You are here

fuzzy logic based flight control system for the FAU "Ocean Voyager" autonomous underwater vehicle

Download pdf | Full Screen View

Date Issued:
1993
Summary:
The development of a Flight Control System for a non-linear six degree of freedom model of an Autonomous Underwater Vehicle is described. Heading, pitch and depth are regulated by three independent Fuzzy Logic Controllers (FLCs). Numerical methods are used to tune rule bases to control tables that are based on the minimum time characteristics of the model. Setpoint errors are eliminated using fuzzily constrained integrators. A scheme to vary control policy with forward speed is also detailed. System stability is evaluated using cell-to-cell mapping. A variable structure fuzzy heading controller is designed for an unstable non-linear model of an Unmanned Underwater Vehicle. Scheduling of scaling parameters accommodates changes in forward speed as predicted by thruster RPM and angular distance turned. This FLC combines bang-bang and linear type control to respond more rapidly and robustly than a gain scheduled linear PID controller.
Title: A fuzzy logic based flight control system for the FAU "Ocean Voyager" autonomous underwater vehicle.
65 views
20 downloads
Name(s): Anderson, Donald Taylor.
Florida Atlantic University, Degree grantor
Smith, Samuel M., Thesis advisor
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 1993
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 115 p.
Language(s): English
Summary: The development of a Flight Control System for a non-linear six degree of freedom model of an Autonomous Underwater Vehicle is described. Heading, pitch and depth are regulated by three independent Fuzzy Logic Controllers (FLCs). Numerical methods are used to tune rule bases to control tables that are based on the minimum time characteristics of the model. Setpoint errors are eliminated using fuzzily constrained integrators. A scheme to vary control policy with forward speed is also detailed. System stability is evaluated using cell-to-cell mapping. A variable structure fuzzy heading controller is designed for an unstable non-linear model of an Unmanned Underwater Vehicle. Scheduling of scaling parameters accommodates changes in forward speed as predicted by thruster RPM and angular distance turned. This FLC combines bang-bang and linear type control to respond more rapidly and robustly than a gain scheduled linear PID controller.
Identifier: 14899 (digitool), FADT14899 (IID), fau:11683 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Thesis (M.S.)--Florida Atlantic University, 1993.
Subject(s): Fuzzy sets
Submersibles--Control systems
Oceanographic submersibles--Automatic control
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/14899
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.