You are here
Estimation of atmospheric gaseous absorption using surface and radiosonde meteorological measurements
- Date Issued:
- 1998
- Summary:
- For radiowave propagation on earth-space communication links at high frequencies such as Ka-band, the effect of atmospheric gaseous absorption (mainly due to oxygen and water vapor) is the primary cause of attenuation. This thesis examines the applicability of the surface based Crane's model currently employed by the Advanced Communications Technology Satellite (ACTS) propagation experiment for estimation of attenuation due to atmospheric gaseous absorption (AGA), developed for Oklahoma, to sub-tropical climate regions such as Florida. The Microwave Propagation Model is used as a basis of comparison since it uses the direct atmospheric measurements (temperature, relative humidity, and pressure) made at different levels of the atmosphere with radiosonde instrumentation. The AGA was individually examined for oxygen and water vapor. Finally, accuracy of the Crane's model was verified by computing the attenuation results using real acquired data for both models and comparing their results in various ways for several months.
Title: | Estimation of atmospheric gaseous absorption using surface and radiosonde meteorological measurements. |
![]() ![]() |
---|---|---|
Name(s): |
Pollard, Ritsuko Hamahata Florida Atlantic University, Degree grantor Helmken, Henry, Thesis advisor College of Engineering and Computer Science Department of Computer and Electrical Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 1998 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 98 p. | |
Language(s): | English | |
Summary: | For radiowave propagation on earth-space communication links at high frequencies such as Ka-band, the effect of atmospheric gaseous absorption (mainly due to oxygen and water vapor) is the primary cause of attenuation. This thesis examines the applicability of the surface based Crane's model currently employed by the Advanced Communications Technology Satellite (ACTS) propagation experiment for estimation of attenuation due to atmospheric gaseous absorption (AGA), developed for Oklahoma, to sub-tropical climate regions such as Florida. The Microwave Propagation Model is used as a basis of comparison since it uses the direct atmospheric measurements (temperature, relative humidity, and pressure) made at different levels of the atmosphere with radiosonde instrumentation. The AGA was individually examined for oxygen and water vapor. Finally, accuracy of the Crane's model was verified by computing the attenuation results using real acquired data for both models and comparing their results in various ways for several months. | |
Identifier: | 9780599107687 (isbn), 15602 (digitool), FADT15602 (IID), fau:12360 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (M.S.)--Florida Atlantic University, 1998. |
|
Subject(s): |
Tropospheric radio wave propagation Meteorological instruments |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/15602 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |