You are here

active-vision-based method for autonomous navigation

Download pdf | Full Screen View

Date Issued:
1997
Summary:
This research explores the existing active-vision-based algorithms employed in today's autonomous navigation systems. Some of the popular range finding algorithms are introduced and presented with examples. In light of the existing methods, an active-vision-based method, which extracts visual cues from a sequence of 2D images, is proposed for autonomous navigation. The proposed algorithm merges the method titled 'Visual Threat Cues (VTCs) for Autonomous Navigation' developed by Kundur (1), with the structured-light-based methods. By combining these methods, a more practical and a simpler method for indoors autonomous navigation tasks is developed. A textured-pattern, which is projected onto the object surface by a slide projector, is used as the structured-light source, and the proposed approach is independent of the textured-pattern used. Several experiments are performed with the autonomous robot LOOMY to test the proposed algorithm, and the results are very promising.
Title: An active-vision-based method for autonomous navigation.
66 views
12 downloads
Name(s): Ergen, Erkut Erhan.
Florida Atlantic University, Degree grantor
Raviv, Daniel, Thesis advisor
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 1997
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 103 p.
Language(s): English
Summary: This research explores the existing active-vision-based algorithms employed in today's autonomous navigation systems. Some of the popular range finding algorithms are introduced and presented with examples. In light of the existing methods, an active-vision-based method, which extracts visual cues from a sequence of 2D images, is proposed for autonomous navigation. The proposed algorithm merges the method titled 'Visual Threat Cues (VTCs) for Autonomous Navigation' developed by Kundur (1), with the structured-light-based methods. By combining these methods, a more practical and a simpler method for indoors autonomous navigation tasks is developed. A textured-pattern, which is projected onto the object surface by a slide projector, is used as the structured-light source, and the proposed approach is independent of the textured-pattern used. Several experiments are performed with the autonomous robot LOOMY to test the proposed algorithm, and the results are very promising.
Identifier: 9780591449808 (isbn), 15425 (digitool), FADT15425 (IID), fau:12191 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Thesis (M.S.)--Florida Atlantic University, 1997.
Subject(s): Autonomous robots
Automotive sensors
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/15425
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.