You are here
Enhanced Fibonacci Cubes
- Date Issued:
- 1995
- Summary:
- We propose the enhanced Fibonacci cube (EFC), which is defined based on the sequence Fn = 2(n-2) + 2F(n-4). We study its topological properties, embeddings, applications, routings, VLSI/WSI implementations, and its extensions. Our results show that EFC retains many properties of the hypercube. It contains the Fibonacci cube (FC) and extended Fibonacci cube of the same order as subgraphs and maintains virtually all the desirable properties of FC. EFC is even better in some structural properties, embeddings, applications and VLSI designs than FC or hypercube. With EFC, there are more cubes with various structures and sizes for selection, and more backup cubes into which faulty hypercubes can be reconfigured, which alleviates the size limitation of the hypercube and results in a higher level of fault tolerance.
Title: | Enhanced Fibonacci Cubes. |
90 views
29 downloads |
---|---|---|
Name(s): |
Qian, Haifeng. Florida Atlantic University, Degree grantor Wu, Jie, Thesis advisor College of Engineering and Computer Science Department of Computer and Electrical Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 1995 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 149 p. | |
Language(s): | English | |
Summary: | We propose the enhanced Fibonacci cube (EFC), which is defined based on the sequence Fn = 2(n-2) + 2F(n-4). We study its topological properties, embeddings, applications, routings, VLSI/WSI implementations, and its extensions. Our results show that EFC retains many properties of the hypercube. It contains the Fibonacci cube (FC) and extended Fibonacci cube of the same order as subgraphs and maintains virtually all the desirable properties of FC. EFC is even better in some structural properties, embeddings, applications and VLSI designs than FC or hypercube. With EFC, there are more cubes with various structures and sizes for selection, and more backup cubes into which faulty hypercubes can be reconfigured, which alleviates the size limitation of the hypercube and results in a higher level of fault tolerance. | |
Identifier: | 15196 (digitool), FADT15196 (IID), fau:11968 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (M.S.C.E.)--Florida Atlantic University, 1995. |
|
Subject(s): |
Integrated circuits--Very large scale integration Hypercube networks (Computer networks) Algorithms Fault-tolerant computing Multiprocessors |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/15196 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |