You are here

Propagation on satellite path in Ka-band

Download pdf | Full Screen View

Date Issued:
1998
Summary:
The rapid growth of satellite services using higher frequency bands such as the Ka-band has highlighted need for analyzing effects of different propagation phenomena. Since the wavelength of radiowaves is comparable with the size of rain drops, rain attenuation is the dominant propagation impairment at Ka frequencies. In addition, other impairments such as gaseous absorption, cloud and fog attenuation, tropospheric refractive effects, as well as depolarization become increasingly important with increasing operating frequency. Theoretical background of radiowave propagation principles, rain systems and gases in the atmosphere are presented to insure comprehension of propagation effects on space communication in Ka-band. Models for predicting rain attenuation and other propagation impairments along Earth-satellite path are provided in order to simplify design of communication systems. Propagation phenomena are explained on example of three propagation experiments performed in U.S., Europe and Japan. Whenever possible, mitigation techniques to overcome severe attenuations are introduced.
Title: Propagation on satellite path in Ka-band.
102 views
23 downloads
Name(s): Koro, Zlata.
Florida Atlantic University, Degree grantor
Helmken, Henry, Thesis advisor
College of Engineering and Computer Science
Department of Computer and Electrical Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 1998
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 109 p.
Language(s): English
Summary: The rapid growth of satellite services using higher frequency bands such as the Ka-band has highlighted need for analyzing effects of different propagation phenomena. Since the wavelength of radiowaves is comparable with the size of rain drops, rain attenuation is the dominant propagation impairment at Ka frequencies. In addition, other impairments such as gaseous absorption, cloud and fog attenuation, tropospheric refractive effects, as well as depolarization become increasingly important with increasing operating frequency. Theoretical background of radiowave propagation principles, rain systems and gases in the atmosphere are presented to insure comprehension of propagation effects on space communication in Ka-band. Models for predicting rain attenuation and other propagation impairments along Earth-satellite path are provided in order to simplify design of communication systems. Propagation phenomena are explained on example of three propagation experiments performed in U.S., Europe and Japan. Whenever possible, mitigation techniques to overcome severe attenuations are introduced.
Identifier: 9780591753110 (isbn), 15529 (digitool), FADT15529 (IID), fau:12290 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Thesis (M.S.)--Florida Atlantic University, 1998.
Subject(s): Artificial satellites in telecommunication
Radio wave propagation
Astronautics--Communication systems
Astronautics in meteorology
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/15529
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.