You are here
Molecular dynamics simulation of single-walled carbon nanotubes
- Date Issued:
- 1996
- Summary:
- Classical trajectory molecular dynamics methods are used to investigate open ended free standing single wall carbon nanotubes ("SWT"). Total energy calculations performed using classical three-body interatomic potentials with periodic boundary conditions along the tube axis, showed that the minimum strain energy varied as 1/$R\sp2$ relative to an unstrained graphite sheet. We discuss the development of a parallel code to simulate short-ranged empirical potentials such as those of Stillinger and Weber, Tersoff, and Tersoff-Brenner. We then use the Tersoff and Tersoff-Brenner potentials to examine SWT and the tube response to axial stretching and compression. Data collected are used to calculate Young's modulus for the tubes and to develop a simple formula that approximates Young's modulus over a range of tube radii. The investigation of the free standing SWT leads to a suggestion for the possible mechanism responsible for holding the tubes open during the growth process.
Title: | Molecular dynamics simulation of single-walled carbon nanotubes. |
131 views
75 downloads |
---|---|---|
Name(s): |
Cornwell, Charles F. Florida Atlantic University, Degree grantor Wille, Luc T., Thesis advisor |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 1996 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 146 p. | |
Language(s): | English | |
Summary: | Classical trajectory molecular dynamics methods are used to investigate open ended free standing single wall carbon nanotubes ("SWT"). Total energy calculations performed using classical three-body interatomic potentials with periodic boundary conditions along the tube axis, showed that the minimum strain energy varied as 1/$R\sp2$ relative to an unstrained graphite sheet. We discuss the development of a parallel code to simulate short-ranged empirical potentials such as those of Stillinger and Weber, Tersoff, and Tersoff-Brenner. We then use the Tersoff and Tersoff-Brenner potentials to examine SWT and the tube response to axial stretching and compression. Data collected are used to calculate Young's modulus for the tubes and to develop a simple formula that approximates Young's modulus over a range of tube radii. The investigation of the free standing SWT leads to a suggestion for the possible mechanism responsible for holding the tubes open during the growth process. | |
Identifier: | 15269 (digitool), FADT15269 (IID), fau:12040 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
Thesis (M.S.)--Florida Atlantic University, 1996. Charles E. Schmidt College of Science |
|
Subject(s): |
Carbon Nanostructured materials Simulation methods |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/15269 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |