiiiiiiiiii it rieerererrerattneaeteneccacnnananns 29
3.8 Parameters governing the Network Architecture..........ccccevceveievinvennnnenns.. 31
RS IN 111111 1 o PP 34
CHAPTER 4 RECONFIGURATION IN A MULTIPROCESSOR
ENVIRONMENT L. ittt ree e e e te e e e e e aas 36
4.1 Reconfiguration of a Network of Nine Processors......ccvceevevreneinreninnennens 36
4.1.1 Transforming a toroid into a three dimensional prism........................ 38
4.1.2 Transforming a three dimensional prism to a two dimensional mesh....... 39
4.1.3 Transforming a two dimensional mesh to a star configuration and
R Tha1) 1 0 | R U 40
7: NN 0101101 0 1 § o Ut 42

vi

CHAPTER 5 CONFIGURATION OF A GENERAL NETWORK......... 43

5.1 The Structure of a Tracing Program under the TDSccovoieiiiiiiiiiiian.. 43
5.2 The HOSt TranSPULET....ccccirureieeniriiueenrienterecsietisasesseransrrissasesennns 46
5.3 The Exploratory Trace PROGRAMccccciiiiiiiiiiiniiiiiniiniiiinens 48
5.3.1 INtrOQUCHON. ..cuiueiiiniiitiiiitiiiiiiein ettt sttt ereeteaeraaetentenenenanaas 48
5.3.2 Searching a neighboring transputer.........ccoooiviiiiiiiiiiiiiiiiiinnnn.e. 49
5.3.3 Booting a neighboring tranSputerccovvieiiiiiieiiiiiniiniienenannn.. 50
5.4 Exploring a Tree of Transputersccovveiiiiiiniiiiiiiiiiiieieiiiennen, 52
5.5 Exploring a General Network of TranSputers.......ccccoveveiineiiiiiineiiiinennna., 54
5.6 SUIMMIATY .. .ineeiieiieiieeeineereettasteceressssensenssosesssssessssssenasntasnonsssans 56

CHAPTER 6 TESTING AND EVALUATION OF MALEK'S FAULT

DETECTION ALGORITHM............ PSP 57
6.1 Diagnostic Tableccivviviiniiiiiiniiiiiiiiiiiiiir it 57
6.2 Implementation of the Algorithm........ccccocoiiiiiiiiiriiniiiiiiiiiiciiiiiiannnn. 58
6.3 Extension of the Simulator to Test any Fault Detection Algorithm................. 64
6.4 Evaluation of Malek's Algorithmccoooiuaiiiiiiiaiiiiiiiiiiii it cnieaannnn 64
6.5 Analysis of Different Configurations.......c.cccoiieiiiiiiiiiiiiiiiieiiaecaceaarannns 65
6.6 CONCIUSIONS ...uiuiiiiniiiiiiiiiiiiiiiiit ittt ettt eeeseeaeaseerasasesssoncnsseansnnns 72
CHAPTER 7 CONCLUSIONS AND FUTURE WORK...................... 73
REFERENCES ...ttt et eee e e e e e s s e e eaa e 76

vii

APPENDICES

Appendix A ADA SOURCE CODE FOR THE SIMULATOR............... 79

Example 1 Message passing in a toroidal configurationoccenennenn.n. 101
Example 2 Message passing in a mesh configurationccceeeeiieiiinnnanan. 113
Appendix B RESULTS OF MALEK'S ALGORITHM..........cccoceeenenne. 121
Appendix C CONFIGURATION CODE........c.cciiiiiiiiiiiiiiiiniiienenen. 146
o Searching a tree Of tranSPULErS.....o.vvieiiiieriarieeiriiiecnecnraianannns 146
419) Searching a general network of tranSputerscoeeeevevnerieeeannnns 149

viii

Table 3.1
Table 6.1
Table 6.2
Table 6.3
Table 6.4
Table 6.5
Table 6.6
Table 6.7

LIST OF TABLES

Link intercONNECHON MAPuuuiueereeaniiaaeaneranreraeaaernraanroensarnsnnaes 33
DiagnostiC tableccouiiuiniiiiiiiiii e e 58
Table for diagnosis of healthy nodes.........c..cocoiiiiiiiiiiiiiiiiiinans 63
Test cycle detecting the faulty node.........oooviiviieiiiiiiiiiiiinn... 63
Comparison parameters fOr Case 2......uiuureeninrureanraenereenrennreanrencns 67
Comparison parameters for €ase 3.......coovivriiniiiiienineniiinienenennenen. 69
Comparison parameters for case 4.........cvvuvuiuieiininineiiniiiicinnnnnnnn. 70
Comparison parameters for Case S5........coeveiiiiiuiiauenriieneieaenanenens 71

ix

LIST OF ILLUSTRATIONS

Figures

1.1 Toroidal cOnfigUrationcociuiiiiiiiiiiiieiiiiiiiiieiiiiineiieieeneenenns 3
1.2 A comparator and two cOmpared UNitS......cc.oueierneiennrnerniineneiieneinenennnns 6
2.1 Transputer with four bidirectional links.........ccccccoiiiniiiiiiiniiiiininnnnnce. 9
2.2 Generalized switCh Jattice......ouvuiuiiiiiiiiiiiiiii i 14
2.3 Lineararray froma3-cubecoeiiiiiiiiiiiiiiiiiiiiiii 16
2.4 A comparator and tWO UNIScvuiuiiinoneioiiiieneiiieiiiiniiiaiiiieicenaane 19
2.5 Comparison model graphs.........cccccoviiiimiiiiiiiiiiiiiiiiniiiiii 19
3.1 Toroidal configuration Of NinNE NOES.......ccccccoveiiiieerrrieereenneecnrerenennnnee 23
3.2 Node database.....coioviiiiiiniieiuiiiiiiiiiiiirr ettt e i eanee 30
3.3 Meshconnected NEIWOLLL ...ouiviiinuiniiiiieiiiiiiiireeirneeetaeeeierereeeneneas 35
4.1 A toroidal mesh Of NiNE PrOCESSOTS......ccevvurinierenuiirmmnerreteeeerrerneeerenene 37
4.2 A toroid with switches inserted........c..cooiiiiiiiiiiiiiiiii i reenenens 38
4.3 Transformation of a toroid int0 @ PriSIM.....c.ceevieiiiiieiiiieireeireineeeeerenenns 39
4.4 Transformation of a prism to a two dimensional mesh........c..ccoovveerereenns 40
4.5 Transformation of a mesh to a star and linear configuration........ccceeeveueee. 43
5.1 Transputer development SYSteMiuiiuiniiiiniiuiaianiineaeeerneeaeeneaneansnnanes 44
5.2 A tree Of tranSPUIETS .. .ociiuiiiitiininiiaiatetiteeeeanasaenraasessennseseensancensananes 52
5.3 Aclosed 100p CONNECHONcuininiiiiiiiiiiiiiiiiiiieiaeieeereaeieeenaeeaneanns 55
6.1 Set Of three PrOCESSOTS . .cuinirinintiiiiiiieeiiniitineeeataeeenaansarensceaeancnns 59
6.2 Pictorial view of the diagnosis of ninenodesccooevviieiiiniieininnen.. 62
6.3 Nine nodes in a toroidal configuration.............c.ovveiiviieereeieieennreenennns 66

X

6.4
6.5
6.6
6.7

Star shaped configuration........cccccciiieiiiiiiiinieiiinuniieiieneiereenaenncnnn. 67

Lattice structure with nine NOdeS........ccieeeicciiiiiienineiiiiiiinineiieienncienns 68
Lattice configuration for ten nOdesccccvuvieiiiiiiiiiieiiniieiiiiaieeeannaans 69
Five nodes connected in a pentagonal shapecccccveiuiiiiiiiaiiniiennnnnn. 71

X1

CHAPTER 1

INTRODUCTION AND OVERVIEW

1.1 Motivation and Objectives

Recent years have brought the need for fault tolerant multicomputer systems that
are capable of supporting continuous service over long periods. Typical applications are
air traffic control and national defense message switching systems where clearly human
life is at stake, while for banking systems, ticket reservations, telephone exchange
control, and other forms of message switching, investment and revenue are more
important. In fact, most real time computer control systems require fault tolerance of a

measure beyond that readily obtainable from conventional computer systems.

The basic objective of fault tolerance is to provide systems with the capability of
performing their intended work in the presence of fauits. Fault tolerance is provided to
a system through fault masking (using enough redundancy to hide the effect of a fault)
or through a set of functions including fault detection, fault confinement, and system

reconfiguration.
The most convenient way to obtain a high level of fault tolerance is by using
multiprocessors. Other reasons why multiprocessor systems are given much

importance are better performance and a lower growth cost and serviceability.

Multiprocessor architectures can be classified in many different ways:

* Based on granularity of unit of concurrency: job level, process level, instruction
level, microinstruction level.

* Based on coupling between processors: loosely coupled or tightly coupled
multiprocessor computer networks.

* Based on data and instruction flow: SISD, SIMD, MIMD, etc.

A further classification of multiprocessors is based on whether they fall under the

category of shared memory systems or message passing systems.

This thesis describes a simulator to model some fault tolerance aspects of a
message-passing multiprocessor system. Specifically we apply this simulator to study
the operation of a comparison algorithm to detect faults and to analyze reconfiguration

and configuration aspects of complex interconnections of processors.

1.2 Contributions of the Thesis
1.2.1 Simulation of the architectural configuration

The multiprocessor architectures which we consider are interconnections of
computer nodes. The computer nodes can be of any reasonable type, provided they
have at the most four serial links to form the connection edges for building a message
passing network. The simulator can be applied to any interconnection structure for any

number of processors by changing certain input parameters.

1.2.2 Network simulation and routing algorithm
To show an application of the simulator we simulate a network of transputers

using an architecture such as the one shown in Figure 1.1. Every node has four links

which are used for message passing. Thus, while passing messages even if one or two

links fail, the message can still be rerouted via another path.

A transputer is a special type of microprocessor which has a few registers and
some local memory. It supports concurrent processing and has a built-in byte oriented
protocol. We have selected a transputer for our simulation because it is a promising
building block to construct modular multiprocessors. Its point-to-point communications
architecture made up of four links makes it particularly appropriate for high-bandwidth

interconnection structures.

Figure 1.1 Toroidal configurartion
We have developed an algorithm for routing messages between different

processors in the network. The algorithm uses a store and forward scheme for the

delivery of messages. The messages are sent and received by processors with the help

of a special communicator task.

1.2.3 Reconfiguration

We apply a switched lattice method proposed by Snyder [Snyd82] to achieve
reconfigurability in the multiprocessor environment. We show how a transputer based
multiprocessor can move from one configuration to another with the aid of a

recenfiguration controller.

1.2.4 Configuration scheme

We have developed a configuration program in Occam which traces an
unknown network of transputers and determines its configuration. This program is
useful when a large number of transputers are connected to form networks in
multiprocessor arrays. These arrays can become quite large and complex. The program
can also be used to load code segments into a network whose configuration is not

known in advance.

1.2.5 Detection of faults
We extend the simulator to implement a specific fault detection algorithm. In
particular we implement a comparison algorithm to detect a faulty unit in a network of

transputers. However, the simulator can be applied for various other fault detection

algorithms.

This comparison algorithm is based on a model introduced by Malek, and can

be explained as follows:

As shown in Figure 1.2, let us consider a set of three processors. We want to
find which of the three units (1 or 2) is faulty. We proceed by assigning unit 3 the tasks
of a comparator. Unit 3 must be a healthy unit. Unit 3 assigns some tasks to nodes 1
and 2 and then compares their outputs. If it detects a mismatch it can determine that
there is a faulty unit. If the outputs match, we conclude that nodes 1 and 2 are fault-

free. We prove unit 3 to be healthy in a similar fashion.

We show how other fault detection algorithms can be implemented by changing

some input parameters of the simulator.

1.2.6 Analysis of Malek's algorithm on different configurations

We find out the comparison parameters, i.e. the number of comparison cycles
and the comparison edges required to detect a single faulty processor in different
environments. We consider five different cases, which describe different
multiprocessor architectures. Malek's algorithm is applied to each of these structures
and the comparison parameters are calculated for all these different configurations.

These results can be used to verify the operation of the simulator.

Comparator

SHERS

Figure 1.2 A comparator and two compared units

1.3 Overview of the Thesis
Chapter 2 elaborates some background information on the transputer
architecture and Malek's algorithm. It also explains the switched lattice method

proposed by Snyder.

Chapter 3 describes the general structure of the simulator and the various data

structures used in it. It also describes how communication is implemented.

Chapter 4 describes a reconfiguration scheme proposed by Snyder to restructure

the network of processors to adapt itself to different topological structures.

Chapter 5 explains a configuration scheme which explores an unknown
network of transputers. This is useful in confirming that the transputers have been
connected in a particular configuration as required for some particular task and that they

are all working properly.

Chapter 6 describes the simulation of Malek's comparison algorithm [Male80].
We also discuss how other algorithms can be implemented in this simulator. We further
present some results of applying Malek's algorithm to a selected set of multiprocessor

structures.

Chapter 7 presents our conclusions and future work.

Appendix A shows the source code for the simulator along with the input and

output files.

Appendix B shows the results of applying the simulator to detect a fault in a
network of transputers. We also show how the simulator can be applied to an alternate

configuration of multiprocessors.

Appendix C illustrates the configuration program which is used to trace an

unknown network of transputers.

CHAPTER 2

BACKGROUND

We present in this section some background information on the transputer
architecture and the model of our example network. The transputer fits well the

requirements of this simulator and will be used as an example processor.

A reconfiguration scheme based on a generalized switched lattice is also briefly
discussed to show how a transputer based multiprocessor can move from one
configuration to another. This is a type of function which would be of value for this

simulator.

A comparison method introduced by Malek for fault diagnosis of
multiprocessor systems using a graph theoretical model is also discussed. Given a
system of 'n' units modeled by a linear graph, one can locate the faulty unit using this
algorithm. The minimum number of comparison edges and test cycles required for fault
detection is given by two of Malek's theorems and can be used for the efficient

application of this algorithm in a complex network.

2.1 The Transputer
A transputer is a microprocessor designed for efficient concurrent execution.
This high performance is obtained by reducing the overhead involved in task switching

and by high bandwidth interconnections. The transputer has only a few registers and
8

two predefined queues for processes with two priority levels. In addition, the

transputer instruction set is small, which also accounts for its high performance.

The transputer implements the model of interprocess communication defined by
the Occam language [Poun86], which is based on the CSP notation [Hoar78]. A unique
feature of the transputer is that its I/O hardware links function as communication
channels, i.e. the four serial links provide a path for message passing. Each transputer
has four serial bidirectional links (as shown in Figure 2.1) with a byte-oriented
protocol. This allows to use them as building blocks by interconnecting them in a
regular structure. This simple interconnection scheme is provided by a simple link
hardware protocol which is common to all members of the transputer family. The
transputer manufacturer, INMOS, provides an off the shelf line of link adapters which

allow to interconnect transputers with other devices.

Figure 2.1 Transputer with four bidirectional links

10

2.2 The Occam Pregramming Language

Occam is the transputer's programming language. The choice of the features in
Occam has been motivated by the need to support many communicating processes to
perform a common task. Occam enables a system to be described as a collection of
concurrent processes, which communicate with each other and with peripheral devices

through logical communication channels.

2.2.1 QOccam processes
Writing an Occam application model begins by describing some problem as a
collection of tasks or events. A task or process is a program component that is executed
asynchronously. Occam programs are built from three primitive processes:
v:=e Assignexpression e to variable v.
c!e Outputexpression e to channel c.
c?v Input from channel c to variable v.
These primitive processes combine to form constructs:
1. Sequential (SEQ)
The statements following this construct are executed one after another.
2. Parallel (PAR)
All components in the scope of this construct are performed concurrently. The
construct terminates when all constituent components are executed.
3. Alternative (ALT)
In Occam programming, it is sometimes necessary for a process to receive an
input from any one of the several other component processes. For this purpose Occam

includes an ALT construct. Each component of an ALT construct starts with a guard.

11

The guard is an input possibly with a boolean expression. The earliest process which
satisfies its guard condition is executed first. If two or more processes satisfy their
guard condition then either process is executed first. The choice in this case is arbitrary.
4. Conditional (IF)

This construct is followed by a condition. If the condition is true, the primitives
encompassed by the construct are executed.
5. Repetition (WHILE)

A condition follows the WHILE and the primitives encompassed by the

construct are executed until the condition is false.

2.2.2 Occam channels

Message passing has been adopted in Occam for process communication
through the use of channels. Communication in Occam occurs when one process names
another as destination for output and the second process names the first as source for
input. When this happens the output values are copied from the first process to the
second. The transfer of information occurs only when both the source and destination
processes have invoked the input and output commands respectively. This implies that
either source or destination process may be suspended until the other process is ready
with a corresponding input or output. Thus the communication facility of Occam serves
as a synchronization mechanism. At the execution level the transputer reflects the
structure of the Occam language. The transputer is used to model Occam processes and
the interconnecting links are used to model Occam channels and vice versa. One can

have an arbitrary number of logical channels but for communication between processes

12

on different transputers, the maximum number of channels is four since there are only

four physical channels.

2.3 Fault Tolerance

A basic requirement of fault tolerance is redundancy. In fault-tolerant designs
redundancy is used to provide the information needed to mask out the effects of
failures. Redundancy is achieved through additional time, information or components.
One form of time redundancy involves extra executions of the same calculation,
perhaps by different methods. Comparisons or other operations on the multiple results
(identical when no errors are present) provide the basis for subsequent action. Time
redundancy is usually provided by software. Component redundancy is aimed at
providing continued service even when some component units fail and also constitutes
the basis for certain forms of fault detection, e.g. comparisons. Component replication
can occur at many levels in a system, e.g. circuit level, gate ievel, logic unit level and

even at higher levels such as buses, memory subsystem, processors, etc.

Hardware redundancy usually takes the form of dual-duplex configurations,
triple modular redundancy (TMR), or N-modular redundancy (NMR) voting schemes.
In addition, other schemes are also available, e.g. reconfigurable NMR. These schemes

provide a fine granularity for fault detection and isolation.

Multiprocessors are designed with various degrees of coupling, so we find for
instance tightly coupled systems in which interprocessor communication takes place

over a common global memory area and loosely coupled systems in which processors

13

communicate among themselves by sending and receiving messages. One aspect of
fault tolerance is easy to achieve in a loosely coupled system because messages are an
explicit way of communicating among processors and processes. In addition, loosely
coupled systems are not subjected to certain single point of failures such as failure of a
global bus, global memory states, etc. For these reasons, there is interest on fault
tolerant systems based on multiple processors and loosely coupled schemes. In addition
a large amount of current research is dedicated to this field for the following reasons:

* A message is an explicit form of communication, and makes it easier to provide error
detection, confinement, and recovery.

* Synchronization is not dependent on low level features (e.g. locks, indivisible
operations which are costly and difficult in multiprocessor environments)

* Message passing is the choice of synchronization and communication between objects
and object oriented programming is a methodology which is becoming more and more

popular.

2.4 Reconfiguration

There has been a considerable amount of research going on in the area of
reconfigurable systems ([Kart78], [Kung84], [Yala85]). Reconfiguration may be
needed in a system for various reasons. It could either be for reallocation of processors,
for efficient processor utilization, for generation of a new topology that matches a
certain algorithm, or to achieve fault tolerance. We consider the problem of
reconfiguring a multi-microprocessor system in order to adapt to a new topology. We
have chosen a transputer as the microprocessor for the reasons mentioned in Section

2.1.

14

The switch lattice approach proposed by Snyder [Snyd82] is two-dimensional.

In practice, however, higher dimensional configurations are often desired.

2.4.1 Construction of an initial configuration

An initial configuration must be easily reconfigurable. Change of the dimension
should not be very complicated. Further initialization must be easy to perform. From ail
these considerations, an n-cube is considered to be a good choice for the starting
configuration of a network of processors. Thus, the initial switch lattice is an n-cube as
shown in Figure 2.2. There is a transputer on each node and there is a switch between
any two adjacent nodes. The switch itself has memory to store the connection

information which is a pattern of 1's and 0's to indicate the switch's on and off states.

S0

N
A

I

{I) $3 2 Os1
—.:Ei(_s)ﬁ'—— ()S_Z 1
[Fe]

Oso §7 S8
/

s1

S5

S4
N
W/

Figure 2.2 Generalized switch lattice

15

The n-cube can be reconfigured either into a one dimensional structure or into a
variety of higher dimensional structures depending on the application requirement. All
this can be done by turning the right switches on and off, which, in turn, can be done
through loading the switches memory by an external controller. Since the switches
work collectively towards an objective with certain configuration, they should be

syncronized.

2.4.2 Achieving a given dimension

One of the powerful properties of the generalized switch lattice is the ease with
which the dimension can be changed. A user can get the configurations of dimension
ranging from 1 to n. As an example a 3-cube can be easily changed to a two
dimensional topology by cutting down some edges, that is, by turning all the
corresponding switches off. Similarly, one can construct configurations of any
dimension. The parameters which a user should provide are the dimension and number
of processors needed. A condition has to be satisfied regarding the dimension and the

number of processors, i.e.

n =24, where
d denotes the dimension and n is the number of processors.
To generalize the condition, a single processor is defined as 0-dimensional,
(a) If n < 24, the controller issues an error message
(b) If n = 24, no dimensional change is needed
(c) i n> 24, the initial state needs to be reconfigured.

16

An example to illustrate the above conditions is explained with the help of
Figure 2.3. By turning switches S1 and S3 off, a 3-cube (a three dimensional structure)
can be changed to a two dimensional array. Similarly if switches S2 and S6 are turned
off a linear array can be formed as shown. The parameters chosen in this example are n
=8 and d = 3. In general terms if n = 24 and we have a m-cube machine, m > d, one

can have two or more task sets in operation concurrently. This is applicable to any

subset of processors.

SO
PO O P1 O
I .
s11 5 §10 s11. () Os10
I Os S1, 3 OFF fﬂ
s6 > J
P2 : P3| g ssQ s Os7
PA - —F (O 15 O
/
S5
Q O 57 <8 90 Oss
/ s2
sS4 10,
e II C ™7
' $2, S6 OFF
P5 P7 P3 P1 PO P2 P6 P4
S8 S7 S10 S0] Si1 D S5 D S9 D

Figure 2.3 Linear array from a 3-cube

17

2.5 Malek's Comparison Model

Various approaches have been proposed for self-diagnosis of multiprocessor
systems [Liu80], where the Preparata, Metze and Chien (PMC) model [Prep67] is the
most classical one. Examples of the comparison method were shown by Toy [Toy78]
and DeGonia [Degon78]. Malek [Male80] expanded the idea and introduced a
comparison connection assignment for fault diagnosis in multiprocessor systems,

where a pair of units is assumed to be compared by another unit.

Malek's method takes advantage of the homogeneity of multiprocessor systems
in which comparisons can be made easily. A comparison is performed such that a
processor, chosen to be a comparator, monitors a pair of processors executing the same
test input and compares their responses. Any mismatch during the comparison period

indicates some failure in the set of three processors.

A multiprocessor system is modeled by an undirected graph G(V,E) where V is
a set of vertices that correspond to processing units and E is a set of bidirectionsl
communication links. Each pair of processors (v;, vy) is tested by a processor v;, by
comparing their outputs. A comparator is any unit v; in the system which compares a
pair of units v; and vy during the test cycle and forms a comparison edge Cji,k through
two communication edges ejj and ejk as shown in Figure 2.4. A mismatch indicates a
fault in either vjor vg. A set of tests can be described by a graph G(V,C) where Cis a

set of comparison edges Cj'y defined as

18

Cji x =0if v;, v;and vy are fault free
= 1 if v; is fault free and either v; or vy is faulty
= X (don't care) if v; is faulty
A comparison model is illustrated in Figure 2.5 which shows a graph G(V,E)
and its corresponding graph G(V,C).
A basic assumption in Malek's model is that a faulty processor performs all of

its assigned tasks incorrectly and faults are permanent.

Malek's algorithm is appropriate for single fault diagnosis. We can also find the
number of comparison edges required and the number of comparison cycles to detect a
fault in a network of processors. These two parameters are respectively denoted by q;

and ¢,

The case of fauit detection is straightforward. In order to detect whether there is
a faulty unit in the system, every unit should be compared to some other one. In an
ideal case, if there is an even number of units and there are connections sufficient to
cover every pair separately by a single link, the number of required comparison edges
is equal to n/2. If the number of units is odd, then the obtainable minimum equals the

upper approximation of n/2.

19

Figure 2.4 A Comparator and two compared units

0 0

Re

.“l L RS
JCIR BN NN
A I TS
R4 r *
o]] *e
.’ 1] 1} *e
L4 L Rl Y “
o‘_-‘—‘l \~.‘~.‘v
1 3 a2 [) ~ 2
AT -
- 1 1 =" *
- S~ ™ R
°e) [o*
i v o R
*. vt o
.s L T ,'
*« v L
s, v,

O g

2
2

Graph G(V.E) Comparison Graph G(V,C)

Figure 2.5 Comparison model graphs

20

The upper and lower bounds for the number of comparison edges (4)) in order

to locate any fault in a multiprocessor system are [Male80] :
n
n-113 |« ql <n-1

Also the bounds for the number of comparison cycles (c;) needed to detect a

faulty unit are

n+l
I—"’z‘“-| <¢ £n-1

where n is the number of units in the system being analyzed.

2.6 Summary

This chapter explains the transputer architecture and some fault tolerance aspects
of a multiprocessor system. We explain briefly the Occam language and its relevance to
the transputer. A reconfiguration scheme for a multiprocessor system to adapt itself to
any topological structure is also discussed. The switched lattice approach is used to
reconfigure our network of multiprocessors into two different topologies. We also

discuss Malek's comparison model to detect a faulty unit in a network of processors.

CHAPTER 3

A SIMULATOR FOR MESSAGE-PASSING MULTIPROCESSORS

In this section we present a description of a simulator for message-passing
multiprocessors. The processors are restricted to have at the most four interconnection
links. The interconnection network can be of any type and can be expanded to
accomodate any number of processors. We can simulate faults and use algorithms to

detect a faulty node in the network. In later chapters we discuss additional functions not

yet implemented.

3.1 Organization of the Simulator
The network simulator provides a functional simulation environment which
considers the communication aspects of a multiprocessor system. Specifically, the
simulator is illustrated using a 3 X 3 network of nine nodes connected in a toroidal
configuration. This arrangement can describe many interconnections of computer nodes

by changing the link configurations through some input parameters for the program.

A processor is simulated as a collection of independent cooperating tasks. For
the programming of the simulator, the Ada language was considered to be a good
choice because of its concurrent facilities and structured approach [Booc83], [Buhr84].

The major relevant features of Ada are:

* concurrent programming : to express the concurrency that exists in a transputer

21

22

network (each node is able of independent execution) and to express the
concurrency that exists within a transputer (the processors and the links work
concurrently). In this way each component able of independent execution can be
simulated by a separate task.

* communication : to express the information transfers between the transputers of
a network, between the memory and the processor in a node.

* error handling mechanisms in order to deal with predefined system error
(arithmetic errors) and simulation errors(deadlocks, etc.)

* visibility features: Ada allows several ways to combine packages, including
packages at the same level that can see each other, packages that depend on
other packages, and nesting of packages. The required structuring depends on
the needs about type and function visibility, as well as other considerations such

as sharing of objects , reusability, performance, and readability.

Originally we intended to design all the component tasks separately (links,
communicators and applications) and then instantiate them under a common dummy
task; however, Ada made this approach difficult because of visibility constraints. For
this reason all component tasks of the processor are implemented separately within the
same procedure at the same level so that they can see each other. Thus a processor is
described by a collection of tasks.

Each processor task is simulated by the following tasks (Figure 3.1):

1. Four link tasks.
2. An application task.

3. A communicator task.

23

>

Figure 3.1 Toroidal configuration of nine nodes

24

The link task simulates the communication characteristics of a link. The basic
link operation is to transmit or receive requests. The application task is an abstraction of
a processor's computational activity. The communicator task provides the basic task

type to support the protocol communication and error detection primitives.

These three tasks correspond to components that are able of independent

execution and that are of significance for the objectives of this simulation.

3.2 Link Task

This type of task consists of three entries: a CONFIGURE_LINK entry which
is required by Ada to be able to identify the task and two entries SEND and RECEIVE
which allow the bidirectional sending and receiving of packets that represent messages.
The messages that we pass between different nodes are in the form of packets. Since
we are not studying the effect of data types each packet just contains integers in our
case. The link configuration of the grid is defined in a separate input file which defines

the link interconnections among the different nodes.

3.3 Application Task

The application task receives messages from other nodes to transmit to other
application tasks residing in different nodes. We have made the simulation user friendly
so that as the message travels from a source node to a destination node the user gets
informed at every stage about the status of the message and the path via which it

traverses.

25

3.4 Communicator Task

The communicator task performs various operations on the packets. It provides
the basic task type to support the protocol communication in the simulation
environment. It builds its own database to calculate the offsets to be used in routing the
packets. The offsets determine which adjacent links are to be used by the packets for
their routing. The communicator task contains three entries. The first one is similar to
the one explained above in the link task, i.e. a CONFIGURE_LINK. Two other
entries are a TRANSMIT entry and a RECEIVE entry. The TRANSMIT entry is used
by the application task to request transmission of a packet to another node in the grid.
The RECEIVE entry is used by the corresponding link tasks to pass a received packet

to the communicator task residing in another node.

3.5 Implementation of the Tasks
3.5.1 Link task

The link task is a generic processor link. This task identifies the node to which a
particular link is connected. It also recognizes the links of the nodes to which a
particular link is connected. Functionally, it sends a packet to the communicator task of

another node.

3.5.2 Application task

The application task represents a user defined computational activity. The
application part within each node in the multiprocessor system simulates a
computational activity. We create an input file in which requests for the various nodes

can be inserted by the user. In this case the request is in particular a user defined

26

activity which happens to be the SEND_TO operation. The SEND_TO defines the
source node and the destination node identity for a message to pass between any two
processors. A job is an intended action requested by the user. Requests consist of an
originating node number, a destination node number and the type of job (currently only
send_to is implemented). Jobs are then read from the input file and stored in the form
of a FIFO queue for each node. There could be various requests in the input file for
different nodes.

When an application task decides that the job obtained consists of a request to
send a message, it partially formats a packet and sends it to the communicator task. On
the other hand, if the application task receives a packet, it displays a message on the
terminal indicating that it has received a packet and prints its contents. This allows to
verify that a packet has reached its final destination. The packet usually has to traverse
intermediate nodes unless the destination node is adjacent to the source node. When it
moves through the intermediate nodes the message displays the node information and

the contents of it in a similar fashion as it would do for a destination node.

3.5.3 Communicator task

When a packet is passed to the communicator task through its TRANSMIT
entry, this task applies some routing functions (described in the next section) to
determine through which of its attached links the packet should be sent to another node.
When a packet is passed to the communicator task through its RECEIVE entry, the
communicator task finds out if the packet is for the current node in which case it passes

it to the application task. If the packet is not for the current node, i.e. the destination

27

node identifier is different from the current node identifier, it then performs additional
routing functions to determine to which of its attached links the packet should be

forwarded.

3.6 Communication Operation

A packet is described by a record specifying the header and data portion of the
packet. When a packet to be sent to a destination node is originated in a node, the
communicator task attempts to find a route for it. For this purpose it invokes a
procedure, which determines through which of its links the packet should be sent. This
packet is then received at one of the adjacent nodes through the link attached to the

originating node.

When a packet received by a node is not directed to this node, i.e. the
destination field in the packet is different from the current node_id, it is forwarded to
another node using a local routing function. This routing function provides a check to

confirm that the packet has indeed reached the destination node.

The following events take place in the simulator when a message passes from
one node to another :
* A packet is received by a node and is stored in a buffer.
* The link of the receiving node notifies the task in charge of getting the received
packet that a packet has been received. A direct call to the task communicator is
used for this purpose.

* The communicator task stores the packet, performs some transformations on it,

28

i.e. it makes the necessary changes (described in Section 3.4) to continue the
required processing.

* If the destination_id field within the packet is the current node, the packet is then
passed into the application or any other specified destination task. ~

* If the packet is not for itself, i.e. the node_id of the current node is different from

the final destination_id of the packet field, a forwarding function is invoked.

If the destination node is in the same row of the network as the current node
(the one which just received the packet), a function is invoked to determine if the
destination node is to the right of the current node (a higher column number) in which
case the packet is forwarded to the right through the right link. If the packet is for a
node located to the left of the current node (a lower column number), the packet is
forwarded to the left using the left link of the node. If the current node and the
destination node are not aligned (neither in the same row nor in the same column), a
predefined routing policy is used to forward the packet. This could have been any

random direction. In our case we send the packet to the bottom.

Teve s a Aacian am alrnmithon fae sha bt e AL wmnnalratn laateriames .o
iduo WS CVUASLL Al GAG/L Abddaks AL LV A\.I“ullé wi yu\u\vtu oW ol untv‘uxvunut\a

nodes. This, however, is a centralized algorithm for the whole network and cannot be

applied locally to a specific node.

The pseudo code for the routing algorithm is as follows:
Find destination for the packet -- i.e. read destination field

if in the same row of the grid

29

then
if to the right
then forward_to_right
else forward_to_left
if in the same column of the grid
then
if above
then forward_to_top
else forward_to_bottom
if not in the same row or column
then
if in row above
then forward_to_top

else forward_to_bottom

3.7 Node Database

It has been mentioned in the previous sections that routing takes place in the

Arenemvininatae tncl- ‘:M thic mrnAaca cAnma snntn s neanodnean Ane A Amaliad
WASALAL AL LA WA LS batasahe 4 el Y e e LY) fAvvvumvu \.u.n [P e~ u.yt/uuu.

However the final link assignment for routing purposes is achieved by using the node
internal database.

A node database is shown in Figure 3.2. It consists of a list of the link
connections (the hardware connection is determined by the input parameters) and a

routing function.

30

Application task

Node identifier

Task communicator entry

Communicator task

Node identifier

Link up identifier

Link right identifier

Link down identifier

Link left identifier

Application entry

Link entry

Task link up

Link identifier

Partner link identifier

Communicator task

Link entry

Communicator entry

Task link left

Link identifier

Partner link identifier

Communicator task identifier

Link entry

Communicator entry

Figure 3.2 Node database

31

3.8 Parameters Governing the Network Architecture
The parameter which decides the link connection map is the file oriented user
interface. In other words, this input file describes the link interconnection map for a

multiprocessor network.

The link connection map for the example network is illustrated in Table 3.1. Every
node has four links and the links are numbered in a cyclic fashion. The first column
lists the nodes to which the links are attached. The second and third columns describe
the link interconnection structure for the network. The following example will help
understand the map in a more precise way. The first entry in the first row describes that
link number 0 (second column) of node number O (first column) is attached to link
number 26 (third column). Link number 26 happens to be a serial link for node number

6 as one can see from row number 27.

Row_no. Node_no. Link_no. Link_no.
1 0 0 26
2 0 1 7
3 0 2 12
4 0 3 9
5 1 4 30
6 1 5 11
7 1 6 16
8 1 7 1

32

34

20

(o]

19

24

21

23

28

13

10

15

32

17

14

31

33

18

35

10

11

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

33

33 8 32 22
34 8 33 27
35 8 34 8

36 8 35 29

Table 3.1 Link connection map.

To implement a different architecture, this link map will have to be modified
according to the specifications of the network. The user would know the link
interconnection information, i.e. the individual link identifications of a pair of nodes to
be connected. The user would need to edit the link interconnection map for a different

architecture.

Furthermore, this simulator can be extended to implement any number of
nodes. For the example network, we declare two arrays which define the number of
nodes, viz.

application : array (0..n) of application_task;

communicator : array (U..n) of communicator_task;

The elements in these arrays define the number of nodes. The user can change these

values to accomodate any number of nodes.

34

The source code for the simulator is illustrated in Appendix A. Our simulation can be
applied to any configuration. Two examples are tested and the results are shown in
Appendix A. In example 1 we consider a toroid of nine processors and in example 2 we

consider a mesh connected structure as the one shown in Figure 3.3.

3.11 Summary

This network simulator can be used to test fault detection algorithms. The
network simulator is basically a tool which can be applied to any configuration,
provided some of the variables and functions are altered. The simulator bases its
operation on a message passing system. The simulator can be extended to include

functions such as reconfiguration so that it achieves some fault tolerance aspects.

35

Figure 3.3 Mesh connected network

CHAPTER 4

RECONFIGURATION IN A MULTIPROCESSOR
ENVIRONMENT

To enhance the flexibility of the simulator the next step would be to consider a
reconfiguration scheme to generate a new topology. By reconfiguring a network of
processors one can achieve an efficient way of executing a particular algorithm which
needs a particular architecture. Also if a node fails in a network, then the network has to
be reconfigured for it to still function properly. One could isolate the faulty node and
keep the network running with the remaining nodes. The current network of processors

can be reconfigured into different architectures by a method suggested by Snyder

[Snyd82].

In this Chapter we explain a methodology to transform a multiprocessor
configuration to adapt to four different topological structures. It bases its operation on

the switched lattice discussed in Chapter 2 (Section 2.3).

4.1 Reconfiguration of a Network of Nine Processors

The simulation which we have developed can be applied to a specific
configuration as shown in Figure 4.1. This is basically a toroidal mesh of nine
transputers. Every processor in the system has four serial bidirectional links which are
used to connect to other processors in the network. We apply Snyder's switch lattice

method to adapt this configuration to four different topologies. We can implement this
36

37

approach in our simulator by defining a separate switching task which would control
the switching action for the various switches between any pair of nodes. In other words

the switching task would execute the functions of the external switching controller.

PO P1 P2
P3 P4 PS
P6 P?7 P8

Figure 4.1 A toroidal mesh of nine processors

A switch is inserted in each of the links connecting the transputers in the toroid.

Tie fwiciion of e sWiiChes is 0 iudii the liixs On and Oii. Dy J0iiig 50 vaiious
configurations can be formed. The switches are controlled by an external controller
which decides when they are to be turned on and off. Each switch has memory to store
the connecﬁon information which is a pattern of 1's and 0's to indicate the switch's on

and off states. Figure 4.2 shows the toroid with the switches.

38

PO P2
866 > 876 St 88(5 S15

s12 s13 S14
)))

P3
59(5 - 510(5 33 511(5 S16

p6 O P10 P8
S4

S17

Figure 4.2 A toroid with switches inserted

4.1.1 Transforming a toroid into a three dimensional prism

As explained previously we have nine processors in a two dimensional array.
So,n =9 and d = 2, where n and d are the number of processors and the dimension
respectively. Thus we encounter the condition n > 24 (Section 2.3.2). Thus the initial
confignration a toraid in aur case, can he recanfigured, Ry turning off switches §12,
S13 and S14 the toroid gets transformed to a three dimensional prism. The

transformation is shown in Figure 4.3.

39

Figure 4.3 Transformation of a toroid into a prism

4.1.2 Transforming a three dimensional prism to a two dimensional
mesh

In the prism we have nine processors but the dimension has changed. The
parameters n and d will hence change. Now n =9 and d = 3. Thus now our initial
configuration which is a prism can be reconfigured according to the condition
n > 24, We turn off the switches S0, S2 and S4. This converts the prism to another two

dimensional structure which is an ordinary mesh as shown in Figure 4.4.

PO O P1 O P2 Fo
S o1 SO S15
560 s70 80 515| /O/ I
) s13 S14 T T
s1 1
| L s s (')ss
- _g P4 —8 P5 $12,513,514 OFF S7 s2_ 1P 516 58
3 _—
90 5100 5112; S16 -9 | 0,
p4 }—QO—1 P5
S3 OS9
2610 P70 P8 510 P6 Si
s4 S17
S4 S5 O/
s17 d A
P7 O P8
S5

40

PO
sﬁo/ S15 s
| Pl —0—i P2
Pl —O——P2
s1 s6
S ' S8 >
7 P3
2
o T 50,52, 54 OFF s3
< . » |P4}|—O—Ip
P4 | PS
S3 OS9
s11 S10
S10 56/ P6| <17 g
P7 P8 =

5
P8

15
O PO
S8 s6
s16
—O—ip3
sS4 9
S17
—0O—ps

2o

Figure 4.4 Transformatuion of a prism to a two dimensional mesh

4.1.3 Transforming a two dimensional mesh to a star configuration and

a linear array

The two dimensional mesh has the same parameters as those of a toroid. Now

we treat this new configuration as our initial state. We come up with two different

topologies by turning of a certain combination of switches. When switches S3, S6 and

S16 are turned off , a star configuration and a linear array of processors is formed as

shown in Figure 4.5.

P4

S1 S15
P1[—O—{p2[—O—ro
S7 S8 S6
S3 ! S16
P4 —O0—{ps —O—Tr3
S10 S4 59
S5 | S17
P71 —O—p8|—0O—p6
S§3, §6, S16 OFF
S10 S5 $17 S9
O—{p1}—O0—{rs}—O0——rs}—0—]

Figure 4.5 Transformation of a mesh to a star and linear configuration

P5

S8

S15

S1

P1

| %

42

4.2 Summary

We describe a way of reconfiguring our network by the switch lattice approach.
However, in this method the most complicated part is the time complexity of changing
from an initial state to another topology. The controller has to find out which switches
are to be turned on and off at any instant of time. There should be certain rules to be
followed in order to achieve the syncronization of the switches. We can implement this
reconfiguration scheme in the simulator by representing suitably the switches and the

controller.

CHAPTER 5

CONFIGURATION OF A GENERAL NETWORK

A transputer is a microprocessor which can be easily connected to form
networks in multiprocessor arrays. These arrays can be large and complex. We develop
a program which explores an unknown network of transputers and determines its
configuration. This is useful in confirming that the transputers have been connected in a
particular configuration, as required for some particular task, and that they are all
working properly. The exploration is achieved by a program which will find its way
around the network, exploring all the links on all the transputers to determine the
interconnections. The program can also be used to load code into'a network whose
configuration is not known in advance. These functions could be included in the

simulator to increase its functionality and usefulness.

5.1 The Structure of a Tracing Program under the TDS

The transputer development system (TDS) recognizes two different types of
programs, known as EXE and as PROGRAM. An EXE program runs on the host
transputer, and may access the keyboard, the screen and the filing system of the host
machine. A PROGRAM runs on a network of one or more transputers and is loaded
from the host transputer via a transputer link. An example of such a system is shown in

Figure 5.1

43

44

5 " 9 1

1
L L

0 2 ;0

PC BOO4 t T414 T414 (—1 |
! |
| | I
3 | I
H i
| 1 T4 T4a14 +— O |
I | | I
l 0 1 I
L c e e o . m— e o — — —

Figure 5.1 Transputer development system

An IBM PC-AT is connected to a B0O4 evaluation board which has a single
transputer on it. This transputer acts as the host processor for developing programs and
for loading multiple transputer networks. Link 2 of this evaluation board is connected
to an INMOS B003 evaluation board which has four transputers on it. When a program
is loaded onto a multiple transputer network an EXE program will be run on the host
transputer which monitors the output transmitted back from the PROGRAM and then
interacts with the PC to display the results. An example of a PROGRAM running on a
single transputer is as follows:

{{{ PROGRAM Example

{{{F

SC Example

PROCESSOR 0 T4

Example ()
1}

45

11}

When the above lines are compiled and extracted, a new fold is created:

...F CODE PROGRAM Example
*_.." denotes the Occam folds. These folds can be used to accomodate a
hierarchical set of program elaborations. Each fold can contain program statements or

other folds. The open and close folds are denoted by "{{{" and "}}}" respectively.

This CODE PROGRAM fold will initialize and load a single transputer and
run the SC Example.Now if an occam byte array Program contains the
contents of CODE PROGRAM fold, then the effect of

ToLink ! Program
is to load and run the program on a transputer connected to link ToLink . The exact

way in which a transputer loads the code is described in [Inmo88].

A tracing program searches a network of transputers as follows:
Suppose a transputer is already executing a trace program, and that it is connected to
another transputer which is not yet been loaded. The first transputer, which will be
called the 'parent’ loads the second (‘child’) by outputting the code Program as
explained above. It then sends Program a second time, which the child stores as a
byte array in memory. The child is now in a position to load other transputers until the

entire network is loaded.

To achieve this, the trace program is made of two parts:

EXE Host - Runs on the host transputer

46

.. PROGRAM trace - Searches the network

The Host EXE reads the CODE PROGRAM trace fold, and stores a byte array
Program. After initializing the network, it loads the program onto the first tranputer
in the network by outputting Program on a suitable link. As the trace program
searches the network, the program running on the host transputer processes any data

returned to it from the trace program, interpreting and displaying the results.

5.2 The Host Transputer
The program (EXE) which runs on the host transputer looks like this:
SEQ
code.fold.reader (Screen,from.user.filer{0],
to.user.filexr[0], programTable,

programLength, errorFlagqg)
IF
errorFlag
SKIP
TRUE
SEQ
Determine which link to examix‘xe

Reset subsystem, links

-- Main Section

VAL Program IS [programTable FROM 0 FOR

47

programLength]
PAR
Tracer(LinkIn[iinkNumber],
LinkOut [linkNumber], ToInterface,
linkNumber,Delay, Program)
Interface (Tolnterface, Screen, Heading,
linkNumber)
Display and file output wusing std.
proes
write.full.string (Screen, "*C*NType <any> to

continue”)

Keyboard ? word

The process code.fold.reader provided in the trace program attempts
to read a CODE PROGRAM fold which is already compiled. If an error occurs, the
boolean erroxFlag is set to TRUE and the cause of the error is displayed on the
PC. It is assumed that the reset pins of the subsystem network are chained together,
and controlled by the host transputer. In order to reset the transputers correctly, the

reset pin must be held high for a sufficient amount of time.

The program asks the user which link of the host transputer is to be examined
(1inkNumber). The link which is connected to the subsystem must be specified.
None of the other links will be tried during the course of the program. If two or more

links are connected to the same subsystem, then only one can be tried. The other link(s)

48

will receive data from the subsystem, as the trace program searches. To keep the host

transputer from getting interrupted, all the links are reset on completion of the program.

The channels LinkIn, LinkOut perform the functions of the transputer's
serial links. This process attempts to load a transputer connected to link
linkNumbexr with the trace program. However, there may be nothing connected at
all, or the transputer connected may not have been reset, in which case the output will
fail. If the output of the code Pxrogram is not completed within a certain period of
time, then it is terminated and the link reset. If the code Pxogram is successfully
output from the link, booting a transputer, then PROC Tracer sends more data as
described in section 5.3.3. The new transputer is given an identity number '0'. As the
search proceeds, PROC Tracer relays data back from the network to PROC
Interface. The Interface process has data which it receives from the

Tracer.

5.3 The Exploratory Trace PROGRAM
5.3.1 Introduction
As described earlier the exploratory trace program is constructed as a
PROGRAM fold which consists of a separately compiled process SC Trace. This is
then extracted to produce a CODE PROGRAM Trace fold, which contains code to
» bdot a transputer and run SC Trace on that transputer. The trace is structured as

follows:

49

SEQ
Read in copy of program, identify boot 1link
... Initialize
SEQ I = 0 FOR Nlinks
Try each link in turn
Return cox;trol to parent

Feed back final 1link information to parent

When SC Trace starts to run on a transputer, it first identifies which link is
connected to its parent and inputs a copy of the program code, so that it too may boot

other transputers.

After initializing various flags (which keep track of which links have been
searched), the program selects a link and tries to send a search down the link, which
may (or may not) be connected to another transputer. If the program does not receive
any response, it will timeout and look elsewhere. Section 5.3.2 describes the way in
which a transputer searches a link to test whether a neighboring transputer is attached.
Section 5.3.3 explains this and shows how the program is loaded and run on the

neighbor.

5.3.2 Searching a neighboring transputer
A transputer can check whether link I is attached to an unbooted neighboring
transputer by using the write and read features of occam. A transputer may load a word

of data at an address and then read it back as follows:

50

[4] CHAN OF ANY LinkIn, LinkOut
PLACE LinkIn AT 4

PLACE LinkOut AT 0

SEQ
LinkOut[X] ' 0 (BYTE); Address; Data -- Write Data
LinkOut{I] ! 1 (BYTE); Address -- Read Data
LinkIn{I] ? word -- Data is returned

The Read and Write features are equivalent to a write and read constructs of a
high level language. If the address specified exists in memory, then the word returned
should match the data sent. A convenient address could be MinInt, the minimum 32-

bit integer of a transputer.

5.3.3 Booting a neighboring transputer

After having determined that a link is connected to an unbooted transputer, a
transputer loads a neighboring unbooted transputer by outputting the code Program
as mentioned in section 5.1. The newly booted neighbor will first read in a copy of the
program, and identify the boot link:

SEQ

ALT I = 0 FOR 4 - Determine which link is
connected
-- to my parent
LinkIn[I] ? programLength

parentLink := I

51

LinkIn[parentLink] ? [programTable FROM 0 FOR
programLength]

LinkIn{parentLink] ? token; loadingData

loadingData[3] := parentLink
LinkOut [parentLink] ! LoadingData.t; loadingData
LinkIn[parentLink] ? tokemn -- Synchronize.t £ronm
the host

The parent sends the length of the program, which enables the child to
determine which link is connected to the parent. The code Program is sent again,
and stored by the child as a byte array for future use. The parent also sends a set of data
which includes the parent identity number, the link attached to the child, and the
number of transputers found so far, nTransputexrs. The child returns the data,

with the iink on which the child was booted.

The data returned by the child is referred to as loadingData.
loadingData contains information useful to follow the path of the trace. Its four
elements are, the identity number of the parent, the link which the parent used to boot
the child, the identity number of the child and the link on which the child was booted.
This array is transmitted back to the host transputer for display. The Tracer process,
running on the host, acknowledges receipt of the loadingData with a

Synchronize. t token, transmitted back to the new child.

52

5.4 Exploring a Tree of Transputers

We describe in this section an example which is traced by the algorithm. We
specifically explore a tree of transputers. The algorithm can also be extended to search a
network which has closed loops. This case is explained in section 5.5. An example of a

tree of transputers is shown in Figure 5.2.

i i

Figure 5.2 A tree of transputers

The trace program searches the branches of the tree sequentially. Excluding the
host transputer, each transputer in the tree will be in one of the following states:
(R) reset but unbooted
(0) booted, but not yet searching its links
(1) searching a link, to see if there is another transputer connected

(2) Booting a neighboring transputer

53

(3) relaying 1loadingData to the host
(4) all links have been explored

The network is explored as follows:
Suppose that link 3 of transputer A has booted transputer B by link 0, and B has input a
copy of the program from A. A enters stage 3, in which it will wait to transmit further
data. Transputer B starts stage 1, searching one of its links to see if any other transputer
is connected. Since link 0 is known to be connected to transputer A, link 1 is the first
link to be searched. As described in section 5.3.2 the transputer attempts to write and
read data to any transputer which may be attached to that link. The processor then waits
for a word (MinInt), to be returned on input link O, for a period of time, Delay,
before timing out. If nothing is returned, the program assumes this link is unattached,
and sets a boolean variable downLoad[0] to FALSE. The next link, link 2 is

searched in a similar manner.

Let us assume that a transputer is attached to link 1, and that it has returned the
value MinInt in response to the search. Transputer B now attempts to load the
neighbor with code (stage 2), as described in the previous section. Let us call this new
child 'C'. C determines its parentLink, the code Program, and
loadingData (stage 0). It takes its identity number to be nTransputers, and
increments nTransputers by one, where nTransputers is the number of

transputers found so far (the third element of 1oadingData).

54

At this point, transputer B enters stage 3 of the program, and acts simply to
pass on messages from C, even though it has not yet checked links 2 or 3. While
transputer C explores its environment, B does not attempt to timeout link 1. Let us
suppose that C is not connected to any other transputers. Having failed to find any
neighbors, transputer C returns control to B, by sending the token
ReturnControl.t, together with the latest number of transputers found so far.
Transputer C then enters stage 4, and since it has tried all of its links, takes no further
part in the exploration. B sets downLoad[1] to TRUE, to note that a transputer has
been loaded from this link. Transputer B now returns to stage 1 of the program, and
similarly tries link 2, and finally link 3. When all links have been tried, B returns
control to A, together with the number of transputers found so far. The code for the

algorithm is illustrated in Appendix C.

5.5 Exploring a General Network of Transputers

The algorithm described in the previous section is valid for a tree of transputers.
In a real time system, however, the networks are more complicated than the tree
structure. There could be closed loops of connections involving more than one

transputer. An example of such a network is shown in Figure 5.3.

The basic algorithm is as before, but in addition there is a situation where a link
is connected back to a transputer which has already been booted. This is solved by

arranging for every transputer to look for all the links which have not yet been tried,

(using an ALT construct).

55

Figure 5.3 A closed loop connection

Suppose that link 2 of transputer A has booted transputer B on link 0, and is
waiting while B explores further. B outputs the write and read sequence on link 1
which arrives back at link 1 of transputer A. It must now be arranged that A will
recognize this sequence, even though it comes in on a different link to the one on which
child R was hoaoted. So A inpnts the whole message and returng a token
AlreadyLoaded. t which has a value different from MinInt in order to be
recognized by B. In order that A does not try link 1 again later, a boolean
tryLink[I] is maintained (initialized to be true). In our example, tryLink([1]

is set to FALSE.

56

We can also build a link connection map which illustrates which links are
connected to whom. A table, INT linkArray, is assigned for each transputer, in
which each link has a corresponding entry giving the identity of the neighbor attached
to that link (if any), and that neighbor's link, e.g.
linkArray[3] := [6,0]
would be set to indicate that link 3 is connected to link O of transputer 6. When a parent
boots a child, this information is transmitted in the loadingData. The source code

for this example is shown in Appendix C.

5.6 Summary

We show in this chapter how a large array of transputers can be configured. A
program determines the interconnection structure of a network of processors. Two
different interconnection structures are considered: a tree and a generalized closed
connection structure. A similar function can be included in the simulator. This would be
implemented by tracing the path of the rendezvous between the communicator tasks at

different nodes.

CHAPTER 6

TESTING AND EVALUATION OF MALEK'S FAULT
DETECTION ALGORITHM

We have already introduced the comparison model designed by Malek. A pair
of units is assumed to be compared by a matcher. In this section we show how our
simulator can be extended to implement Malek's algorithm and detect a faulty unit in the
grid. It also explains how the grid can be used as a tool to test other fault detection

algorithms.

6.1 Diagnostic Table
Three assumptions are made by Malek in the comparison model :
1. No unit compares itself with others.
2. A comparator compares a pair of adjacent units, i.e. there is no other unit on the path
from the comparator to the compared units.
3. A single comparator compares only two units at a time.

The basic diagnostic table is illustrated in Table 6.1.

We can see from the table that if the comparator is faulty, then no matter what

the status of the compared units the test outcome is always a 'don't care'.

57

58

Comparator Compared unit# 1 | Compared unit # 2 Comparison
outcome
fault-free fauit-free fault-free 0
fault-free fault-free faulty 1
fanit-free fanlty fanlt-free 1
fault-free faulty faulty 1
faulty fault-free fault-free X
faulty fault-free faulty X
faulty faulty fault-free X
faulty faulty faulty X

6.2 Implementation of the Algorithm

There are certain assumptions to be made before we apply the algorithm to our
network. We first assume that a maximum of two processors can fail in the network.
The probability of more than two units failing out of nine processors at any instant of
time is very low. riowever, we anaiyze the network based on a singie fauit assumption.
The other assumption is that while analyzing the faulty processor the rest of the

processors in the network remain healthy. The simulator can be extended to detect

Table 6.1 Diagnostic Table

multiple faults but the number of test cycles required increases proportionally.

The general principle behind detecting a faulty unit is explained as follows:

59

Let us assume that there are three sets of processors connected as shown in Figure 6.1.
We assume that unit 3, which acts as a comparator, is fault-free. The comparator
assigns some tasks to units 1 and 2. The comparator then compares the outcomes of

units 1 and 2. If there is a mismatch, we know that there s a fault in one of the units.

Comparator

Figure 6.1 Set of three processors.

We assign ihese tasks to processors using a file oriented user interface. In our
simulator, the assigning of tasks to different units by the comparator is equivalent to
sending a message to any of the units. The next step is to compare the outcome from
the two units under consideration. The simulator can introduce a fault by sending an
incorrect result back to the comparator. Once the comparator has received the messages
from both the units it can determine whether the results are the same. The messages that
are sent among the different processors are saved in a separate file. The simulator reads
the input file and determines the route via which the messages would be passed among

the processors. The file format is as follows:

60

Source Command Data
0 send_to 1 20
0 send_to 3 30

The entry in the first column lists the name of the source node from where a
message gets transmitted. The entry in the second column shows the destination node
number. It also shows the task to be performed. In our case it is sending messages,
thus the type variable declaration send_to. The last entry is the actual data sent. The data

in our case is an integer. We show how to detect a single fault by means of an example.

Let us assume that node 2 is faulty. Now the simulator's task is to show that it
is faulty. First of all, we have to prove that the rest of the nodes in the grid are healthy.
There could always be a possibility that one of the other nodes is faulty. There are in all

four comparison test cycles that are required to prove that the other nodes are healthy.

First we compare the outputs of nodes 1 and 3. The comparator in this case is
node 0. Node 0 sends some messages to nodes 1 and 3. Nodes 1 and 3 in return send
back the received messages to node 0. This could be considered as an
acknowledgement procedure. If the messages received by node O are the same as those
that had been transmitted, then we can conclude that nodes 1 and 3 are healthy nodes.
Table 6.2 shows the four test cycles required to prove that all the nodes other than node

2 are fault-free. The pictorial view of the nodes under consideration is also shown in

61

Figure 6.2. We can see from each of the test cycles in Table 6.2 that the comparator
receives the same messages that it had transmitted. Thus we can conclude that all the

compared units are fault-free.

Notice that only four test cycles are required to prove that node 2 is faulty. Out
of the eighteen connections required to form the grid only eight connections are used

for comparisons as one can see from Figure 6.2.

To detect the faulty node 2, the program simulates a fault in node 2 by assigning
it a task that sends a wrong message to the comparator. The test cycle required to detect
it is shown in Table 6.3. The results of executing the algorithm are shown in Appendix

B.

Figure 6.2 Pictorial view of the diagnosis of nine nodes

¢9

Message Message
Comparator | Compared | Compared |Message sent | Message sent | received by | received by Test
C Unit A Unit B to A to B Cfrom A C from B Qutcome
0 1 3 10 10 10 10 0
3 0 4 20 20 20 20 0
4 5 7 30 30 30 30 0
7 6 8 40 40 40 40 0
Table 6.2 Table for diagnosis of healthy nodes
Message Message
Comparator | Compared | Compared | Message sent | Message sent | received by | received by Test
C Unit A Unit B to A to B C from A C from B Outcome
1 2 4 50 50 52 50 1

Table 6.3 Test cycle detecting the faulty node

€9

64

6.3 Extension of the Simulator to Test any Fault Detection Algorithm
The simulator can be used to test any other fault detection algorithm. To apply it
to other algorithms, there are certain things that need to be changed. First and foremost,
the fault detection algorithm should be based on a message passing system because our
simulator's operation is based on message passing. Since any diagnostic algorithm can
be expressed in terms of message-passing processes this not a limitation of the

simulator.

The current simulator supports only 'send_to' operations. If the algorithm
needs some calculations to be performed, then the user would have to implement some
extra subroutines to support the calculations. Furthermore the file oriented user
interface would also need to be altered. If the algorithm needs any mapping strategies,
then the interface which decides the input for the program also needs to be modified. As
explained in Section 3.6, the efficient execution of the algorithms would also depend on

the interconnection structure of the network.

6.4 Evaluation of Malek's Algorithm

In this section we present some results of executing Malek's algorithm on
different multiprocessor structures. We consider five different cases including the
specific multiprocessor structure which we have simulated. Essentially we find out the
number of comparisons and comparison edges required to detect a single faulty unitin a

network of processors.

65

As explained in Chapter 2, the upper and lower bounds for determining the

comparison cycles and the comparison edges are given by the following equations.

1
I—n; -I _<_cl <n-1 (a)

I n
n-13 {1 <q <n-1 ... (b)

where c = the number of comparisons required in order to locate any fault
in the system, and
q,= the number of comparison edges required in order to locate any

fault in the system.

We consider five different configurations and apply Malek's comparison
algorithm to them. The first three configurations have nine nodes. The fourth one has
ten nodes and the last one has five nodes. The parameters G and q, are found for each
configuration and they are found to lie within the bounds given by equations (a) and

(b).

L8 Amabloctia ~nf TRCLPamant MNManfianratioane
Vea/ IANAGALY DD Wi AVRiSwE Viade VLKl we s hbns

We analyze in detail the first case which we have actually implemented with the
help of our simulator. The other four cases are analyzed similarly and their results are

_shown in the tables that follow.

66

Case 1: Configuration with nine nodes connected in a toroidal fashion.

0 1 2
3 4 5
6 7 8

Figure 6.3 Nine nodes in a toroidal configuration.

The configuration which our simulator analyzes is shown in Figure 6.3. The
comparisons required to detect a faulty unit in this case are shown in Figure 6.2. We
assume that node 2 is faulty. Before analyzing node 2 we have to confirm that the
remaining nodes in the grid other than node 2 are healthy. Thus there are in all five
comparisons which need to be done to detect a faulty node. The equations for a
configuration where nine nodes are involved are as follows:

SSCISSand 6Sqls8 (c)

67

The bounds for these parameters are calculated from equations (a) and (b) given

in section 6.1. Thus from Figure 6.2 we find out that = Sandq = 8.

Case 2 : Star shaped configuration with nine nodes

e
0 1
a b h i
m f n
2 3 4 £ 5 6
c d] k
1
7 8

Figure 6.4 Star shaped configuration

Comparator Compared unit # 1 | Compared unit# 2 | Comparison edges
2 0 7 andc
7 2 8 candl
2. 0 3 aand m
0 1 2 eanda
5 1 4 hand g
1 5 6 handi

Table 6.4 Comparison parameters for case 2

68

The comparison cycles and the comparison edges required to detect a single
faulty unit (in this case unit 6) for the configuration shown in Figure 6.4 are shown in
Table 6.4. We find out that there are six cycles required to detect a faulty unit and the
number of comparison edges required are eight, viz. a, ¢, €, g, h, i, 1 and m. Thus

¢ = 6 and q= 7. These values are within the bounds given by equation (c) in case 1.

Case 3: Lattice configuration with nine nodes

1 3 5 7 8

Figure 6.5 Lattice structure with nine nodes

This conrfiguration is snown in Figure 6.5. ¥e require a orai number of seven
cycles to detect a faulty node (in this case node 8). The number of comparison edges
required are eight. The results can be seen in Table 6.5. The comparison edges are

namely a, b, ¢, d, e, f, g, h. All the edges are utilized in this case. Thus ¢ = 7 and q =
8.

69

Comparator Compared unit # 1 | Compared unit#2 | Comparison edges
0 1 2 aandb
2 0 3 bandc
3 2 5 candd
5 3 4 dande
4 5 6 eandf
6 4 7 fand g
7 6 8 gand h

Table 6.5 Comparison parameters for case 3

Case 4: Lattice structure with ten nodes

c £ k
0 1 2 3
a € g 1 m
I d h 1 1
4 5 6 7
b J
8 9

Figure 6.6 Lattice configuration for ten nodes.

70

Comparator Compared unit # 1 | Compared unit# 2 | Comparison edges

4 0 8 aandb
4 0 5 aandd
5 2 6 gandh
6 2 9 iandj

6 2 7 iandl

7 3 6 mandl
0 1 4 cand a

Table 6.6 Comparison parameters for case 4

For the configuration shown in Figure 6.6 we can see from Table 6.6 that we
require seven comparison cycles to determine a single fault (in this case node 1). The
number of comparison edges required are nine, viz. a, b, ¢, d, g, h, i, j, and 1. Thus ¢;
=7and qy=9.

The bounds for this network however are different as there are ten nodes. They

6<c,<9and 7<q,<9.

Case 5: Pentagonal configuration

The bounds for this configuration (Figure 6.7) will also change as there are

only five nodes in the network. The bounds would be as follows:

3Scls4and ZSq1.<_4.

71

3

Figure 6.7 Five nodes connected in a pentagonal shape

Comparator Compared unit # 1 | Compared unit# 2 | Comparison edges
0 1 4 aande
4 0 3 eandd
1 0 2 aand b

Table 6.7 Comparison parameters for case 5.

As we can see from Table 6.7, there are only three comparison cycles required
to detect a faulty unit in the network (in this case node 2). The number of comparison
edges required to detect this faulty unit are four. Thus in this case c; =3 and q; = 4. The

comparison edges are a, b, d and e.

72

6.6 Conclusions

We have show in this Chapter, how a particular fault detection algorithm can be
tested with the help of our simulator. We also explain the flexibility of our network and
the different parameters that need to be changed in order for our network to test
different algorithms. Specifically we test Malek's algorithm to detect a faulty unit in a
network of transputers. We selected Malek's algorithm because it seems interesting due

to its simple way of detecting faults.

Appendix B shows the different results obtained in testing Malek's algorithm.

We test the algorithm to detect a single faulty unit in the network of transputers.

The number of comparison cycles required to locate a faulty processor and the
number of comparison edges required vary according to the complexity of the network.
When there are less number of processors, one requires less number of comparison
edges and comparison cycles to detect a faulty unit. This is obvious in case 5, where
we have a network of five processors. The parameters also depend on how tightly the
network is connected. For the cases where we consider nine nodes, we see that in case
1, the processors are fully connected to each other. In cases 2 and 3 not all the links of
the individual processors are utilized as the architectures do not require some of the
links. Thus for case 1, the number of comparison cycles and the comparison edges

required for fault detection are lower than those of cases 2 and 3.

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Multiprocessors are gaining importance nowadays in real time applications. We
have designed a simulator for multiprocessor systems of transputers or similar
processors. Essentially, we have developed a tool with the help of which we can test
various fault detection algorithms.The simulator is made flexible to some degree, in the
sense that it can adapt itself to any configuration and any number of processors by
changing only a few parameters. The simulator bases its operation on message passing.
and uses a store and forward scheme to pass messages between the processors. We

have analyzed Malek's comparison algorithm on different configurations of

multiprocessors.

We have limited the study of the network simulator only to the test of fault
detection algorithms. We only considered the case of a total node failure and assumed
that if there is a path to a healthy node, the interprocessor communication scheme is
operational. We did not concern ourselves with the effect of multiple node failures on
the distribution of the interprocessor traffic. However, in a real time system, node
failures may affect the overall system reliability. For example, with more nodes going
down, the burden of communications in certain nodes will vary according to the
various communication patterns and intensity, with an increase in delay among the
nodes of a system. This adds another dimension to the problem due to the fact that in

real time systems, it is not enough to deliver a correct result, but correctness is also

73

74

bound by the time limitation factors. Correctness implies the delivery of a correct result
within a limited time period. However, timing aspects cannot be measured with a

simulator of the type discussed here.

The existence of hardware replication allows to replicate a task to have a backup
unit, or having multiple functional copies of the same task engaged in some sort of
decision making scheme, e.g. byzantine voting. This software replication truly takes
advantage of the hardware replication present in the architecture. In these cases, the
analysis becomes more complicated because we cannot address the problem of node or
communication failures generically, i.e. the distribution or configuration of the specific
tasks across the replicated hardware, together with the criticality of each particular task
define the overall system reliability. This problem could be explored in greater detail

and depends in general, on the allocation schemes used, types of faults, etc.

The reconfiguration strategy discussed here is an interesting way to restructure
multiprocessor architectures using the switch lattice approach. By designing a
switching task in Ada to control the switches the simulator can be made to achieve fault
tolerance in a multiprocessor environment. As such, it could be useful to test different

fault tolerance mechanisms.

The configuration program is a useful vehicle for testing transputer based
applications. Tests for memory and for the links may be included in the basic program,
for example. If a hardware fault occurs, the program may report the location and nature

of the problem, while continuing to check other components in the network. By testing

75

the network repeatedly with a configuration program, any failure may be detected and
logged, while the rest of the network continues to be tested. This concept could be
implemented in the future to make the configuration program a complete diagnostic
package to detect any faults in a multiprocessor system. This is an offline method for
fault detection. It can be implemented in the simulator so that it can be used as a tool to

test various algorithms as well as to configure an unknown network of processors.

The simulator can be improved with respect to its usability. A user-friendly
interface could allow a user to define different configurations, to insert faults, to collect
statistics, to control displays, and to use different fault detection or reconfiguration

algorithms.

REFERENCES

[Booc83] G. Booch, Software Engineering with Ada, The Benjamin/Cummings

Publishing Company, Inc., 1983.

[Buhr84] R. Buhr, System Design with Ada, Prentice Hall Intl., 1984.

[Degon78] P. K. DeGonia, R. C. Witt, D. R. Lampe, and E. L. Cole, Jr., "Micronet - A
self-healing network for signal processing”, Digest of Papers-Government Microcircuit

Application Conf., Monterey, California, Nov. 1978, 370-377.

[Fern88] E. B Fernandez, Class notes for Fault Tolerant Computer Systems, F.A.U.
1988.

[Hoar78] C.A.R. Hoare, "Communicating Sequential Processes”, C. ACM, 21, 8,
1978, 666-677.

[Kart78] S. L. Kartashev and S. P. Kartashev, "Dynamic Architectures: Problems and

Solutions", Computer, Vol. 11, July 1978, 26-40.

[Kerr84] J. M. Kerridge and D. Simpson, "Three Solutions for a Robot Arm
Contrioller using Pascal-plus, Occam and Edison", Software Practice and Experience, 14,

1984, 3 - 15.

76

77

[Kuhl86] J.G. Kuhl and S. M. Reddy, "Fault-Tolerance Considerations in Large,
Multiple-Processor Systems", IEEE Transactions on Computers, 1986, 56 - 67.

[Kung84] H.T.Kung and M. S. Lam, "Wafer Scaled Integration and two Dimensional
Pipelined Implementations of Systolic Arrays", Proc. Conf. Advanced Research in VLSI,
MIT, Cambridge, Mass., Jan. 1984.

[Liu80] K. Y. Liu and Malek,"Graph theory models in fault diagnosis and fault
tolerance”, Journal of Design Automation and Fault-Tolerant Computing, Vol. III, Issue

3/4, 1980, 155-169.

[Maen81] J. Maeng, M. Malek, "A Comparison Connection Assignment for Self-
Diagnosis of Multiprocessor Systems", Proc. Intl. Conf. on Fault Tolerant Computing

Systems, 1981, 173 - 175.

[Male80] M. Malek, "A Comparison Connection Assignment for Diagnosis of

Multiprocessor Systems"”, Proc. 7th Symp. on Computer Architecture., 1980, 31 - 36.

[Poun86] D. Pountain, "A Tutorial Introduction to Occam Programming", INMOS
1986.

[Prep67] F. P. Preparata, G. Metze and R. T. Chien, "On the connection assignment
problem of diagnosable systems", IEEE Trans. on Elect. Comp., Vol. EC-16, No. 6, Dec.
1967, 848-854.

78

[Snyd82] L. Snyder , "Introduction to the Configurable Highly Parallel Computer”,
Computer, January 1982, 47-56

[Toy78] W. N. Toy, "Fault tolerant design of local ESS processors", Proc. of IEEE,
vol. 66, No. 10, Oct. 1978, 1126-1145.

[Yala85] S. Yalamanchalli, J. K. Agarwal, "Reconfiguration strategies for Parallel
Architectures”, Computer, Dec. 1985, 44-61

APPENDIX A

Ada Source code for the simulator

WITH text_io;
USE text_io;
WITH calendar;
USE calendar;

PROCEDURE grid_simulation IS

PACKAGE int_io IS NEW integer_io(integer);
USE int_io;

_DECLARATIONS
-- (*global_declarations*)--

SUBTYPE bit IS INTEGER RANGE 0..1;
-- For the transputer links

TYPE header_type IS (control_hdr,diagnostic_hdr,data_hdr);
SUBTYPE node_id_type IS INTEGER;

TYPE protocol_class_type IS (transputer_protocol,unsuported_protocol,
protocol_class_error);

TYPE protocol_reply_class_type IS(no_reply_expected,reply_expected);

SUBTYPE command_type IS INTEGER;

TYPE diag_info_type IS ARRAY(0..8) OF bit;

TYPE

Ulitici_{iCalSi_type 10 nLConye -- TICaler O
header : header_type;
source_id : node_id_type;
destination_id : node_id_type;
router_source_id :node_id_type;
router_destination_id: node_id_type;
protocol_class : protocol_class_type;
protocol_reply_class : protocol_reply_class_type;
END RECORD;

PUPVIY.- DI U PO o
[RITTRN IO TRVIITYL 1Y

TYPE
buffer_data_type IS RECORD -- DATA CONTENTS OF BUFFER
command_info : command_type;
diag_info :diag_info_type;
79

80

END RECORD;
TYPE

packet_type IS RECORD

buffer_header : buffer_header_type;
buffer_data : buffer_data_type;
END RECORD;

PACKAGE hdr_io IS NEW enumeration_iotheader_type);
USE hdr_io;

PACKAGE pro_io IS NEW enumeration_io(protocol_class_type);
USE pro_io;

matted_array:ARRAY(0..35) OF INTEGER; -- USED FOR LINK MAPPING
--*¥* The matted array is part of the GRID hardware configuration
--** database. Each entry element in this array contains an
--** jdentifier for the link number connected to the ith link

TYPE compass_array_type IS ARRAY (0..3) OF INTEGER;

--(Used by a node to figure out to which of its link the message
-- is to be routed to)..

grid_size :integer:=3 ; -- For a 3X3 grid (9 nodes)
this_link :integer;

st_id :integer ;

partner_link : integer ;

& ok %
TYPE job_kind IS (send_to,nop);
TYPE job_card_type;
TIrE jou_pic 15 ACCESS jou_card_iype;
% %k ¥k
TYPE job_card_type IS RECORD
doer :integer ; -- Node doing the job
class : job_kind ; -- Job type (WHAT)
dest : integer ; -- Destination NODE
dat :integer ; -- DATA
next : job_ptr :=null; -- Pointer to next JOB
END RECORD;

k %k *k

PACKAGE job_io IS NEW enumeration_io(job_kind);

81

USE job_io;
sk ¥ %k
--(*file_declarations¥)--

linkmap: file_type; --(* LINK CONNECTION MAP *)--
injobs: file_type; --(* JOBS TO BE PERFORMED *)--

* ¥ %

-- DEBUGG DECLARATIONS
debugg : boolean:=false;

* k k

--(*task_declarations*)--

-- Simulation of a transputer link. This task is a generic basic
-- Transputer link

TASK TYPE link_task IS
ENTRY configure_link(node_id: in integer;
link_id: in integer; partner_link: in integer);
ENTRY transmit(f_packet : in packet_type);
ENTRY receive(f_packet : in packet_type);
END link_task;

-- Simulation of a communicator task.

TASK TYPE communicator_task IS
ENTRY configure_comm(id:in integer);
ENTRY message_to_transmit(f_packet : in packet_type);-- DATA TX
ENTRY message_received(f_packet :in packet_type);-- DATA RX
END communicator_task;

-- Simulation of an application task. This task contains the basic
-- definitions for the application dependent tasks.

TASK TYPE application_task IS
ENTRY configure_appl(id:in integer);
ENTRY input(f_packet :in packet_type);
ENTRY output(f_packet : out packet_type);
END application_task;

82

--(*utilities_declarations*)--

PROCEDURE message_checker(message_in : in packet_type;
validation_result : out boolean);
FUNCTION find_direction_to_go(current_node_id: in integer;
going_to_node : in integer) return integer;
FUNCTION find_next_link_id(f_compass :in compass_array_type;
f_destination_link_offset : in integer)

RETURN integer;
PROCEDURE read_initial_grid_configuration;

PROCEDURE initialize_job_queue;
PROCEDURE add_job_into_job_queue(f_node

:in integer ;
f do :in job_kind ;
f dest :in integer ;
f dat :in command_type);
PROCEDURE read_input_jobs ;

PROCEDURE get_job_from_job_queue(f_node : in integer ;
f_job :outjob_card_type;
outcome: out boolean) ;
PROCEDURE print_job_card(f_job: in job_card_type);

FORMATTING ROUTINES FOR OUTPUT
PROCEDURE print_separation_line;

PROCEDURE print_packet(f_packet : in packet_type);

--(* task_instantiations*)--
link:array(0..35) of link_task;
application:array(0..8) of application_task;
communicator:array(0..8) of communicator_task;

job_queue_status: ARRAY(0..8) OF BOOLEAN;

83

job_queue_ptrs: ARRAY(0..8) OF job_ptr; -- Pointer to individual queues

a_job :job_card_type;
success : boolean;

--(*task_implementation*)--
-- Body of transputer link

task body link_task is
node_numober : inieger;
link_own_id : integer;
adjacent_link : integer;
tx_buffer : packet_type;
tx_buffer_empty : boolean := true;
rx_buffer : packet_type;
rx_buffer_empty : boolean := true;

BEGIN
ACCEPT configure_link(node_id: in integer;
link_id: in integer;
parmer_link :in integer) DO
node_number := node_id; -- This link belongs to this node

link_own_id := link_id; -- This is the link own id
adjacent_link := partner_link; -- To which link is connected
new_iine;

put(" LINK TASK INSTANTIATED node number is");
put(node_number,4);

put(" THE LINK IDENTIFICATION NUMBER IS ");
put(link_own_id,4);

put(" ADYACENT node number is");
pui{adjaceii_lii,);

new_line;

end configure_link;
link_loop: LOOP -- Infinite loop

SELECT
-- Accept transmit operation (configuration dependent)
ACCEPT transmit(f_packet:IN packet_type)DO

84

new_line;
put(" *** LINK ACCEPTED PACKET TO TRANSMIT *** LINK # IS");
put(link_own_id,2);
new_line;
tx_buffer :=f_ packet;
link(adjacent_link).receive(tx_buffer);
END transmii;
OR

-- Accept RECEIVE operation
ACCEPT receive(f_packet : IN packet_type)DO
new_line;
put(" *** LINK RECEIVED PACKET **** L INK # IS ");
put(link_own_id,2);
new_line;

rx_buffer := f_packet;
communicator(node_number).message_received(rx_buffer);
END receive;
END SELECT;
end loop link_loop;
end link_task;

Y | U

-- DOy Of COlinuiLCator {asK
TASK BODY communicator_task IS
-- Internal Declarations

a_packet : packet_type;

node_number: integer;

my_compass : Compass_array_type;

link_base : integer; -- Base Number to calculate own links IDs.
an_offset : integer; -- Displacement to compute task number
for_link :integer; -- Variable to identify receiving link

BEGIN

85

ACCEPT configure_comm(id:in integer)
DO

NULL;
node_number :=id; -- Node Identification Number
NEW_LINE;
put(" COMMUNICATOR TASK INSTANTIATED node number is");
put(node_number,4);
new_line;

END configure_comm,;
link_base := node_number*4 ;
foriin 0..3 loop
my_compass(i) :=link_base +i; -- Base Number + offsets...
end loop;
new_line;
put(" ***TASK COMMUNICATOR FULLY CONFIGURED *** NODE IS");

put(node_number,4);
new_line;

loop -- LOOP FOREVER....

SELECT
ACCEPT message_to_transmit(f_packet: in packet_type)
DO
NULL;
new_line;
put(" *¥¥>>>>>>Task communicator accepted message to

transmit”);
put(" at node number --->");
put(node_number,2);
new_line;
a_packet := f_packet;

an_offset := find_direction_to_go(node_number,
a_packet.buffer_header.destination_id);

for_link := find_next_link_id(my_compass,an_offset);

link(for_link).transmit(a_packet);

86

END message_to_transmit;

OR
ACCEPT message_received(f_packet : in packet_type)
DO
NULL;
new_line;
put(" **>>>>>>Task communicator accepted message received

put(" at node number --->");
put(node_number,2);

new_line;

-- Copy the packet into temp. variable
a_packet :=f_packet;

-- Check it this node is the terminating node for the packet
-- Received, if so, pass it to the application, otherwise,
-- pass it to the appropriate link....

IF a_packet.buffer_header.destination_id = node_number
THEN

print_separation_line;

new_line;

put(" Packet received by task communicator reached final destination");

put(" at NODE number");

put(node_number,2);

new_line;

print_separation_line;
-- Pass packet to the application task
application(node_number).input(a_packet);

ELSE
--WHEN OTHERS => -- For another node

print_separation_line;

new_line;

put(" Packet received by task communicator is to be forwarded ");
put(" at NODE number");

put(node_number,2);

new_line;

print_separation_line;

-- 1. Calculate the offset to be used in routing this pkt.

an_offset := find_direction_to_go(node_number,
a_packet.buffer_header.destination_id);

87

-- 2. Find which of its links to be used...
for_link := find_next_link_id(my_compass,an_offset);

-- 3. Link to be used is known now, so pass-it-on !!!
if debugg then
new_line;
put(" **>>>>>>Task communicator about to forward packet ");
put(" at node number --->");
put(ncde_number,2);
new_line;

end if; --debugg
link(for_link).transmit(a_packet);

if debugg then
new_line;
put(" **>>>>>>Task communicator fowarded packet completed
")
put(" at node number --->");
put(node_number,2);
new_line;
end if; --debugg

--END CASE;
END IF;

END message_received;
END SELECT;

END LOOP ; -- Loop forever

END communicaror_task;

-- Body of the Application Task
TASK BODY application_task IS
node_number:integer;
a_packet : packet_type ; -- Packet to be sent or received
a_job :job_card_type; -- What to do....
success :boolean ; -- Outcome of request...

-- (* Internal Procedures *)--

88

PROCEDURE appl_build_packet(f_job :IN job_card_type;

f_packet : OUT packet_type) IS
--* This procedure builds a packet originating in the APPLICATION TASK
--* and sends it to the TASK COMMUNICATOR...

f header : buffer_header_type;
f_buffer_data : buffer_data_type;

BEGIN

-- The packet is build from the job card by extracting
-- the necessary information from it.

-- This information is used to build the header first
-- and then to build the packet data portion....

-- BUILD THE BUFFER_HEADER

f_header.header :=data_hdr ;

f_header.source_id :=node_number;

f_header.destination_id :=f_job.dest;

f_header.router_source_id :=0; -- Filled by COMMUNICATOR
f_header.router_destination_id:= 0; -
f_header.protocol_class := transputer_protocol;

f_header.protocol_reply_class := no_reply_expected ;

-- BUILD BUFFER_DATA....
f_buffer data.command_info :=f_job.dat; --Data to be send
f_buffer_data.diag_info :=(0,0,0,0,0,0,0,0,0); -- N/A

-- AND PUT IT IN THE PACKET
f_packet.buffer_header :=f_header;
f_packet.buffer_data :=f_buffer_data;

END appl_build_packet;

BEGIN -- Application_body_begins.....
accept configure_appl(id:in integer) do
node_number:=id; -- (* Accept the node identification number *)--

new_line;
put(" *¥* APPLICATION TASK ACCEPTED ID node number is");

89

put(node_number);
new_line;

end configure_appl;

forever: LOOP --C* INFTFITELOOP *)--
SELECT
-~ Accept Input Data

ACCEPT input(f_packet: in packet_type) DO
new_line;
put(" *** APPLICATION TASK ACCEPTED INPUT ***"),
put(node_number,2);
new_line;

-- The application task received a packet, display a
-- message and the packet contents....

new_line;

print_separation_line;

put(" PACKET RECEIVED BY THE APPLICATION TASK AT NODE
")

put(node_number,2);

new_line;

print_separation_line;

print_packet(f_packet);

print_separation_line;

end input;

OR

-- Accept Output Data (To be sent to another place)

ACCEPT output(f_packet : out packet_type) DO
new_line;
put(" *** APPLICATION TASK ACCEPTED OUTPUT *#**");
put(node_number,2);
new_line;
NULL;

end output;
OR delay 1.1 ;

90

END SELECT;

IF job_queue_status(node_number) then
get_job_from_job_queue(node_number,a_job,success);
IF success then

new_line;

put(" JOB OBTAINED ");
put(node_number,2);
new_line;

CASE a_job.class IS
WHEN send_to =>

new_line;

put(" Application about to attempt packet build ");
put(node_number,2);

new_line;

appl_build_packet(a_job,a_packet);

new_line;

put(" Application built packet ");
put(node_number,2);

new_line;

communicator(node_number).message _to_transmit(a_packet);

if debugg then
new_line;
put(" Application sent packet to COMMUNICATOR "),
put(node_number,2);
new_line;
end if; --debugg

WHEN OTHERS => NULL,;

put_line(" UNRECOGNIZED JOB TYPE FOR APPLICATION

TASK™);

END CASE;

ENDIF; --IF SUCCESS

91

ELSE
delay 0.2;

if debugg then
new_line;

put(" - - - e em e e e e e = - ")

put_line(" *** Queue tested and found empty for task ");
put(node_number,2);

end if; --debugg
ENDIF; -- QUEUE NOT EMPTY
END LOOP forever; --(* INFINITE LOOP FOR APPLICATION TASK *)--

END application_task;

--(*utilities_implementation*)--

PROCEDURE message_checker (message_in: in packet_type;
validation_result: out boolean) IS

BEGIN

NULL;

new_line;

put(" message checker has been called");
new_line;

end message_checker;

FUNCTION find_direction_to_go(current_node_id: in integer;
going_to_node :in integer) return integer is

destination_link_offset : integer; -- Indicates to which direction
-- the packet should be routed

type relative_position_type is (in_the_same_row,
in_the_same_column,
not_aligned);

relative_position : relative_position_type;

92

function find_relative_position(current_node:in integer;
destination: in integer) return
relative_position_type IS

row_a, Tow_b :integer;
column_a, column_b : integer;
begin

-- Find row number identifier
row_a := current_node / grid_size;
row_b := destination / grid_size;

-- Find column number identifier
columii_a := curreni_node mod grid_size;
column_b := destination mod grid_size;

if row_a =row_b then return in_the_same_row; end if;
if column_a = column_b then return in_the_same_column; end if;
if not ((row_a = row_b) or (column_a = column_b)) then
return not_aligned;
end if;

end find_relative_position;

FUNCTION is_to_the_top(a:in integer;b:in integer)return boolean is
begin

if a>b then return true ; -- Destination is above source
else return false; -- Destination is below source
end if;
end is_to_the_top;

FUNCT1ON is_to_tne_rigni(a:in integer;d:in integer)return boolean is
begin
if a<b then return true ; -- Destination is to the right

else return false; -- Destination is to the lefth
end if;

end is_to_the_right;
BEGIN
NULL;
relative_position:=find_relative_position(current_node_id,
going_to_node);

93

-- NOW FIND WHICH CASE APPLIES
CASE relative_position IS
when in_the_same_row =
if is_to_the right(current_node_id, going_to_node)
then destination_link_offset:= 1; --GO RIGTH
else destination_link_offset:= 3; --GO LEFT
end if;
when in_the_same_column =>
if is_to_the_top(current_node_id, going_to_node)
then destination_link_offset:= 0; --GO UP
else destination_link_offset:= 2; --GO DOWN
end if’
when not_aligned =>
destination_link_offset:=2; -- GODOWN ALWAYS
END CASE;
RETURN destination_link_offset;
END find_direction_to_go;

FUNCTION find_next_link_id (f_compass: in compass_array_type;
f_destination_link_offset: in integer)

RETURN integer IS
a_link_id : integer;
BEGIN
a_link_id := f_compass(f_destination_link_offset);
return a_link_id;

END find_next_link_id;

PROCEDURE read_initial_grid_configuration IS
begin
NULL;
end read_initial_grid_configuration;

* %k ok

PROCEDURE initialize_job_queue IS

94

BEGIN

-- SET JOB QUEUE STATUS TO EMPTY

FOR index IN 0..8 LOOP
job_queue_status(index):= FALSE ; -- NO JOBS
job_queue_ptrs(index) := NULL ; -- NO JOBS
END LOOP;

END initialize_job_queue;

* A K

PROCEDURE add_job_into_job_queue(
f node :in integer ;
f do :in job_kind ;
f dest :in integer
f dat :in command_type) IS
new_job : job_ptr; -- Job Card pointer
temp_ptr: job_ptr; -- Job Card pointer

BEGIN

-- Create job card ,
new_job := NEW job_card_type; -- Creates new job card

-- Copy input job information into the new job card
new_job.doer :=f _node ;--Job is for this node task
new_job.class :=f_do ;-- Type of jobtodo
new_job.dest :=f dest ;-- Destination Node
new_job.dat :=f dat ;--Data associated with job
new_job.next :=NULL ; -- Pointer to next JOB

IF job_queue_status(f_node) = FALSE then
job_queue_status(f_node) := TRUE;
job_queue_pus(i_node) :=new_job; -- LINK JOB CAKD

ELSE
temp_ptr := job_queue_ptrs(f_node); -- First JOB for task

find_last_job: LOOP
EXIT find_last_job WHEN temp_ptr.next = NULL;

temp_ptr := temp_ptr.next; -- Advance to next job
END LOQCP find_last_job;

temp_ptr.next := new_job;

END IF,;

95

END add_job_into_job_queue;

PROCEDURE read_input_jobs IS

for_node : integer;
do_this : job_kind;
to_node : integer;
some_data: integer;
BEGIN

-- OPEN INPUT JOB FILE
open(injobs,in_file,"appl_jobs.file");

while not end_of_file(injobs) LOOP

get(injobs,for_node); -- JOB FOR NODE ID
get(injobs,do_this); --JOB TYPE
get(injobs,to_node); -- TO WHERE ?
get(injobs,some_data); -- DATA....

add_job_into_job_queue(
for_node ',
do_this ,
to_node ,
some_data);

END LOOP;

END read_input_jobs;

PROCEDURE get_job_from_job_queue(
f_node : in integer ;
f_job :out job_card_type ;
outcome: out boolean) is

no_job : job_card_type :=(
doer =>0 ,
dest =>0 ,
class =>nop,
dat =>0 ,

next =>NULL); -- Dummy JOB CARD

BEGIN

96

new_line;

put(" ***** Getting a job for node ");
put(f_node);

new_line;

IF not job_queue_status(f_node) THEN
f_job :=no_job;
outcome:= FALSE ; -- Failure, no job in the queue
RETURN;
END IF;

f_job := job_queue_ptrs(f_node).all; -- Copy all fields...
outcome := TRUE; -- JOB transfer successful

job_queue_ptrs(f_node) := job_queue_ptrs(f_node).next ;

IF job_queue_ptrs(f_node)= NULL then
job_queue_status(f_node):= FALSE; -- No more jobs
put_line(" last job taken ... queue is empty now");

END IF,;

END get_job_from_job_queue;

% ¥k ok

PROCEDURE print_job_card(f_job: in job_card_type)IS

BEGIN

new_line;

put_line(" aeoje 3¢ S 3¢ ¢ e AR PRIN’I’]N’G JOB CARD **********");
put(" Node originating job is "); put(f_job.doer);

new_line;

put(" TYPE of JOB is "); put(f_job.class);

new_iine;

put(" Destination node is "); put(f_job.dest);

new_line;

put(" The data associated with this job is");put(f_job.dat);

END print_job_card;

PROCEDURE print_separation_line IS
BEGIN
new_line;
put(" - ") ;
new_line;
END print_separation_line;

97

de ok &
PROCEDURE print_packet(f_packet : in packet_type) is
BEGIN
new_line;
put_line(" skkkdkkkk PACKET HEADER ********n);

put(" Header type ");
put(f_packet.buffer_header.header);
new_line;

put(” Source Node ”);
put(f_packet.buffer_header.source_id);

[EW_line;

put(" Destination Node ");
put(f_packet.buffer_header.destination_id);
new_line;

put(" Protocol Class ");
put(f_packet.buffer_header.protocol_class);

new_line;

put_line(" sheske ok e ok sk ek PACKET DATA ********");
put(" Data value contained ");
put(f_packet.buffer_data.command_info);

new_line;

END print_packet;

*® %k %k

FUNCTION find_matted_link(id_a:in integer) return integer is
begin
return matted_array(id_a);
end find_matted_link;
--(*MAIN_BEGINS*)--
BEGIN -- BEGINS GRID PROCEDURE

read_file_link_map:
declare

98

matted_link id :integer;

link_index :integer;

a_node_id sinteger; -- dummies
begin

open(linkmap, in_file, "link_map.file");

WHILE NOT END_OF_FILE(linkmap) LOOP
get(linkmap ,a_node_id);

get(linkmap ,link_index);

get(linkmap ,matted_link_id);

-- Store value in ihe tabie
matted_array(link_index) := matted_link_id ;

END LOOP;

put_line(" ** * LINK DISTRIBUTION CONFIGURED * * * "),
end read_file_link_map;

-- 1. Initialize the job queue
initialize_job_queue;
put_line(" Job queue initialized ");

-- 2. read all the jobs ...
read_input_jobs;

put_line(" All jobs inputted ");

--3. Verify jobs....

new_line;

put_line(" printing status of the jobs_queue");

for iin 0..8 loop

new_line; put(" status for node");put(i);put(” is ");

if job_queue_status(i) then put(" true ...some jobs");
els?_gut(" false ... no jobs");
G i,

end loop;

new_line;

put_line(" PRINTING STATUS OF POINTERS ");

foriin 0..8 loop

new_line; put(" POINTER for node");put(i);put(" is ");

if job_queue_ptrs(i)/=null then put(" NOT NULLsome jobs");
else put(" NULL ... no jobs");
end if;

end loop;

for Iin 0..8 loop

99

-- check if there is a job

if job_queue_status(I) then -- there are some jobs for this node
new_line;
put(" There are some jobs for this node "); put(i);
--exaust: loop

--exit exaust when not job_queue_status(i);
--get_job_from_job_queue(i,a_job,success);

-- And print job card
--print_job_card(a_job);
--end loop exaust;

end if;

end loop; --forIinO..8
new_line;
put(" * - % - % *k ok * % * £ E * % % £ * %k * _ *");

new_line;
put("*_* * % E % * %k %k * *k E] E E] £ % *_*");

new_line;

* k k

- INITIALIZE THE LINK CONFIGURATION CHOOSEN....
- (* INTTIALIZE THE GRID *#)--

FOR node_id IN 0..8 --(* For each node in the grid *)--
LOOP

application(node_id).configure_appl(node_id):
communicator(node_id).configure_comm(node_id);
st_id := 4 * (node_id); -- Calculate starting number for link
-- (base link identification number)
-- SINCE each node has four (4) link give each of the links of this

-- node an identification number following previously defined express.

FOR link_range IN 0 .. 3 LOOP --(* For each link in a node *)--

-- SEARCH CONNECTION MAP FOR MATTED LINK
IDENTIFICATION

100

this_link:=link_range+st_id;
partner_link:= find_matted_link(this_link);
link(this_link).configure_link(node_id,this_link,partner_link);
END LOOP; --(*Foreachlinkinanode %*)--
END LOOP; --(* For each node in the grid *)--
END grid_simulation ;

101

EXAMPLE 1

Message passing in a toroidal configuration

Input File for the Simulator

Source Nod Operation Destination Node Data
0 send_to 8 08
8 send_to 4 84
3 send_to 5 35
7 send_to 1 71

102

Link Map for the Simulation

Node no. Link no. Link no.
0 0 26
0 1 7
0 2 12
0 3 9
1 4 30
1 3 il
1 6 16
1 7 1
2 8 34
2 9 3
2 10 20
2 11 5
3 12 2
3 13 19
3 14 24
3 15 21
4 16 6
4 17 23
4 18 28
4 19 13
5 20 10
5 21 15
5 22 32
5 23 17
6 24 14
6 25 31
6 26 0
S 27 32
7 28 18
7 29 35
1 30 4
7 31 25
8 32 22
8 33 27
8 34 8
8 35 29

103

Results of the Simulation

* % %] INK DISTRIBUTION CONFIGURED * * *
Job queue initialized
All jobs inputted

printing status of the jobs_queue

status for node Ois true ...some jobs
status for node 1is false ... no jobs
status for node 2is false ... no jobs
status for node 3is true ...some jobs
status for node 4is false ... no jobs
status for node Sis false ... no jobs
status for node 6is false ... no jobs
status for node 7 is true ...some jobs
status for node 8 is true ...some jobs

PRINTING STATUS OF POINTERS

POINTER for node 0is NOT NULLsome jobs
POINTER for node 1is NULL ... no jobs
POINTER for node 21is NULL ... no jobs
POINTER for node 3is NOT NULLsome jobs
POINTER for node 4is NULL ... no jobs
POINTER for node S5is NULL ... no jobs
POINTER for node 6is NULL ... no jobs
POINTER for node 7 is NOT NULLsome jobs
POINTER for node 8is NOT NULLsome jobs

There are some jobs for this node 0
There are some jobs for this node 3
There are some jobs for this node 7
There are some jobs for this node 8

+%% ADPLICATION TASK ACCEPTED ID node numberis 0
COMMUNICATOR TASK INSTANTIATED node numberis 0
##%%% TASK COMMUNICATOR FULLY CONFIGURED *** NODE IS 0

LINK TASK INSTANTIATED node numberis 0 THE LINK IDENTIFICATION
NUMBERIS 0 ADJACENT node numberis 26

LINK TASK INSTANTIATED node numberis 0 THE LINK IDENTIFICATION
NUMBERIS 1 ADJACENT node numberis 7

104

LINK TASK INSTANTIATED node numberis 0 THE LINK IDENTIFICATION
NUMBERIS 2 ADJACENT node numberis 12

LINK TASK INSTANTIATED node numberis O THE LINK IDENTIFICATION
NUMBER IS 3 ADJACENT node numberis 9

%% APPLICATION TASK ACCEPTED ID node number is 1
COMMUNICATOR TASK INSTANTIATED ncde numberis 1
sxaxx TASK COMMUNICATOR FULLY CONFIGURED *+* NODEIS 1

LINK TASK INSTANTIATED node numberis 1 THE LINK IDENTIFICATION
NUMBER IS 4 ADJACENT node numberis 30

LINK TASK INSTANTIATED node numberis 1 THE LINK IDENTIFICATION
NUMBERIS 5 ADJACENT node numberis 11

LINK TASK INSTANTIATED node numberis 1 THE LINK IDENTIFICATION
NUMBERIS 6 ADJACENT node numberis 16

LINK TASK INSTANTIATED node numberis 1 THE LINK IDENTIFICATION
NUMBERIS 7 ADJACENT node numberis 1

**% APPLICATION TASK ACCEPTED ID node number is 2
COMMUNICATOR TASK INSTANTIATED node numberis 2
*xxk*x TASK COMMUNICATOR FULLY CONFIGURED *** NODE IS 2

LINK TASK INSTANTIATED node numberis 2 THE LINK IDENTIFICATION
NUMBERIS 8 ADJACENT node numberis 34

LINK TASK INSTANTIATED node number is 2 THE LINK IDENTIFICATION

NUMDER 19 % ADJACCINT 00de gumoer is 3

LINK TASK INSTANTTATED node numberis 2 THE LINK IDENTIFICATION
NUMBER IS 10 ADJACENT node numberis 20

LINK TASK INSTANTIATED node numberis 2 THE LINK IDENTIFICATION
NUMBERIS 11 ADJACENT node numberis 5

*** APPLICATION TASK ACCEPTED ID node number is 3
COMMUNICATOR TASK INSTANTIATED node numberis 3
*¥xxxx TASK COMMUNICATOR FULLY CONFIGURED *** NODE IS 3

105

LINK TASK INSTANTIATED node numberis 3 THE LINK IDENTIFICATION
NUMRBERIS 12 ADJACENT node numberis 2

LINK TASK INSTANTIATED node numberis 3 THE LINK IDENTIFICATION
NUMBER IS 13 ADJACENT node numberis 19

LINK TASK INSTANTIATED node numberis 3 THE LINK IDENTIFICATION
NUMBER IS 14 ADJACENT node numberis 24

LINK TASK INSTANTIATED node numberis 3 THE LINK IDENTIFICATION
NUMBER IS 15 ADJACENT node number is 21

4k APPLICATION TASK ACCEPTED ID node number is 4
COMMUNICATOR TASK INSTANTIATED node numberis 4
ki TASK COMMUNICATOR FULLY CONFIGURED *** NODE IS 4

LINK TASK INSTANTIATED node numberis 4 THE LINK IDENTIFICATION
NUMBERIS 16 ADJACENT node numberis 6

LINK TASK INSTANTIATED node numberis 4 THE LINK IDENTIFICATION
NUMBERIS 17 ADJACENT node numberis 23

LINK TASK INSTANTIATED node numberis 4 THE LINK IDENTIFICATION
NUMBER IS 18 ADJACENT node numberis 28

LINK TASK INSTANTIATED node number is 4 THE LINK IDENTIFICATION
NUMBERIS 19 ADJACENT node numberis 13

**x APPLICATION TASK ACCEPTED ID node number is 5
COMMUNICATOR TASK INSTANTIATED node numberis 5

Ledssdesdeske PAY A ONTF AN/ TATTAVA FOVATY TIWIT ¥ X7 /AN TRTITY bk ATATVTY TO
""" 4 005 \,UJ.VIJ.VLUL‘.[\A'!LUL\ LUy s \JL‘L LU UL\I—:U . LN D J

LINK TASK INSTANTIATED node numberis 5 THE LINK IDENTIFICATION
NUMBER IS 20 ADJACENT node numberis 10

LINK TASK INSTANTIATED node numberis 5 THE LINK IDENTIFICATION
NUMBER IS 21 ADJACENT node numberis 15

LINK TASK INSTANTIATED node numberis 5 THE LINK IDENTIFICATION
NUMBER IS 22 ADJACENT node numberis 32

LINK TASK INSTANTIATED node numberis 5 THE LINK IDENTIFICATION
NUMBER IS 23 ADJACENT node numberis 17

106

*** APPLICATION TASK ACCEPTED ID node number is 6
COMMUNICATOR TASK INSTANTIATED node numberis 6
*xxxk TASK COMMUNICATOR FULLY CONFIGURED *** NODE IS 6

LINK TASK INSTANTIATED node numberis 6 THE LINK IDENTIFICATION
NUMBER IS 24 ADJACENT node numberis 14

LINK TASK INSTANTIATED node numberis 6 THE LINK IDENTIFICATION
NUMBER IS 25 ADJACENT node numberis 31

LINK TASK INSTANTIATED node numberis 6 THE LINK IDENTIFICATION
NUMBER IS 26 ADJACENT node numberis O

LINK TASK INSTANTIATED node numberis 6 THE LINK IDENTIFICATION
NUMBERIS 27 ADJACENT node numberis 33

**+% APPI] ICATION TASK ACCEPTED ID node number is 7
COMMUNICATOR TASK INSTANTIATED node numberis 7
*¥k¥kk TASK COMMUNICATOR FULLY CONFIGURED *** NODEIS 7

LINK TASK INSTANTIATED node numberis 7 THE LINK IDENTIFICATION
NUMBER IS 28 ADJACENT node numberis 18

LINK TASK INSTANTIATED node numberis 7 THE LINK IDENTIFICATION
NUMBER IS 29 ADJACENT node numberis 35

LINK TASK INSTANTIATED node numberis 7 THE LINK IDENTIFICATION
NUMBERIS 30 ADJACENT node numberis 4

LINK TASK INSTANTIATED node numberis 7 THE LINK IDENTIFICATION

NUMBER 1S 51 ADJACENT node number is 23

*** APPLICATION TASK ACCEPTED ID node number is 8
COMMUNICATOR TASK INSTANTIATED node numberis 8

¥k TASK COMMUNICATOR FULLY CONFIGURED *#+* NODE IS 8

LINK TASK INSTANTIATED node numberis 8 THE LINK IDENTIFICATION
NUMBER IS 32 ADJACENT node numberis 22

LINK TASK INSTANTIATED node numberis 8§ THE LINK IDENTIFICATION
NUMBERIS 33 ADJACENT node numberis 27

107

LINK TASK INSTANTIATED node numberis 8 THE LINK IDENTIFICATION

NUMBER IS 34 ADJACENT node numberis 8

LINK TASK INSTANTIATED node numberis 8 THE LINK IDENTIFICATION

NUMBER IS 35 ADJACENT node number is 29

*¥dkk Getting a job for node 0
last job taken ... queue is empty now

JOB OBTAINED 0

Application about to attempt datagram build 0

Application built datagram 0

*¥>>>>Task communicator accepted message to transmit at node number ---> 0
*#% I INK ACCEPTED DATAGRAM TO TRANSMIT *** LINK #1S 2

%% | INK RECEIVED DATAGRAM ##** T INK #1S 12

*¥>>>>>Task communicator accepted message received at node number ---> 3

Datagram received by task communicator is to be forwarded at NODE number 3

k | INK ACCEPTED DATAGRAM TO TRANSMIT *** LINK #1S14
*%k L INK RECEIVED DATAGRAM **** LINK #1S 24

**>>>>>Task communicator accepted message received at node number ---> 6

Datagram received by task communicator is to be forwarded at NODE number 6

*** | INK ACCEPTED DATAGRAM TO TRANSMIT *** LINK # IS25
*#** LINK RECEIVED DATAGRAM **** LINK #1S 31

**>>>>>Task communicator accepted message received at node number ---> 7

108

Datagram received by task communicator is to be forwarded at NODE number 7

k% | INK ACCEPTED DATAGRAM TO TRANSMIT * LINK # IS29
x | INK RECEIVED DATAGRAM ** L INK # IS 35

**>>>>>Task communicator accepted message received at node number ---> 8

Datagram received by task communicator reached final destination at NODE number 8

x APPLICATION TASK ACCEPTED INPUT * 8

DATAGRAM RECEIVED BY THE APPLICATION TASK AT NODE 8

Seske ke e ek sk ok DATAGRAM I—IEADER e e sk e ok e sk ok
Header type DATA_HDR

Source Node 0

Destination Node 8

Protocol Class TRANSPUTER_PROTOCOL
SRR AR DATAGRAM DATA P S
Data value contained 8

**4d* Getting a job for node 8
last job taken ... queue is empty now

JOB OBTAINED 8

Application about to attempt datagram build 8

Application built datagram 8

**>>>>Task communicator accepted message to transmit at node number ---> 8

¥ LINK ACCEPTED DATAGRAM TO TRANSMIT *** LINK # IS34

109

*4# | INK RECEIVED DATAGRAM **** [INK #1S 3

*¥>>>>>Task communicator accepted message received at node number ---> 2

Datagram received by task communicator is to be forwarded at NODE number 2

#k# LINK ACCEPTED DATAGRAM TO TRANSMIT *** LINK #1510
*#% LINK RECEIVED DATAGRAM **#* LINK #1S 20

**>>>>>Task communicator accepted message received at node number ---> 5

Datagram received by task communicator is to be forwarded at NODE number 5

% | INK ACCEPTED DATAGRAM TO TRANSMIT * LINK # IS23
% INK RECEIVED DATAGRAM ** LINK #1S 17

*¥>>>>>Task communicator accepted message received at node number ---> 4

Datagram received by task communicator reached final destination at NODE number 4

=R Geriing a job for node 3
last job taken ... queue is empty now

JOB OBTAINED 3

Application about to attempt datagram build 3

Application built datagram 3

**>>>>Task communicator accepted message to transmit at node number ---> 3
x | INK ACCEPTED DATAGRAM TO TRANSMIT *** LINK # IS13

¥k | INK RECEIVED DATAGRAM **** L INK #1S 19

110

¥kk Getting a job for node 7
last job taken ... queue is empty now

JOB OBTAINED 7

Application about to attempt datagram build 7

Application built datagram 7

*¥>>>>Task communicator accepted message Yo fransmit ai node number ---> 7
4k T INK ACCEPTED DATAGRAM TO TRANSMIT *** LINK # IS28

¥k T INK RECEIVED DATAGRAM **+* L INK #1IS 18

ik APPLICATION TASK ACCEPTED INPUT *#*%* 4

DATAGRAM RECEIVED BY THE APPLICATION TASK AT NODE 4

ek ek ok sk ok 2k DATAGRAM I.IEADER ek e ook ek ok
Header type DATA_HDR

Source Node 8

Destination Node 4

Protocol Class TRANSPUTER_PROTOCOL
sfesfe sk ek ok ke sk DATAGRAM DATA ek ok ok e sde ke
Data value contained 84

Datagram received by task communicator is to be forwarded at NODE number 4

¥ LINK ACCEPTED DATAGRAM TO TRANSMIT *#* L INK #1S17
¥k LINK RECEIVED DATAGRAM **** LINK #1IS 23

**>>>>>Task communicator accepted message received at node number ---> 5

111

Datagram received by task communicator reached final destination at NODE number 5

*ik APPLICATION TASK ACCEPTED INPUT *** 5

DATAGRAM RECEIVED BY THE APPLICATION TASK AT NODE 3

seoke s deskeske o DATAGRAM I—]EADER sfesiedke i ek ok
Header type DATA_HDR

Source Node 3

Destination Node 5

Protocol Class TRANSPUTER_PROTOCOL
k3o ek e ek ke DATAGRAM DATA sfe sk sk ok e dkok ok
Data value contained 35

*¥>>>>>Task communicator accepted message received at node number ---> 4

Datagram received by task communicator is to be forwarded at NODE number 4

ik LINK ACCEPTED DATAGRAM TO TRANSMIT *** LINK #IS16

#++ LINK RECEIVED DATAGRAM *#+* LINK #15 6

*>>>>>Task communicator accepted message received at node number ---> 1

Datagram received by task communicator reached final destination at NODE number 1

*+k APPLICATION TASK ACCEPTED INPUT ***]

112

DATAGRAM RECEIVED BY THE APPLICATION TASK AT NODE 1

ook sfesfe ek se sk DATAGRAM I.mADER sk sk ook ke ok ke
Header type DATA_HDR

Source Node 7

Destination Node 1

Protocol Class TRANSPUTER_PROTCCOL
shook skakak ok ek DATAGRAM DATA sheskeskesfe sk sk e sk
Data value contained 71

113

EXAMPLE 2

Message passing in a mesh configuration

Input File for a Mesh Connection

Source Node Operation Destination Node Data

0 send_to 8 08

114

Link Map for the Mesh

Node no. Link No. Link No.
0 1 7
0 2 12
1 5 11
1 6 16
1 7 1
2 10 20
2 11 5
3 12 2
3 13 19
3 14 24
4 16 6
4 17 23
4 18 28
4 19 13
5 20 10
5 22 32
5 23 17
6 24 14
6 25 31

A 28 18
7 29 35
7 31 25
8 32 22
8 35 29

115

Results of the Mesh Interconnection

* % % L INK DISTRIBUTION CONFIGURED * * *
Job queue initialized
All jobs inputted

printing status of the jobs_queue

status for node 0 is true ...some jobs
status for node 1is false ... no jobs
status for node 2is false ... no jobs
status for node 3 is false ... no jobs
status for node 4 is false ... no jobs
status for node 5is false ... no jobs
status for node 6 is false ... no jobs
status for node 7 is false ... no jobs
status for node 8is false ... no jobs

PRINTING STATUS OF POINTERS

POINTER for node 0is NOT NULLsome jobs
POINTER for node 1is NULL ... no jobs
POINTER for node 2is NULL ... no jobs
POINTER for node 3is NULL ... no jobs
POINTER for node 4is NULL ... no jobs
POINTER for node 5is NULL ... no jobs
POINTER for node 61is NULL ... no jobs
POINTER for node 7 is NULL ... no jobs
POINTER for node 8is NULL ... no jobs

There are some jobs for this node 0
% ok ok ok ok ok ok Kk Kk

* k%
* %k &k ok k% k ok ok ok

*
N —_ —_

**x APPLICATION TASK ACCEPTED ID node number is 0
COMMUNICATOR TASK INSTATIATED node numberis 0
k¥k TASK COMMUNICATOR FULLY CONFIGURED * NODEIS 0

LINK TASK INSTANTIATED node numberis 0 THE LINK IDENTIFICATION
NUMBERIS 0 ADYACENT node number is NULL

LINK TASK INSTANTIATED node numberis 0 THE LINK IDENTIFICATION
NUMBERIS 1 ADYACENT node numberis 7

LINK TASK INSTANTIATED node numberis 0 THE LINK IDENTIFICATION
NUMBERIS 2 ADYACENT node numberis 12

116

LINK TASK INSTANTIATED node numberis O THE LINK IDENTIFICATION
NUMBERIS 3 ADYACENT node number is NULL

**% APPLICATION TASK ACCEPTED ID node number is 1
COMMUNICATOR TASK INSTANTIATED node numberis 1
*xx3% TASK COMMUNICATOR FULLY CONFIGURED *** NODEIS 1

LINK TASK INSTANTIATED node numberis 1 THE LINK IDENTIFICATION
NUMBERIS 4 ADYACENT node number is NULL

LINK TASK INSTANTIATED node numberis 1 THE LINK IDENTIFICATION
NUMBERIS 5 ADYACENT node numberis 11

LINK TASK INSTANTIATED node numberis 1 THE LINK IDENTIFICATION
NUMBERIS 6 ADYACENT node numberis 16

LINK TASK INSTANTIATED node numberis 1 THE LINK IDENTIFICATION
NUMBERIS 7 ADYACENT node numberis 1

**¥ APPLICATION TASK ACCEPTED ID node number is 2
COMMUNICATOR TASK INSTANTIATED node numberis 2
*¥kdkk TASK COMMUNICATOR FULLY CONFIGURED *** NODE IS 2

LINK TASK INSTANTIATED node numberis 2 THE LINK IDENTIFICATION
NUMBERIS 8 ADYACENT node number is NULL

LINK TASK INSTANTIATED node numberis 2 THE LINK IDENTIFICATION
NUMBERIS 9 ADYACENT node number is NULL

LINK TASK INSTANTIATED node numberis 2 THE LINK IDENTIFICATION
NUMBERIS 10 ADYACENT node numberis 20

LINK TASK INSTANTIATED node numberis 2 THE LINK IDENTIFICATION
NUMBERIS 11 ADYACENT node numberis 35

*i% APPLICATION TASK ACCEPTED ID node number is 3
COMMUNICATOR TASK INSTANTIATED node numberis 3
*#ddx TASK COMMUNICATOR FULLY CONFIGURED *** NODEIS 3

LINK TASK INSTANTIATED node number is 3 THE LINK IDENTIFICATION
NUMBERIS 12 ADYACENT node numberis 2

117

LINK TASK INSTANTIATED node numberis 3 THE LINK IDENTIFICATION
NUMBERIS 13 ADYACENT node numberis 19

LINK TASK INSTANTIATED node numberis 3 THE LINK IDENTIFICATION
NUMBERIS 14 ADYACENT node number is 24

LINK TASK INSTANTIATED node numberis 3 THE LINK IDENTIFICATION
NUMBERIS 15 ADYACENT node numberis 1

*4k APPLICATION TASK ACCEPTED ID node number is 4
COMMUNICATOR TASK INSTANTIATED node numberis 4
wickkx TASK COMMUNICATOR FULLY CONFIGURED *** NODE IS 4

LINK TASK INSTANTIATED node numberis 4 THE LINK IDENTIFICATION
NUMBERIS 16 ADYACENT node numberis 6

LINK TASK INSTANTIATED node numberis 4 THE LINK IDENTIFICATION
NUMBERIS 17 ADYACENT node numberis 23

LINK TASK INSTANTIATED node numberis 4 THE LINK IDENTIFICATION
NUMBER IS 18 ADYACENT node numberis 28

LINK TASK INSTANTIATED node numberis 4 THE LINK IDENTIFICATION
NUMBERIS 19 ADYACENT node numberis 13

*** APPLICATION TASK ACCEPTED ID node number is 5
COMMUNICATOR TASK INSTANTIATED node number is 5
*xkxk TASK COMMUNICATOR FULLY CONFIGURED *** NODE IS 5

—y o ——

LINK TASK INSTANI1IATED node numoeris 3 THE LINK IUENLIFICATIOIN

NUMBERIS 20 ADYACENT node numberis 10

LINK TASK INSTANTIATED node numberis 5 THE LINK IDENTIFICATION
NUMBERIS 21 ADYACENT node numberis 7

LINK TASK INSTANTIATED node numberis 5 THE LINK IDENTIFICATION
NUMBERIS 22 ADYACENT node number is 32

LINK TASK INSTANTIATED node numberis 5 THE LINK IDENTIFICATION
NUMBERIS 23 ADYACENT node numberis 17

*** APPLICATION TASK ACCEPTED ID node number is 6

118

COMMUNICATOR TASK INSTANTIATED node numberis 6
*¥kkick TASK COMMUNICATOR FULLY CONFIGURED *** NODEIS 6

LINK TASK INSTANTIATED node numberis 6 THE LINK IDENTIFICATION
NUMBER IS 24 ADYACENT node numberis 14

LINK TASK INSTANTIATED node numberis 6 THE LINK IDENTIFICATION
NUMBER IS 25 ADYACENT ncde numberis 31

LINK TASK INSTANTIATED node numberis 6 THE LINK IDENTIFICATION
NUMBER IS 26 ADYACENT node number is NULL

LINK TASK INSTANTIATED node numcberis 6 THE LINK IDENTIFICATION
NUMBERIS 27 ADYACENT node number is NULL

*xk APPLICATION TASK ACCEPTED ID node number is 7
COMMUNICATOR TASK INSTANTIATED node numberis 7
*xxdk TASK COMMUNICATOR FULLY CONFIGURED *** NODEIS 7

LINK TASK INSTANTIATED node numberis 7 THE LINK IDENTIFICATION
NUMBER IS 28 ADYACENT node numberis 18

LINK TASK INSTANTIATED node numberis 7 THE LINK IDENTIFICATION
NUMBER IS 29 ADYACENT node numberis 35

LINK TASK INSTANTIATED node numberis 7 THE LINK IDENTIFICATION
NUMBER IS 30 ADYACENT node number is NULL

LINK TASK INSTANTIATED node numberis 7 THE LINK IDENTIFICATION
NUMBER IS 31 ADYACENT node number is 25

#¥% APPLICATION TASK ACCEFICD ID node numoer is 3
COMMUNICATOR TASK INSTANTIATED node numberis 8
sk TASK COMMUNICATOR FULLY CONFIGURED *** NODE 1S 8§

LINK TASK INSTANTIATED node numberis 8 THE LINK IDENTIFICATION
NUMBER IS 32 ADYACENT node numberis 22

LINK TASK INSTANTIATED node numberis 8 THE LINK IDENTIFICATION
NUMBERIS 33 ADYACENT node numberis 12

LINK TASK INSTANTIATED node numberis 8 THE LINK IDENTIFICATION
NUMBER IS 34 ADYACENT node numberis 13

119

LINK TASK INSTANTIATED node numberis 8 THE LINK IDENTIFICATION
NUMBER IS 35 ADYACENT node numberis 29

k*x¥* Getting a job for node 0
last job taken ... queue is empty now

JOB OBTAINED 0

Application about to attempt datagram build 0

Application built datagram 0

**>>>>>>Task communicator accepted message to transmit at node number ---> 0
4% | INK ACCEPTED DATAGRAM TO TRANSMIT *** LINK #1S 2

ik INK RECEIVED DATAGRAM *¥#* | INK #1S 12

**>>>>>>Task communicator accepted message received at node number ---> 3

Datagram received by task communicator is to be forwarded at NODE number 3

wik] INK ACCEPTED DATAGRAM TO TRANSMIT ##** LINK #1514
i | INK RECEIVED DATAGRAM #*#** LINK # IS 24

**>>>>>>Task communicator accepted message received at node number ---> 6

Datagram received by task communicator is to be forwarded at NODE number 6

k LINK ACCEPTED DATAGRAM TO TRANSMIT *** LINK #1825
*** LINK RECEIVED DATAGRAM ##*** LINK # IS 31

**>>>>>>Task communicator accepted message received at node number --->7

Datagram received by task communicator is to be forwarded at NODE number 7

120

*x% | INK ACCEPTED DATAGRAM TO TRANSMIT *** LINK # 1S29
*** INK RECEIVED DATAGRAM #**#* L INK #18S 35

**>>>>>>Task communicator accepted message received at node number ---> 8

Datagram received by task communicator reached final destination at NODE number 8

x* APPLICATION TASK ACCEPTED INPUT * 8

DATAGRAM RECEIVED BY THE APPLICATION TASK AT NODE 8

ek ofe e s e ke ke DATAGRAM I-IEADER sefesic ek dksk
Header type DATA_HDR

Source Node 0

Destination Node 8

Protocol Class TRANSPUTER_PROTGCOL
skak ook kokok DATAGRAM DATA skeskeskosk dk dksk ok
Data value contained 8

APPENDIX B

Malek's Algorithm Results
* % * LINK DISTRIBUTION CONFIGURED * * *
Job queue initialized
All jobs inputted

printing status of the jobs_queue

status for node Ois true ...some jobs
status for node 1is true ...some jobs
status for node 2is false ... no jobs
status for node 3 is true ...some jobs
status for node 41is false ... no jobs
status for node 5is false ... no jobs
status for node 6is false ... no jobs
status for node 7 is false ... no jobs
status for node 8is false ... no jobs

PRINTING STATUS OF POINTERS

POINTER for node 0is NOT NULLsome jobs
POINTER for node 1is NOT NULLsome jobs
POINTER for node 21is NULL ... no jobs
POINTER for node 3is NOT NULLsome jobs
POINTER for node 4is NULL ... no jobs
POINTER for ncde Sis NULL ... no jobs
POINTER for node 6is NULL ... no jobs
POINTER for node 7 is NULL ... no jobs
POINTER for nocde 8is NULL ... no jobs
There are some jobs for this node 0
There are some jobs for this node 1

3

There are some jobs for this node
E % E E £ % &k E E S E 3 E 3 % L * &k % % *

kT ok ok ok ok k k k Kk ok k k& ok Kk kK &
**kdk Getting a job for node 0

JOB OBTAINED 0

Application about to attempt packet build 0

Application built packet O

**>>>>>Task communicator accepted message to transmit at node number ---> 0

*** LINK ACCEPTED PACKET TO TRANSMIT *** LINK # IS 1
121

122

*** LINK RECEIVED PACKET **** L INK #1IS 7

**>>>>>>Task communicator accepted message received at node number ---> 1

Packet received by task communicator reached final destination at NODE number 1

*** APPLICATION TASK ACCEPTED INPUT *¥* 1

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 1

sk ok sk sk okok PACI(ET I.IEADER ok e sk ok sk ke ok ok
Header type DATA_HDR

Source Node 0

Destination Node 1

Protocol Class TRANSPUTER_PROTOCOL
o e 3k e e e 2k e PACI(ET DATA deseskesk sk sk ckeok
Data value contained 10

*d*k* Getting a job for node 1
last job taken ... queue is empty now

JOB OBTAINED 1

Applicarion about 1o areempt packer puiid 1

Application built packet 1

**>>>>>>Task communicator accepted message to transmit at node number ---> 1
*** LINK ACCEPTED PACKET TO TRANSMIT *** LINK # IS 7

¥ LINK RECEIVED PACKET **** LINK #1S 1

**>>>>>>Task communicator accepted message received at node number ---> 0

123

Packet received by task communicator reached final destination at NODE number 0O

*** APPLICATION TASK ACCEPTED INPUT *** 0

PACKET RECEIVED BY THE APPLICATICON TASK AT NCDE 0

o sk ok ke ok ke kol PACI(ET I.IEADER e ek ¢ ok ok
Header type DATA_HDR

Source Node 1

Destination Node 0

Protocol Class TRANSPUTER_PROTOCOL
sk ol sfe ke ¢ e ok PACI(ET DATA sk okakkodkok
Data value contained 10

**k¥* Getting a job for node 0
last job taken ... queue is empty now

JOB OBTAINED 0

Application about to attempt packet build O

Application built packet O

**>>>>>>Task communicator accepted message to transmit at node number ---> 0
*** LINK ACCEPTED PACKET TO TRANSMIT *** LINK #1S 2

*** LINK RECEIVED PACKET **** LINK # IS 12

**>>>>>>Task communicator accepted message received at node number ---> 3

Packet received by task communicator reached final destination at NODE number 3

***+ APPLICATION TASK ACCEPTED INPUT *%** 3

124

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 3

ek ekl dkesk sk PACI{ET I—IEADER sk feakok sk sk sk
Header type DATA_HDR

Source Node 0

Destination Node 3

Protocol Class TRANSPUTER_PROTQOCOL
Data value contained 10

**+4% Getting a job for node 3
last job taken ... queue is empty now

JOB OBTAINED 3
Application about to attempt packet build 3
Application built packet 3

**>>>>>>Task communicator accepted message to transmit at node number ---> 3

x | INK ACCEPTED PACKET TO TRANSMIT * LINK # IS12
*** LINK RECEIVED PACKET **** LINK #IS 2

**>>>>>>Task communicator accepted message received at node number ---> 0

Packer received Dy sk communicaror reacned fodi desinaiion at NODE numboer U

*+k APPLICATION TASK ACCEPTED INPUT *** (

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 0

*kkkkkkk PACKET HEADER sesleskode skl ok
Header type DATA_HDR

125

Source Node 3

Destination Node 0

Protocol Class TRANSPUTER_PROTOCOL
ok sk sk e i ke sk PACI(ET DATA e sdesje ek A sk ke
Data value contained 10

126

* % % T INK DISTRIBUTION CONFIGURED * * *
Job queue initialized
All jobs inputted

printing status of the jobs_queue

status for node Qis true ...some jobs
status for node 1is false ... no jobs
status for ncde 2is false ... no jobs
status for node 3is true ...some jobs
status for node 4 is true ...some jo0s
status for node 5is false ... no jobs
status for node 6is false ... no jobs
status for node 71is false ... no jobs
status for node 8is false ... no jobs

PRINTING STATUS OF POINTERS

POINTER for node 0is NOT NULLsome jobs
POINTER for node 1is NULL ... no jobs
POINTER for node 2is NULL ... no jobs
POINTER for node 3is NOT NULLsome jobs
POINTER for node 4is NOT NULLsome jobs
POINTER for node 5is NULL ... no jobs
POINTER for node 6is NULL ... no jobs
POINTER for node 7 is NULL ... no jobs
POINTER for node 8is NULL ... no jobs

There are some jobs for this node 0

There are some jobs for this node 3

There are some jobs for this node 4

¥ ok ok ok ok Kk Kk Kk Kk K
® & & & % % & % %

i

**:*dk*k Getting a job for node 3

JOB UPTAINED 5

Application about to attempt packet build 3

Application built packet 3

**>>>>>>Task communicator accepted message to transmit at node number ---> 3
*** | INK ACCEPTED PACKET TO TRANSMIT *** LINK #1IS 12

*** L INK RECEIVED PACKET **** L INK # IS 2

**>>>>>>Task communicator accepted message received at node number ---> 0

127

Packet received by task communicator reached final destination at NODE number 0

*xk APPLICATION TASK ACCEPTED INPUT *** 0

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 0

Skeoke sk sk ke sk sk PACI(ET I-IEADER sk desie sk ko ok
Header type DATA_HDR

Source Node 3

Destination Node 0

Protocol Class TRANSPUTER_PROTOCOL
¢ i e e 3fe ¢ o e PACI(ET DATA seak ¢ ok o e e e
Data value contained 20

#*k%k Getting a job for node 0
last job taken ... queue is empty now

JOB OBTAINED 0

Application about to attempt packet build 0

Application built packet 0

**>>>>>>Task communicator accepted message to transmit at node number ---> 0
sk L INK ACCEPTED PACKET TO TRANSMIT *** LINK # IS 2

*¥% L INK RECEIVED PACKET **** LINK # IS 12

**>>>>>>Task communicator accepted message received at node number ---> 3

Packet received by task communicator reached final destination at NODE number 3

*¥% APPLICATION TASK ACCEPTED INPUT *** 3

128

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 3

skeskeskoke e sk ke PACI{ET I-IEADER sk v ok e e sk ke ok
Header type DATA_HDR

Source Node 0

Destination Node 3

Protocol Class TRANSPUTER_PROTOCOL
skk ek kok PACI{ET DATA sk Nk ok ke sdeok ok
Data value contained 20

*%¥¥¥ Getting a job for node 3
last job taken ... queue is empty now

JOB OBTAINED 3
Application about to attempt packet build 3

Application built packet 3

*¥>55>>>>Task communicator accepted message to transmit at node number ~--> 3

##x [INK ACCEPTED PACKET TO TRANSMIT *** LINK # IS 13
% | INK RECEIVED PACKET ** LINK #1S 19

*¥>>>>>>Task communicator accepted message received at node number ---> 4

Packet received by task communicator reached final destination at NODE number 4

***x APPLICATION TASK ACCEPTED INPUT *** 4

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 4

129

oo sk deske ke sie sk ok PACICET I-]EADER ok ek ok ke ke sk e
Header type DATA_HDR

Source Node 3

Destination Node 4

Protocol Class TRANSPUTER_PRQTQOCOL
sfeokokeoje ek ek PACI{ET DATA o 3K e e sk ok
Data value contained 20

*dxkk Getting 2 job for nede 4
last job taken ... queue is empty now

JOB OBTAINED 4

Application about to attempt packet build 4

Application built packet 4

*¥>>>>>>Task communicator accepted message to transmit at node number ---> 4
*** LINK ACCEPTED PACKET TO TRANSMIT *** LINK # IS19

% L INK RECEIVED PACKET **** LINK #IS 13

*¥>>>>>>Task communicator accepted message received at node number ---> 3

Packet received by task communicator reached final destination at NODE number 3

*** APPLICATION TASK ACCEPTED INPUT *** 3

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 3

130

s sl etk ke ke ok PACI{ET I—IEADER ek ook ek ok
Header type DATA_HDR

Source Node 4

Destination Node 3

Protocol Class TRANSPUTER_PROTOCOL
ke ek skokeok ok sk PACKET DATA ok ok ke sk ek
Data value contained 20

131

* % * T INK DISTRIBUTION CONFIGURED * * *
Job queue initialized
All jobs inputted

printing status of the jobs_queue

status for node Ois false ... no jobs
status for node lis false ... no jobs
status for node 2is false ... no jobs
status for node 3is false... no jobs
status for node 4 is true ...some jobs
status for node 5 is true...some jobs
status for node 6is false ... no jobs
status for node 7 is true ...some jobs
status for node 8is false ... no jobs

PRINTING STATUS OF POINTERS

POINTER for node 0is NULL ... no jobs
POINTER for node lis NULL ... no jobs
POINTER for node 2is NULL ... no jobs
POINTER for node 3is NULL ... no jobs
POINTER for node 4 is NOT NULLsome jobs
POINTER for node 5is NOT NULLsome jobs
POINTER for node 6is NULL ... no jobs
POINTER for node 7 is NOT NULLsome jobs
POINTER for node 8is NULL ... no jobs

There are some jobs for this node 4
There are some jobs for this node 5
There are some jobs for this node 7

¥ % k Kk * K K % ok K
ok ok ok ok ok k& &k ok

* %k
* k% -

**kx* Getting a job for node 4

JOB UBTAINED 4

Application about to attempt packet build 4

Application built packet 4

**>>>>>>Task communicator accepted message to transmit at node number ---> 4
*** LINK ACCEPTED PACKET TO TRANSMIT *** LINK # IS 17

*** LINK RECEIVED PACKET #*#*** LINK # IS 23

**>>>>>>Task communicator accepted message received at node number ---> 5

132

Packet received by task communicator reached final destination at NODE number 5

*** APPLICATION TASK ACCEPTED INPUT *** 5

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 5

ok sk sk sk ofe e ok ok PACI(ET I-IEADER ok sk sk sk e ke sk ok
Header type DATA_HDR

Source Node 4

Destination Node 5

Protocol Class TRANSPUTER_PROTOCCOL
ek afe ek i ok ok PACI(ET DATA e sk ke ok e ok ek
Data value contained 30

ddkk Getting a job for node 5
last job taken ... queue is empty now

JOB OBTAINED 5

Application about to attempt packet build 5

Application built packet 5

*#>>>>>>Task communicator accepted message to transmit at node number ---> 5
3 LINK ACCEPTED PACKET TO TRANSMIT *#¥* L INK # 1523

*** LINK RECEIVED PACKET **** L INK #1S 17

**>>>>>>Task communicator accepted message received at node number ---> 4

Packet received by task communicator reached final destination at NODE number 4

x APPLICATION TASK ACCEPTED INPUT *** 4

133

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 4

sk ok sfeske e sl ko PACI(ET I-IEADER seieskdeskk ek
Header type DATA_HDR

Source Node 5

Destination Node 4

Protocol Class TRANSPUTER_PROTOCOL
ok e 2k 3 ke ke e sk PACI(ET DATA skeok ke skl ke ek
Data value contained 30

**kkk Getting a job for node 4
last job taken ... queue is empty now

JOB OBTAINED 4
Application about to attempt packet build 4

Application built packet 4

**>>>>>>Task communicator accepted message to transmit at node number ---> 4

*** L INK ACCEPTED PACKET TO TRANSMIT *** [INK #1518
| INK RECEIVED PACKET **** LINK # IS 28

**>>>>>>Task communicator accepted message received at node number ---> 7

Packet received by task communicator reached final destination at NODE number 7

% APPLICATION TASK ACCEPTED INPUT *# 7

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 7

134

sedzsiode sk kkek PACICET :HEADER e ¢ 3 3 ke ek ok
Header type DATA_HDR

Source Node 4

Destination Node 7

Protocol Class TRANSPUTER_PROTOCOL
seskesiesk sk ok PACI{ET DATA ek e ek e ek
Data value contained 30

*xddok Getting a job for node 7
last job taken ... queue is empty now

JOB OBTAINED 7

Application about to attempt packet build 7

Application built packet 7

**5>>>>>Task communicator accepted message to transmit at node number ---> 7
*¥k] INK ACCEPTED PACKET TO TRANSMIT *** L INK # IS28

*** INK RECEIVED PACKET **** LINK #IS 18

*#5>>>>>Task communicator accepted message received at node number ---> 4

Packet received by task communicator reached final destination at NODE number 4

x APPLICATION TASK ACCEPTED INPUT * 4

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 4

135

sk ke sk dok PACI(ET I-]EADER sk ek ok ke ke
Header type DATA_HDR

Source Node 7

Destination Node 4

Protocol Class TRANSPUTER_PROTOCOL
o sfeofe sk okok ke ok PACKET DATA EEE £ 22
Data value contained 30

136

* % % LINK DISTRIBUTION CONFIGURED * * *
Job queue initialized
All jobs inputted

printing status of the jobs_queue

status for node Ois false ... no jobs
status for node 1is false ... no jobs
status for node 2is false ... no jobs
status for node 3is false ... no jobs
status for node 41is false ... no jobs
status for node 5is false ... no jobs
status for node 6is true ...some jobs
status for node 7 is true ...some jobs
status for node 8 is true ...some jobs

PRINTING STATUS OF POINTERS

POINTER for node 0is NULL ... no jobs
POINTER for node 1is NULL ... no jobs
POINTER for node 2is NULL ... no jobs
POINTER for node 3is NULL ... no jobs
POINTER for node 4is NULL ... no jobs
POINTER for node 5is NULL ... no jobs
POINTER for node 6is NOT NULLsome jobs
POINTER for node 7 is NOT NULLsome jobs
POINTER for node 8 is NOT NULLsome jobs

There are some jobs for this node 0
There are some jobs for this node i
There are some jobs for this node 3

*_*_*_*_*_*_*_*_*_*—*_* k ok ok Kk ok 3k
*_*_*_*_*_*_*_*_*_*_*_*__*_*_*_*__*_-*

*kkkk Getting a job for node 7

JOB UBTAINED 7

Application about to attempt packet build 7

Application built packet 7

**>>>>>>Task communicator accepted message to transmit at node number ---> 7
*** LINK ACCEPTED PACKET TO TRANSMIT *#+* LINK # IS29

*** LINK RECEIVED PACKET **** L INK # IS 35

**>>>>>>Task communicator accepted message received at node number ---> 8

137

Packet received by task communicator reached final destination at NODE number 8

*k APPLICATION TASK ACCEPTED INPUT *¥* 8

PACKET RECEIVED BY THE APPLICATION TASK AT NODE §

ke sk sk ek PACICET I-IEADER sk die ke e ke ok ke
Header type DATA_HDR

Source Node 7

Destination Node 8

Protocol Class TRANSPUTER_PROTOCOL
ok e ke e e e e ke PACI(ET DATA ek skesfeok sk slook
Data value contained 40

kddk Getting a job for node 8
last job taken ... queue is empty now

JOB OBTAINED 8

Application about to attempt packet build 8

Application built packet 8

**>>>>>>Task communicator accepted message to transmit at node number ---> 8
*ik LINK ACCEPTED PACKET TO TRANSMIT *** LINK # IS35

*** LINK RECEIVED PACKET *##* L INK #1IS 29

**>>>>>>Task communicator accepted message received at node number ---> 7

Packet received by task communicator reached final destination at NODE number 7

+*+ APPLICATION TASK ACCEPTED INPUT * 7

138

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 7

skieokoieskakkok PACI{ET I-IEADER sk sk seokeok ok
Header type DATA_HDR

Source Node 8

Destination Node 7

Protocol Class TRANSPUTER_PROTOCOL
ke sk ok koo sk ok PACI{ET DA’I‘A e skeoke deak ok ak ok
Data value contained 40

**kdk Getting a job for node 7
last job taken ... queue is empty now

JOB OBTAINED 7
Application about to attempt packet build 7
Application built packet 7

**>>>>>>Task communicator accepted message to transmit at node number ---> 7

*ix LINK ACCEPTED PACKET TO TRANSMIT *** LINK # IS31
¥ LINK RECEIVED PACKET ** LINK # IS 25

**>>>>>>Task communicator accepted message received at node number ---> 6

Packet received by task communicator reached final destination at NODE number 6

*** APPLICATION TASK ACCEPTED INPUT *** 6

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 6

139

oo e o e e ke e PACI(ET I.]EADER o sk ok 3 ok ek ok
Header type DATA_HDR

Source Node 7

Destination Node 6

Protocol Class TRANSPUTER_PROTOCOL
EE 2 £ 3+ 3 PACI(ET DATA ko ok sk ke keoke
Data value contained 40

*kkdk Getting a job for nede 6
last job taken ... queue is empty now

JOB OBTAINED 6

Application about to attempt packet build 6

Application built packet 6

*¥>>>>>>Task communicator accepted message to transmit at node number ---> 6
*#** L INK ACCEPTED PACKET TO TRANSMIT *** LINK # IS25

*** LINK RECEIVED PACKET **** LINK # IS 31

®h>>>>>>Task communicator accepted message received at node number ---> 7

Packet received by task communicator reached final destination at NODE number 7

***% APPLICATION TASK ACCEPTED INPUT #*¥* 7

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 7

140

Sk e e sfe 3\ ke ek PACKET I.IEADER e e e e e e ste ke
Header type DATA_HDR

Source Node 6

Destination Node 7

Protocol Class TRANSPUTER_PROTOCOL
seskkokkkkok PACKET DATA sk ek ok okoke
Data value contained 40

141

* % x LINK DISTRIBUTION CONFIGURED * * *
Job queue initialized
All jobs inputted

printing status of the jobs_queue

status for node Ois false ... no jobs
status for node 1is true...some jobs
status for ncde 2 is true ...some jobs
status for node 3is false ... no jobs
status for node 4 is true ...some jobs
status for node 5is false ... no jobs
status for node 6is false ... no jobs
status for node 7 is false ... no jobs
status for node 8is false ... no jobs

PRINTING STATUS OF POINTERS

POINTER for node 0is NULL ... no jobs
POINTER for node 1is NOT NULLsome jobs
POINTER for node 2is NOT NULLsome jobs
POINTER for node 3is NULL ...no jobs
POINTER for node 4is NOT NULLsome jobs
POINTER for node 5is NULL ... no jobs
POINTER for node 6is NULL ... no jobs
POINTER for node 7 is NULL ... no jobs
POINTER for node 8 is NULL ... no jobs

There are some jobs for this node 1
There are some jobs for this node 2
There are some jobs for this node 4
k ok ok % ok Kk ok ok ok ok k%

* Ok R Rk & m K k% %k Kk kK ok

*&dkk Getting a job for node 1

JOB UBTAINED 1

Application about to attempt packet build 1

Application built packet 1

**>>>>>>Task communicator accepted message to transmit at node number ---> 1
*+k INK ACCEPTED PACKET TO TRANSMIT *** LINK # IS 5

*** | INK RECEIVED PACKET **** L INK #1IS 11

**>>>>>>Task communicator accepted message received at node number ---> 1

142

Packet received by task communicator reached final destination at NODE number 2

*+¢ APPLICATION TASK ACCEPTED INPUT *** 2

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 2

3¢ e ik e e ook PACI(ET I—IEADER e kg o ol e e ok
Header type DATA_HDR

Source Node 1

Destination Node 2

Protocol Class TRANSPUTER_PROTOCOL
sk seak ol dfe ke ok ok PACI(ET DATA sk el ook
Data value contained 50

**¥kk Getting a job for node 2
last job taken ... queue is empty now

JOB OBTAINED 2

Application about to attempt packet build 2

Application built packet 2

**>>>>>>Task communicator accepted message to transmit at node number ---> 2
#kk LINK ACCEPTED PACKET TO TRANSMIT *** LINK # IS11

*kx | INK RECEIVED PACKET **** LINK #1IS 5

**>>>>>>Task communicator accepted message received at node number ---> 1

Packet received by task communicator reached final destination at NODE number 1

*ik APPLICATION TASK ACCEPTED INPUT #*** 1

143

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 1

s sesde ke sk ok PACI{ET HEADER sfedkdeskede sk k

Header type DATA_HDR

Source Node 2

Destination Node 1

Protocol Class TRANSPUTER_PROTOCOL

sk eoke e sede ke ke PACKET DATA s eske skeok e ke

Data value contained 52 -- Data received is wrong

*¥*k*k Getting a job for node 1
last job taken ... queue is empty now

JOB OBTAINED 1
Application about to attempt packet build 1

Application built packet 1

**5>>>>>Task communicator accepted message to transmit at node number ---> 1

% LINK ACCEPTED PACKET TO TRANSMIT * LINK #IS 6
*** LINK RECEIVED PACKET **** LINK #1S 16

**>>>>>>Task communicator accepted message received at node number ---> 4

Packet received by task communicator reached final destination at NODE number 4

*** APPLICATION TASK ACCEPTED INPUT *** 4

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 4

144

e 3¢ koo sk e e olke PACKET }IEADER e skeske o ke e ok ok
Header type DATA_HDR

Source Node 1

Destination Node 4

Protocol Class TRANSPUTER_PROTOCOL
e e sk ske sk ke e e PACI(ET DATA ek ki sk kak

Data value contained 50
*kkkk Getting a job for node 4

last job taken ... queue is empty now

JOB OBTAINED 4

Application about to attempt packet build 4

Application built packet 4

*¥>>>>>>Task communicator accepted message to transmit at node number ---> 4
*** L INK ACCEPTED PACKET TO TRANSMIT *** | INK # IS16

*** | INK RECEIVED PACKET **** [INK #1IS 6

*¥>>>>>>Task communicator accepted message received at node number ---> 1

Packet received by task communicator reached final destination at NODE number 1

*xx APPLICATION TASK ACCEPTED INPUT *** 1

PACKET RECEIVED BY THE APPLICATION TASK AT NODE 1

145

o sfe ke e ke e sk PACI(ET I-IEADER sesfesdecte sk okok ok
Header type DATA_HDR

Source Node 4

Destination Node 1

Protocol Class TRANSPUTER_PROTOCOL
ok e sk sheofe ke ke sk PACICET DATA S ok sheske sk ook
Data value contained 50

APPENDIX C

Configuration Code

(I) Searching a tree of transputers

If a transputer is booted on link parentlink, then the algorithm discussed in
Chapter 4 may be expressed as follows:
SEQ
SEQ I = 0 FOR 4
downLoad{[I]:= FALSE

nTransputers:= LoadingData[2]

id := nTransputers

nTransputers:= nTransputers + 1 »

SEQ I = 0 FOR 4 - Try each link in turn
IF

I = parentLink

SKIP
TRUE
SEQ
stage =1
waiting = FALSE
badOut := FALSE

.. Search neighboring transputer (set
waiting) (i)
. Boot neighbour,and wait while config

explores (iii)

LinkOut [parentlLink] ! ReturnControl.t; nTransputers

146

147

Note:

(i) Testing a neighbour:

SEQ
QutputToken.t {(LinkOut[I], 0 (BYTE), Delay, badOut) =-- (ii)
OutputInt . t (LinkOut {17, MinInt, Delay, badOut)

OutputlInt.t (LinkQut[I], MinInt, Delay, badoOut)
OutputToken.t (LinkOut(I], 1 (BYTE), Delay, badOut)
OutputInt.t (LinkOut {I], MinInt, Delay, badOut)

Clock 2 time
ALT
LinkIn[I] ? token —- Value returned
SEQ
stage := 2
waiting := TRUE
Clock ? AFTER time PLUS Delay
SKIP

Note that the return of the value MinInt indicates that a successful write and read
has taken place (the boolean badCut also indicates that this transputer has output
the write and read). waitina is now set to true and the algorithm enters the nest

loop.

(i) The process OutputToken.t, OutputInt.t,OutputString.t are
based on the output or fail routine. For example:
PROC OutputToken.t (CHAN OF ANY ToLink, VAL BYTE Token,

VAL INT Delay, BOOL stopping)
INT time :

TIMER Clock :
VAL (1} BYTE String RETYPES Token :

148

IF
stopping
SKIP
TRUE
SEQ

Clock ? time

time := time PLUS Delay

OutputOrFail.t (ToLink,String,Clock,time,stopping) :

(iii) Given the success of (i) (waiting is set to TRUE), now try to boot the

neighbouring transputer:
SEQ

... Try to boot neighbouring transputer

WHILE waiting -- config explores branch off neighbour

LinkIn[I] ? token
CASE token
... LoadingData.t

... ReturnControl.t

Booting is performed as follows:

VAL [] BYTE InitialData RETYPES [Id, I, nTransputers, 0]

VAL Program IS [programTable FROM 0 FOR programlLength] :

sz
OutputString.t (LinkOut{I],
OutputInt.t (LinkOut{I],
OutputString.t (LinkOut[I],
OutputlInt.t (LinkQut{I],

OutputString.t (LinkOut[I],

Program,
SIZE Program,
Program,
LoadingData.t,

Initialbata,

Delay,
Delay,
Delay,
Delay,
Delay,

badOut)
badout)
badout)
badout)
badOut)

(iv) The loadingData is returned to the host (for immediate display) and is
acknowledged by the token Syncronize.t. On receipt of the data, the host
process returns the token Syncronize. t. This synchronization is important, for

149

it guarantees that all transputers at stage 3 are ready to be probed on any link J, and
are not still engaged in returning loadingData.
LoadingData.t

[LoadingDatalength] INT passOnData :

SEQ
LinkIn{I] ? passOnbata
LinkCut {parentlLink] ! LoadingData.t; passOnData
LinkIn{parentLink] ? token —-— Synchronize.t
LinkOut [I] ! Synchronize.t
stage := 3

(v) The return of control indicates that the tree off link I has been completely
explored. This process may now explore other links.
ReturnControel.t
SEQ
LinkIn[I] ? nTransputers
downLoad{I] := TRUE
waiting := FALSE

The searching procedure is initiated by PROC Tracer booting the first transputer
in the tree, and telling it that nTransputers = 0. When that transputer finally
returns control to Tracer, the total number of transputers in the network will be

returned and the netwark will have heen comnletely cearched,
(IT) Searching a general network of transputers

The central part of the prbgram looks like this:
SEQ o
Initialize download, id, nTransputers as before
Initialize tryLink, .linkArray (i)
SEQ I = 0 FOR 4 4
IF

150

NOT tryLink{I]

SKIP
TRUE
SEQ
stage =1
waiting:= FALSE
badCut := FALSE
SEQ
. Initialize as before
- Search neighbour (i1)
- Boot neighbour, and wait for reply (iv)
tryLink([I] := FALSE

LinkOut [parentLink] ! ReturnControl.t; nTransputers

(i) Initialize t ryLink [I] to TRUE for all links except the link back to the parent.
The elements 0 and 1 of the array loadingData contain the identity and link of
the parent transputer.

SEQ I = 0 FOR 4

tryLink[I] := TRUE
tryLlink[parentLink] := FALSE
linkArray[parentLink] := [loadingData FROM 0 FOR 2]

(ii) There is now the nossibility that twn links on the same transnnter are connected,
Hence, the read and write must be done in parallel to listening on all other links:
PAR
... Search neighbouring transputer
SEQ
Clock ? time
ALT
ALT J = 0 FOR Nlinks
(J <> I) AND tryLink[J] & LinkIn[J] ? searchString
SEQ

151

linkArray({J] := [id, I]
linkArray{I] := [id, J]
tryLink([J) := False

LinkIn[I] ? token
CASE token
. MinInt as before
.o Alreadyloaded
.. ELSE -- error (iii)

.. Time out as before (vi)

(iii) If there is a closed loop, we get the situation that one transputer probes another
which replies AlreadyLoaded. t. The two ends then exchange the id and link.
PAR
LinkOut [1link] ! [id, link]
LinkIn[link] ? linkArray[link]

(iv) As before, waiting is only set to be true if a neighboring transputer has been
found. The case when two links are connected on the same transputer need not be
considered.
SEQ
... Try to boot neighbouring transputer as before
WHILE waiting
sEQ
Clock ? time
ALT
ALT J = 0 FOR Nlinks
(J <> I) AND tryLink([J] & LinkIn[J] ? searchString
cen Reply 'AlreadyLoaded.t’ (iidi)
LinkIn ? token
CASE token
e LoadingData.t (v)

e ReturnControl.t (as in the case for a tree)

152

ELSE =-- error (vi)

Time out (vii)

(v) In addition to passing the loading data back, a track of the children id's boot link
is also kept:
IF
stage = 2
linkArray([I]l := [passOnData FROM 2 FOR 2]
TRUE
SKIP

(vi) A bad communication has taken place on this link by making a record in
linkArray. We use a special token TokenError.v to indicate that an
unexpected token has been returned.
SEQ
waiting := FALSE

linkArray [I] := [stage, TokenError.v]

(vii) A timeout at stage 1 implies that the link is unattached. However, if a timeout
occurs at a later stage, assuming Delay is long enough to allow for the booting of a
child, then the neighbor has not yet been successfully loaded. We report this as an
erTor.

lgck ? APTER tims PLUS Dzlay
SEQ
linkArray[I] := [stage, TimeOutError.v]

waiting := FALSE

Returning the Local Link Map

Having explored the local connections of each link on a transputer, and returned
control to the parent, we send back the information 1inkArray back to the host
transputer.

CHAN OF ANY ToParent IS LinkOut [parentLink]

153

SEQ

stage := 4

! NetworkData.t; id; linkArray

ToParent

SEQ I = 0 FOR 4
IF
NOT CGow: Loadl[I]
SKIP
download[I]--Pass on network info from daughter processes

SEQ
reading := TRUE
WHILE reading

SEQ
LinkIn[I] ? token
CASE token
. NetworkData.t (1)
.o NoMoreData.t (ii)
(iii)

ELSE

ToParent ! NoMoreData.t

(i) Pass on the identity and link array.
NetworkData.t -- pass on id and info

INT nazsOnld
h

[4] [2] INT passOnLinkArray :

SEQ

LinkIn[I] 2

passoOnid; passOnLinkArray
ToParent ! NetworkData.t; passOnld; passOnLinkArray

(ii) There is no more data to transmit from this branch

NoMoreData.t
reading := FALSE

154

(iii) This is an error. Return a modified 1 inkArray report.

ELSE
SEQ
reading := FALSE
linkArray[I] := [stage, TokenError.v]

ToParent ! NetworkData.t; id; linkArray

e e -

e L TR S T

: P S e e B e e i

<ar e .h«,uwwv"‘
S e

b i -mmvamm"fo—

it i

PSR >~ i % % X e . 2 . -
-mwwﬁmqﬂ&,.-«maf~‘~w~ S e s = s = wm__\m.&w,‘mm

S

et e
-.,@-v.m—emym n*-.so’im’m e
q«» e
o

'-f-«--aa.-m._ o
e
i otz e
o e e A .-«M—m
= s e

s g e
v wimr

2 - Y o < : s = e el b
2 —MIM.‘WwMtv«un-—tM o e i . - - : =
- e -@—ﬂ'

- N e i e
b i = M‘MMQ e

--..s.ua,,...-.'.««. iy - - - : > % . e -

L e e = e

s
e A.—‘-"a%«'ﬁ;n-“ -...« ..z»-...,.mwn«%--.»m

Ve bt

e o . : -
e i e o e i e Mo A e e R T
i i i ottt

e o -m" ; Q(-‘-am
3 T e e e b

i ...(v..«e v =
e

e w,.ﬂ_w_. "-I;'M a.,,.-w.{
ke e P TR D e i g i,
k‘m R e i e st e it i

- - =
W«HV..W-—" S S 4 i i
B e Sty

.--4....,—‘...-.-

e

W-M«.v-,”w S
i

,-«,-M -
.

A s

o

et i L e -

e mw—e-—\—<49v e

e
e

= S
e e o X e ok
e e

i
e e e

= qau—-;--

i s e e o
i et i = il

AT T S I
e
e e R e
o -

e e e
e roha -—v-v'w“.,-_.,,,,. b e e o i
it wishe

e e
T i ey e oyt e 21

o
R b e e
E,L\“;w».-gaw—.a AT

uumw [Nt Rl
A e i e =

X e m e i i = - mw‘._a..-..,& ”ch[»,m--mem'j
i e e it o : — S s

< e e ,—&ﬂﬁa,.upg-« N‘,Mﬂw‘.b e
i At e 4 R At e
B e e

e e
o f.p ,,«.—rwwmcr«» S

S
A e e e

e it e
o e ..«.“,----«s.w.nz.«../_ et ,,_-,,,._

