You are here
Radar cross section of an open-ended rectangular waveguide cavity: A massively parallel implementation applied to high-resolution radar cross section imaging
- Date Issued:
- 1993
- Summary:
- This thesis is concerned with adapting a sequential code that calculates the Radar Cross Section (RCS) of an open-ended rectangular waveguide cavity to a massively parallel computational platform. The primary motivation for doing this is to obtain wideband data over a large range of incident angles in order to generate a two-dimensional radar cross section image. Images generated from measured and computed data will be compared to evaluate program performance. The computer used in this implementation is a MasPar MP-1 single instruction, multiple data massively parallel computer consisting of 4,096 processors arranged in a two-dimensional mesh. The algorithm uses the mode matching method of analysis to match fields over the cavity aperture to obtain an expression for the scattered far field.
Title: | Radar cross section of an open-ended rectangular waveguide cavity: A massively parallel implementation applied to high-resolution radar cross section imaging. |
83 views
28 downloads |
---|---|---|
Name(s): |
Vann, Laura Dominick. Florida Atlantic University, Degree grantor Helmken, Henry, Thesis advisor College of Engineering and Computer Science Department of Computer and Electrical Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 1993 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 100 p. | |
Language(s): | English | |
Summary: | This thesis is concerned with adapting a sequential code that calculates the Radar Cross Section (RCS) of an open-ended rectangular waveguide cavity to a massively parallel computational platform. The primary motivation for doing this is to obtain wideband data over a large range of incident angles in order to generate a two-dimensional radar cross section image. Images generated from measured and computed data will be compared to evaluate program performance. The computer used in this implementation is a MasPar MP-1 single instruction, multiple data massively parallel computer consisting of 4,096 processors arranged in a two-dimensional mesh. The algorithm uses the mode matching method of analysis to match fields over the cavity aperture to obtain an expression for the scattered far field. | |
Identifier: | 14984 (digitool), FADT14984 (IID), fau:11763 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (M.S.)--Florida Atlantic University, 1993. |
|
Subject(s): |
Radar cross sections Algorithms--Data processing Imaging systems |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/14984 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |