You are here

assessment of bond for cathodically polarized pretensioning steel in concrete

Download pdf | Full Screen View

Date Issued:
1998
Summary:
Pretensioned concrete members require a certain bond strength between the steel and concrete to maintain prestress force. Previous studies have indicated that when reinforcing steel in concrete is cathodically polarized, a chemical change of the cement near the steel-concrete interface occurs; and this can reduce the bond strength. In the present research experiments were conducted with concrete specimens that contained either a non-stressed seven wire steel tendon or a single strand through the longitudinal direction. The specimens were cathodically polarized with current densities ranging between 50 and 2500 mA/m^2 of steel. Upon achieving a pre-determined charge density transfer, the steel was pulled relative to the concrete until the bond was broken. Results indicate that a total charge density transfer of up to 14000 A*h/m^2 of steel, may introduce an average 16 percent decrease in ultimate bond strength. This and other data were evaluated in order to assess if cathodic protection, as utilized for corrosion control, is likely to compromise structural integrity of pretensioned concrete members and structures.
Title: The assessment of bond for cathodically polarized pretensioning steel in concrete.
38 views
5 downloads
Name(s): Dohlen, Knut Herman.
Florida Atlantic University, Degree grantor
Hartt, William H., Thesis advisor
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 1998
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 84 p.
Language(s): English
Summary: Pretensioned concrete members require a certain bond strength between the steel and concrete to maintain prestress force. Previous studies have indicated that when reinforcing steel in concrete is cathodically polarized, a chemical change of the cement near the steel-concrete interface occurs; and this can reduce the bond strength. In the present research experiments were conducted with concrete specimens that contained either a non-stressed seven wire steel tendon or a single strand through the longitudinal direction. The specimens were cathodically polarized with current densities ranging between 50 and 2500 mA/m^2 of steel. Upon achieving a pre-determined charge density transfer, the steel was pulled relative to the concrete until the bond was broken. Results indicate that a total charge density transfer of up to 14000 A*h/m^2 of steel, may introduce an average 16 percent decrease in ultimate bond strength. This and other data were evaluated in order to assess if cathodic protection, as utilized for corrosion control, is likely to compromise structural integrity of pretensioned concrete members and structures.
Identifier: 9780591778076 (isbn), 15543 (digitool), FADT15543 (IID), fau:12304 (fedora)
Note(s): College of Engineering and Computer Science
FAU Electronic Theses and Dissertations Collection
Thesis (M.S.)--Florida Atlantic University, 1998.
Subject(s): Cathodic protection
Reinforced concrete--Corrosion
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/15543
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.