You are here

Enhanced Fibonacci Cubes

Download pdf | Full Screen View

Date Issued:
1995
Summary:
We propose the enhanced Fibonacci cube (EFC), which is defined based on the sequence Fn = 2(n-2) + 2F(n-4). We study its topological properties, embeddings, applications, routings, VLSI/WSI implementations, and its extensions. Our results show that EFC retains many properties of the hypercube. It contains the Fibonacci cube (FC) and extended Fibonacci cube of the same order as subgraphs and maintains virtually all the desirable properties of FC. EFC is even better in some structural properties, embeddings, applications and VLSI designs than FC or hypercube. With EFC, there are more cubes with various structures and sizes for selection, and more backup cubes into which faulty hypercubes can be reconfigured, which alleviates the size limitation of the hypercube and results in a higher level of fault tolerance.
Title: Enhanced Fibonacci Cubes.
90 views
29 downloads
Name(s): Qian, Haifeng.
Florida Atlantic University, Degree grantor
Wu, Jie, Thesis advisor
College of Engineering and Computer Science
Department of Computer and Electrical Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 1995
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 149 p.
Language(s): English
Summary: We propose the enhanced Fibonacci cube (EFC), which is defined based on the sequence Fn = 2(n-2) + 2F(n-4). We study its topological properties, embeddings, applications, routings, VLSI/WSI implementations, and its extensions. Our results show that EFC retains many properties of the hypercube. It contains the Fibonacci cube (FC) and extended Fibonacci cube of the same order as subgraphs and maintains virtually all the desirable properties of FC. EFC is even better in some structural properties, embeddings, applications and VLSI designs than FC or hypercube. With EFC, there are more cubes with various structures and sizes for selection, and more backup cubes into which faulty hypercubes can be reconfigured, which alleviates the size limitation of the hypercube and results in a higher level of fault tolerance.
Identifier: 15196 (digitool), FADT15196 (IID), fau:11968 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Thesis (M.S.C.E.)--Florida Atlantic University, 1995.
Subject(s): Integrated circuits--Very large scale integration
Hypercube networks (Computer networks)
Algorithms
Fault-tolerant computing
Multiprocessors
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/15196
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.