You are here
Tree-based classification models for analyzing a very large software system
- Date Issued:
- 1996
- Summary:
- Software systems that control military radar systems must be highly reliable. A fault can compromise safety and security, and even cause death of military personnel. In this experiment we identify fault-prone software modules in a subsystem of a military radar system called the Joint Surveillance Target Attack Radar System, JSTARS. An earlier version was used in Operation Desert Storm to monitor ground movement. Product metrics were collected for different iterations of an operational prototype of the subsystem over a period of approximately three years. We used these metrics to train a decision tree model and to fit a discriminant model to classify each module as fault-prone or not fault-prone. The algorithm used to generate the decision tree model was TREEDISC, developed by the SAS Institute. The decision tree model is compared to the discriminant model.
Title: | Tree-based classification models for analyzing a very large software system. |
![]() ![]() |
---|---|---|
Name(s): |
Bullard, Lofton A. Florida Atlantic University, Degree grantor Khoshgoftaar, Taghi M., Thesis advisor |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 1996 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 70 p. | |
Language(s): | English | |
Summary: | Software systems that control military radar systems must be highly reliable. A fault can compromise safety and security, and even cause death of military personnel. In this experiment we identify fault-prone software modules in a subsystem of a military radar system called the Joint Surveillance Target Attack Radar System, JSTARS. An earlier version was used in Operation Desert Storm to monitor ground movement. Product metrics were collected for different iterations of an operational prototype of the subsystem over a period of approximately three years. We used these metrics to train a decision tree model and to fit a discriminant model to classify each module as fault-prone or not fault-prone. The algorithm used to generate the decision tree model was TREEDISC, developed by the SAS Institute. The decision tree model is compared to the discriminant model. | |
Identifier: | 15315 (digitool), FADT15315 (IID), fau:12085 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (M.S.)--Florida Atlantic University, 1996. |
|
Subject(s): |
Computer software--Quality control Computer software--Reliability Software engineering |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/15315 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |