You are here
Analysis of the influence of voids on the hygroelastic properties of paper
- Date Issued:
- 1993
- Summary:
- The influence of voids on the hygroelastic properties of paper has been investigated using analytical and numerical methods. Paper was modeled as a laminate made of cell-wall layers. A continuous fiber orientation distribution was introduced into the laminate model to derive the baseline properties of the papersheet. The voids in the papersheet were modeled as reinforcements with zero elastic properties. The reduction of elastic stiffnesses of isotropic materials containing different shapes and volume fractions of pores were analyzed using Voigt, Reuss, foam and combination models. Hashin's two-phase bounding model and Christensen's three-phase self-consistent models were also used to predict the elastic stiffnesses of isotropic porous materials. The influence of voids on the engineering constants of orthotropic materials was analyzed using 2-D and 3-D finite element models. The invariance of hygroexpansion in the presence of voids was demonstrated using analytical and numerical methods. The theoretical model predictions were correlated with previously published experimental results.
Title: | Analysis of the influence of voids on the hygroelastic properties of paper. |
53 views
23 downloads |
---|---|---|
Name(s): |
Subramanian, Lakshmikanthan. Florida Atlantic University, Degree grantor Carlsson, Leif A., Thesis advisor College of Engineering and Computer Science Department of Ocean and Mechanical Engineering |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 1993 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 178 p. | |
Language(s): | English | |
Summary: | The influence of voids on the hygroelastic properties of paper has been investigated using analytical and numerical methods. Paper was modeled as a laminate made of cell-wall layers. A continuous fiber orientation distribution was introduced into the laminate model to derive the baseline properties of the papersheet. The voids in the papersheet were modeled as reinforcements with zero elastic properties. The reduction of elastic stiffnesses of isotropic materials containing different shapes and volume fractions of pores were analyzed using Voigt, Reuss, foam and combination models. Hashin's two-phase bounding model and Christensen's three-phase self-consistent models were also used to predict the elastic stiffnesses of isotropic porous materials. The influence of voids on the engineering constants of orthotropic materials was analyzed using 2-D and 3-D finite element models. The invariance of hygroexpansion in the presence of voids was demonstrated using analytical and numerical methods. The theoretical model predictions were correlated with previously published experimental results. | |
Identifier: | 14915 (digitool), FADT14915 (IID), fau:11697 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (M.S.)--Florida Atlantic University, 1993. |
|
Subject(s): |
Paper Papermaking Micromechanics |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/14915 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |