You are here

Massively parallel computation and porting of EPIC research hydro code on Cray-T3D

Download pdf | Full Screen View

Date Issued:
1996
Summary:
The objective of the work is to verify the feasibility of converting a large FEA code into a massively parallel FEA code in terms of computational speed and cost. Sequential subroutines in the Research EPIC hydro code, a Lagrangian finite element analysis code for high velocity elastic-plastic impact problems, are individually converted into parallel code using Cray Adaptive Fortran (CRAFT). The performance of massively parallel subroutines running on 32 PEs on Cray-T3D is faster than their sequential counterparts on Cray-YMP. At next stage of the research, Parallel Virtual Machine (PVM) directives is used to develop a PVM version of the EPIC hydro code by connecting the converted parallel subroutines running on multiple PEs of T3D to the sequential part of the code running on single PE. With an incremental increase in the massively parallel subroutines into the PVM EPIC hydro code, the performance with respect to speedup of the code increased accordingly. The results indicate that significant speedup can be achieved in the EPIC hydro code when most or all of the subroutines are massively parallelized.
Title: Massively parallel computation and porting of EPIC research hydro code on Cray-T3D.
124 views
15 downloads
Name(s): Dutta, Arindum.
Florida Atlantic University, Degree grantor
Tsai, Chi-Tay, Thesis advisor
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 1996
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 128 p.
Language(s): English
Summary: The objective of the work is to verify the feasibility of converting a large FEA code into a massively parallel FEA code in terms of computational speed and cost. Sequential subroutines in the Research EPIC hydro code, a Lagrangian finite element analysis code for high velocity elastic-plastic impact problems, are individually converted into parallel code using Cray Adaptive Fortran (CRAFT). The performance of massively parallel subroutines running on 32 PEs on Cray-T3D is faster than their sequential counterparts on Cray-YMP. At next stage of the research, Parallel Virtual Machine (PVM) directives is used to develop a PVM version of the EPIC hydro code by connecting the converted parallel subroutines running on multiple PEs of T3D to the sequential part of the code running on single PE. With an incremental increase in the massively parallel subroutines into the PVM EPIC hydro code, the performance with respect to speedup of the code increased accordingly. The results indicate that significant speedup can be achieved in the EPIC hydro code when most or all of the subroutines are massively parallelized.
Identifier: 15249 (digitool), FADT15249 (IID), fau:12020 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Thesis (M.S.E.)--Florida Atlantic University, 1996.
Subject(s): Parallel processing (Electronic computers)
Computer programs
coding theory
Supercomputers
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/15249
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.