You are here
Modeling software quality with classification trees using principal components analysis
- Date Issued:
- 1999
- Summary:
- Software quality models often have raw software metrics as the input data for predicting quality. Raw metrics are usually highly correlated with one another and thus may result in unstable models. Principal components analysis is a statistical method to improve model stability. This thesis presents a series of studies on a very large legacy telecommunication system. The system has significantly more than ten million lines of code written in a high level language similar to Pascal. Software quality models were developed to predict the class of each module either as fault-prone or as not fault-prone. We found out that the models based on principal components analysis were more robust than those based on raw metrics. We also found out that software process metrics can significantly improve the predictive accuracy of software quality models.
Title: | Modeling software quality with classification trees using principal components analysis. |
![]() ![]() |
---|---|---|
Name(s): |
Shan, Ruqun. Florida Atlantic University, Degree grantor Khoshgoftaar, Taghi M., Thesis advisor College of Engineering and Computer Science Department of Computer and Electrical Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 1999 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 80 p. | |
Language(s): | English | |
Summary: | Software quality models often have raw software metrics as the input data for predicting quality. Raw metrics are usually highly correlated with one another and thus may result in unstable models. Principal components analysis is a statistical method to improve model stability. This thesis presents a series of studies on a very large legacy telecommunication system. The system has significantly more than ten million lines of code written in a high level language similar to Pascal. Software quality models were developed to predict the class of each module either as fault-prone or as not fault-prone. We found out that the models based on principal components analysis were more robust than those based on raw metrics. We also found out that software process metrics can significantly improve the predictive accuracy of software quality models. | |
Identifier: | 9780599537088 (isbn), 15714 (digitool), FADT15714 (IID), fau:12470 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (M.S.)--Florida Atlantic University, 1999. |
|
Subject(s): |
Principal components analysis Computer software--Quality control Software engineering |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/15714 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |