You are here

Tearing of an aligned vortex by a current difference in two-layer quasi-geostrophic flow

Download pdf | Full Screen View

Date Issued:
1993
Summary:
A study of two-layer quasi-geostrophic vortex flow is performed to determine the effect of a current difference between the layers on a vortex initially extending through both the layers. In particular, the conditions under which the current difference can 'tear' the vortex are examined. In the first set of flows studied, the current difference is generated by a (stronger) third vortex in the upper layer located at a large distance from the (weaker) vortex under study. A set of flows are also considered in which an ambient geostrophic current difference is produced by a non-uniform background potential vorticity field. The results of the study will be useful in determining the conditions under which large geophysical vortex structures, such as cyclones and ocean rings, can extend to large depths even though the mean currents in the ambient flow change significantly along the vortex length.
Title: Tearing of an aligned vortex by a current difference in two-layer quasi-geostrophic flow.
65 views
16 downloads
Name(s): Parthasarathy, Balaji.
Florida Atlantic University, Degree grantor
Marshall, Jeffrey S., Thesis advisor
College of Engineering and Computer Science
Department of Ocean and Mechanical Engineering
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 1993
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 95 p.
Language(s): English
Summary: A study of two-layer quasi-geostrophic vortex flow is performed to determine the effect of a current difference between the layers on a vortex initially extending through both the layers. In particular, the conditions under which the current difference can 'tear' the vortex are examined. In the first set of flows studied, the current difference is generated by a (stronger) third vortex in the upper layer located at a large distance from the (weaker) vortex under study. A set of flows are also considered in which an ambient geostrophic current difference is produced by a non-uniform background potential vorticity field. The results of the study will be useful in determining the conditions under which large geophysical vortex structures, such as cyclones and ocean rings, can extend to large depths even though the mean currents in the ambient flow change significantly along the vortex length.
Identifier: 14909 (digitool), FADT14909 (IID), fau:11692 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Thesis (M.S.E.)--Florida Atlantic University, 1993.
Subject(s): Vortex-motion
Fluid dynamics
Boundary layer control
Flow visualization
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/14909
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.