You are here
Modeling the acoustic signature of an Ocean Explorer class autonomous underwater vehicle
- Date Issued:
- 2000
- Summary:
- Autonomous Underwater Vehicles (AUV) rely on acoustics for a number of mission functions such as communications (Acoustic Modem) and vision (Forward and Side Looking Sonars). The AUV acoustic signature (self-noise and vibration) can thus interfere with AUV operations. Additionally, underwater measurements such as turbulence measurements can be contaminated by interference between the AUV generated acoustics pressures and the low pressures of the turbulence. In this thesis a Finite Element and Boundary Element approach is developed to characterize the self-noise (vibration and radiated sound pressure) of a simplified FAU Ocean Explorer AUV. Mechanical excitation from the "podule", which contains the motors for the propulsion and motion control, is assumed in the analysis. The low frequency (less than 1Khz) results are dominated by two types of modes. One type associated with the motion of the "podule" as a rigid body on the vibration isolation supports that connects it to the rest of the AUV structure. The second type is associated with local structural deformations of the "podule", support frame, and AUV hull. Modifying the stiffness of the supports reduces the frequency of the rigid body modes of the "podule", but does not influence the frequencies of the local structural deformations of the "podule" and the rest of the AUV. Decreasing the stiffness of the supports should result in a reduced AUV acoustic signature.
Title: | Modeling the acoustic signature of an Ocean Explorer class autonomous underwater vehicle. |
181 views
46 downloads |
---|---|---|
Name(s): |
Debiesme, Francois-Xavier. Florida Atlantic University, Degree grantor Cuschieri, Joseph M., Thesis advisor |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 2000 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 106 p. | |
Language(s): | English | |
Summary: | Autonomous Underwater Vehicles (AUV) rely on acoustics for a number of mission functions such as communications (Acoustic Modem) and vision (Forward and Side Looking Sonars). The AUV acoustic signature (self-noise and vibration) can thus interfere with AUV operations. Additionally, underwater measurements such as turbulence measurements can be contaminated by interference between the AUV generated acoustics pressures and the low pressures of the turbulence. In this thesis a Finite Element and Boundary Element approach is developed to characterize the self-noise (vibration and radiated sound pressure) of a simplified FAU Ocean Explorer AUV. Mechanical excitation from the "podule", which contains the motors for the propulsion and motion control, is assumed in the analysis. The low frequency (less than 1Khz) results are dominated by two types of modes. One type associated with the motion of the "podule" as a rigid body on the vibration isolation supports that connects it to the rest of the AUV structure. The second type is associated with local structural deformations of the "podule", support frame, and AUV hull. Modifying the stiffness of the supports reduces the frequency of the rigid body modes of the "podule", but does not influence the frequencies of the local structural deformations of the "podule" and the rest of the AUV. Decreasing the stiffness of the supports should result in a reduced AUV acoustic signature. | |
Identifier: | 9780599640818 (isbn), 15764 (digitool), FADT15764 (IID), fau:12517 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (M.S.)--Florida Atlantic University, 2000. |
|
Subject(s): |
Oceanographic submersibles Underwater acoustics Acoustic models |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/15764 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |