You are here

Visualization of buried objects in three-dimensional acoustic data acquired by a buried object scanning sonar

Download pdf | Full Screen View

Date Issued:
1999
Summary:
The common approach for finding objects buried under the seabed is to use a single channel chirp reflection profiler. Reflection profiles lack information on target location, geometry and size. This thesis investigates methods for visualizing buried objects in noisy 3D acoustic data acquired by a small aperture scanning sonar. Various surface and volume rendering methods are tested with synthetic datasets containing fluid loaded spheres and with experimental data acquired with a 4-by-8 planar hydrophone array towed over buried objects with various aspects and size. The Maximum Intensity Projection is the best of the tested methods for real-time visualization of the data where a global overview of the targets is needed. A surface rendering technique such as the Marching Cubes is useful for offline measurement of the geometry and size of buried objects selected by the operator.
Title: Visualization of buried objects in three-dimensional acoustic data acquired by a buried object scanning sonar.
83 views
35 downloads
Name(s): Tellier, Arnaud Marc.
Florida Atlantic University, Degree grantor
Schock, Steven G., Thesis advisor
College of Engineering and Computer Science
Department of Ocean and Mechanical Engineering
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 1999
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 204 p.
Language(s): English
Summary: The common approach for finding objects buried under the seabed is to use a single channel chirp reflection profiler. Reflection profiles lack information on target location, geometry and size. This thesis investigates methods for visualizing buried objects in noisy 3D acoustic data acquired by a small aperture scanning sonar. Various surface and volume rendering methods are tested with synthetic datasets containing fluid loaded spheres and with experimental data acquired with a 4-by-8 planar hydrophone array towed over buried objects with various aspects and size. The Maximum Intensity Projection is the best of the tested methods for real-time visualization of the data where a global overview of the targets is needed. A surface rendering technique such as the Marching Cubes is useful for offline measurement of the geometry and size of buried objects selected by the operator.
Identifier: 9780599375246 (isbn), 15682 (digitool), FADT15682 (IID), fau:12438 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Thesis (M.S.)--Florida Atlantic University, 1999.
Subject(s): Three-dimensional display systems
Sonar
Sound-waves--Scattering
Computer graphics
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/15682
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.