You are here

Non-linear convection of a vortex sheet past a cascade of airfoils

Download pdf | Full Screen View

Date Issued:
1998
Summary:
The interaction of rotor turbulence with the stator is currently believed to be the predominant mechanism of noise radiation from turbofans in aircraft engines. This thesis presents a general method to compute unsteady 2-D potential flows past a cascade of airfoils. The procedure uses source and vortex distributions on the surface of the airfoils, creation of wakes downstream of the airfoils and non-linear convection of the perturbed flow. These features are designed to satisfy a condition of no-flow through the surface of the airfoils and the Kutta condition at the trailing edge of each of these airfoils. The investigation proves the importance of applying the Kutta condition. It was also shown that an infinite cascade is well approximated by a small number of airfoils and that the non-linear rather than linear convection of vorticity has a large effect on the spectrum of the unsteady lift of an airfoil.
Title: Non-linear convection of a vortex sheet past a cascade of airfoils.
70 views
16 downloads
Name(s): van den Berg, Stanislas Franck.
Florida Atlantic University, Degree grantor
Glegg, Stewart A. L., Thesis advisor
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 1998
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 159 p.
Language(s): English
Summary: The interaction of rotor turbulence with the stator is currently believed to be the predominant mechanism of noise radiation from turbofans in aircraft engines. This thesis presents a general method to compute unsteady 2-D potential flows past a cascade of airfoils. The procedure uses source and vortex distributions on the surface of the airfoils, creation of wakes downstream of the airfoils and non-linear convection of the perturbed flow. These features are designed to satisfy a condition of no-flow through the surface of the airfoils and the Kutta condition at the trailing edge of each of these airfoils. The investigation proves the importance of applying the Kutta condition. It was also shown that an infinite cascade is well approximated by a small number of airfoils and that the non-linear rather than linear convection of vorticity has a large effect on the spectrum of the unsteady lift of an airfoil.
Identifier: 9780591930092 (isbn), 15586 (digitool), FADT15586 (IID), fau:12346 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Thesis (M.S.)--Florida Atlantic University, 1998.
Subject(s): Vortex-motion
Cascades (Fluid dynamics)
Unsteady flow (Fluid dynamics)
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/15586
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.