You are here
Low-power design of an ALU
- Date Issued:
- 2003
- Summary:
- There is a mushrooming demand for battery operated applications that require intensive computation in portable environments. This has motivated the research and development of techniques that reduce power in CMOS digital circuits while maintaining their computational throughput. The two essentials to achieve a low power design are miniaturization and long battery life. Lowering the supply voltage is one of the most effective ways to achieve low-power performance as power dissipation in digital CMOS circuits is approximately proportional to the square of supply voltage. The basic idea behind this thesis is that it proposes new designs of transfer gate based logical circuits, which use lower supply voltage and less number of transistors than the conventional designs. This work evaluates the obtained results from the proposed designs of the low-power ALU with that from the standard CMOS, other low power designs namely, Wang's XOR, XNOR and Inverter based gates. It was observed that the proposed designs perform better in terms of power consumption than the standard CMOS designs, and the other low power designs mentioned above.
Title: | Low-power design of an ALU. |
86 views
20 downloads |
---|---|---|
Name(s): |
Agarwal, Ankur Florida Atlantic University, Degree grantor Pandya, Abhijit S., Thesis advisor |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 2003 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 128 p. | |
Language(s): | English | |
Summary: | There is a mushrooming demand for battery operated applications that require intensive computation in portable environments. This has motivated the research and development of techniques that reduce power in CMOS digital circuits while maintaining their computational throughput. The two essentials to achieve a low power design are miniaturization and long battery life. Lowering the supply voltage is one of the most effective ways to achieve low-power performance as power dissipation in digital CMOS circuits is approximately proportional to the square of supply voltage. The basic idea behind this thesis is that it proposes new designs of transfer gate based logical circuits, which use lower supply voltage and less number of transistors than the conventional designs. This work evaluates the obtained results from the proposed designs of the low-power ALU with that from the standard CMOS, other low power designs namely, Wang's XOR, XNOR and Inverter based gates. It was observed that the proposed designs perform better in terms of power consumption than the standard CMOS designs, and the other low power designs mentioned above. | |
Identifier: | 9780496198665 (isbn), 13017 (digitool), FADT13017 (IID), fau:12632 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (M.S.)--Florida Atlantic University, 2003. |
|
Subject(s): |
Metal oxide semiconductors, Complementary Low voltage integrated circuits Verilog (Computer hardware description language) Logic design |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/13017 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |