You are here
broadband signal processor for acoustic imaging using ambient noise
- Date Issued:
- 1994
- Summary:
- Buckingham et al. (Nature Vol. 356, p 327) first introduced the concept of acoustic imaging using ambient noise as a method for passively detecting objects in the ocean. Several analytical studies followed, and it was shown that a two dimensional acoustic image could be obtained based on this approach, and that at least 900 pixels are necessary to restitute the details of spherical objects placed in an underwater sound channel. The alternative approach described in this paper is based on a signal processing which uses the broadband nature of the ambient noise in the ocean, and therefore, optimizes the use of available sound energy scattered by the object. Images with thousands of pixels can be obtained using a relatively small number of transducers. This method has been validated using simple experiments in air, scaled to represent an ocean application, and results showing images of various objects will be presented.
Title: | A broadband signal processor for acoustic imaging using ambient noise. |
1098 views
1027 downloads |
---|---|---|
Name(s): |
Olivieri, Marc P. Florida Atlantic University, Degree grantor Glegg, Stewart A. L., Thesis advisor College of Engineering and Computer Science Department of Ocean and Mechanical Engineering |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 1994 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 122 p. | |
Language(s): | English | |
Summary: | Buckingham et al. (Nature Vol. 356, p 327) first introduced the concept of acoustic imaging using ambient noise as a method for passively detecting objects in the ocean. Several analytical studies followed, and it was shown that a two dimensional acoustic image could be obtained based on this approach, and that at least 900 pixels are necessary to restitute the details of spherical objects placed in an underwater sound channel. The alternative approach described in this paper is based on a signal processing which uses the broadband nature of the ambient noise in the ocean, and therefore, optimizes the use of available sound energy scattered by the object. Images with thousands of pixels can be obtained using a relatively small number of transducers. This method has been validated using simple experiments in air, scaled to represent an ocean application, and results showing images of various objects will be presented. | |
Identifier: | 15065 (digitool), FADT15065 (IID), fau:11843 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (M.S.E.)--Florida Atlantic University, 1994. |
|
Subject(s): |
Acoustic imaging Signal processing Underwater acoustics |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/15065 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |