You are here

Electrochemical impedance spectroscopy to monitor degradation of carbon fiber reinforced polymer composites subjected to simulated ocean environment

Download pdf | Full Screen View

Date Issued:
1993
Summary:
This research evaluated the applicability of electrochemical impedance spectroscopy (EIS) as a non-destructive technique to predict and characterize the degradation of carbon fiber reinforced polymer (CFRP) composites exposed to aqueous environments at ambient and 6.2 $\pm$ 0.3 MPa. Changes in EIS data were related to water uptake into the composite material as a function of exposure time. Electrochemically induced damage (both anodic and cathodic) were also evaluated using impedance measurements. Three point flexure tests with concurrent EIS measurements were employed to study the effect of stresses on water uptake and mechanical degradation. Visual observation of the extent of damage (i.e., fiber-matrix debonding) was made using scanning electron microscopy (SEM) and correlated with EIS observation.
Title: Electrochemical impedance spectroscopy to monitor degradation of carbon fiber reinforced polymer composites subjected to simulated ocean environment.
120 views
30 downloads
Name(s): Ahmed, Mohammad Mesbahuddin.
Florida Atlantic University, Degree grantor
Lipka, Stephen M., Thesis advisor
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 1993
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 203 p.
Language(s): English
Summary: This research evaluated the applicability of electrochemical impedance spectroscopy (EIS) as a non-destructive technique to predict and characterize the degradation of carbon fiber reinforced polymer (CFRP) composites exposed to aqueous environments at ambient and 6.2 $\pm$ 0.3 MPa. Changes in EIS data were related to water uptake into the composite material as a function of exposure time. Electrochemically induced damage (both anodic and cathodic) were also evaluated using impedance measurements. Three point flexure tests with concurrent EIS measurements were employed to study the effect of stresses on water uptake and mechanical degradation. Visual observation of the extent of damage (i.e., fiber-matrix debonding) was made using scanning electron microscopy (SEM) and correlated with EIS observation.
Identifier: 14962 (digitool), FADT14962 (IID), fau:11742 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Thesis (M.S.)--Florida Atlantic University, 1993.
Subject(s): Polymers--Deterioration
Composite materials--Environmental aspects
Carbon fibers
Polymeric composites
Spectrum analysis
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/14962
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.