You are here
Parallel architectures and algorithms for digital filter VLSI implementation
- Date Issued:
- 1995
- Summary:
- In many scientific and signal processing applications, there are increasing demands for large volume and high speed computations, which call for not only high-speed low power computing hardware, but also for novel approaches in developing new algorithms and architectures. This thesis is concerned with the development of such architectures and algorithms suitable for the VLSI implementation of recursive and nonrecursive 1-dimension digital filters using multiple slower processing elements. As the background for the development, vectorization techniques such as state-space modeling, block processing, and look ahead computation are introduced. Concurrent architectures such as systolic arrays, wavefront arrays and appropriate parallel filter realizations such as lattice, all-pass, and wave filters are reviewed. A fully hardware efficient systolic array architecture termed as Multiplexed Block-State Filter is proposed for the high speed implementation of lattice and direct realizations of digital filters. The thesis also proposes a new simplified algorithm, Alternate Pole Pairing Algorithm, for realizing an odd order recursive filter as the sum of two all-pass filters. Performance of the proposed schemes are verified through numerical examples and simulation results.
Title: | Parallel architectures and algorithms for digital filter VLSI implementation. |
85 views
24 downloads |
---|---|---|
Name(s): |
Desai, Pratik Vishnubhai. Florida Atlantic University, Degree grantor Sudhakar, Raghavan, Thesis advisor |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 1995 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 127 p. | |
Language(s): | English | |
Summary: | In many scientific and signal processing applications, there are increasing demands for large volume and high speed computations, which call for not only high-speed low power computing hardware, but also for novel approaches in developing new algorithms and architectures. This thesis is concerned with the development of such architectures and algorithms suitable for the VLSI implementation of recursive and nonrecursive 1-dimension digital filters using multiple slower processing elements. As the background for the development, vectorization techniques such as state-space modeling, block processing, and look ahead computation are introduced. Concurrent architectures such as systolic arrays, wavefront arrays and appropriate parallel filter realizations such as lattice, all-pass, and wave filters are reviewed. A fully hardware efficient systolic array architecture termed as Multiplexed Block-State Filter is proposed for the high speed implementation of lattice and direct realizations of digital filters. The thesis also proposes a new simplified algorithm, Alternate Pole Pairing Algorithm, for realizing an odd order recursive filter as the sum of two all-pass filters. Performance of the proposed schemes are verified through numerical examples and simulation results. | |
Identifier: | 15155 (digitool), FADT15155 (IID), fau:11928 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
Graduate College Thesis (M.S.E.)--Florida Atlantic University, 1995. |
|
Subject(s): |
Integrated circuits--Very large scale integration Parallel processing (Electronic computers) Computer network architectures Algorithms (Data processing) Digital integrated circuits |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/15155 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |